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2.4.1 Epoxidation: Introduction
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2.4.1 Epoxidation: Jacobsen
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The Classical Jacobsen Epoxidation for Cis Olefins

(1) Jacobsen, E. N.; Zhang, W.; Muci, A. R.; Ecker, J. R.; Deng, L. J. Am. Chem. Soc. 1991, 113, 7063-7064. (2) Palucki, 

M.; Finney, N. S.; Pospisil, P. J.; Guler, M. L.; Ishida, T.; Jacobsen, E. N. J. Am. Chem. Soc. 1998, 120, 948-954.

Mechanism Model for Selectivity
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2.4.1 Epoxidation: Jacobsen
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Electronic Influence on Selectivity

(1) Palucki, M.; Finney, N. S.; Pospisil, P. J.; Guler, M. L.; Ishida, T.; Jacobsen, E. N. J. Am. Chem. Soc. 1998, 120, 948-

954.
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spara = Hammet parameter = strenght of electron-withdrawing effect



2.4.1 Epoxidation: Jacobsen

5

Electronic Influence on Selectivity

(1) Palucki, M.; Finney, N. S.; Pospisil, P. J.; Guler, M. L.; Ishida, T.; Jacobsen, E. N. J. Am. Chem. Soc. 1998, 120, 948-

954.

Hammond Postulate: structure of transition state similar to reactive intermediate



2.4.1 Epoxidation: Counter Anion directed
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List: achiral salen complex with chiral countera anion1

(1) Liao, S. H.; List, B. Angew. Chem., Int. Ed. 2010, 49, 628-631.



2.4.1 Epoxidation: Ketones as Catalysts
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Shi: Use of Chiral Ketones as Catalysts

(1) Wang, Z. X.; Tu, Y.; Frohn, M.; Zhang, J. R.; Shi, Y. J. Am. Chem. Soc. 1997, 119, 11224-11235. (2) Shi, Y. Acc. Chem. 

Res. 2004, 37, 488-496.

Synthesis of Catalyst
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2.4.1 Epoxidation: Ketones as Catalysts
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(1) Wang, Z. X.; Tu, Y.; Frohn, M.; Zhang, J. R.; Shi, Y. J. Am. Chem. Soc. 1997, 119, 11224-11235. (2) Shi, Y. Acc. Chem. 

Res. 2004, 37, 488-496.

Mechanism



2.4.1 Epoxidation: Ketones as Catalysts
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(1) Wang, Z. X.; Tu, Y.; Frohn, M.; Zhang, J. R.; Shi, Y. J. Am. Chem. Soc. 1997, 119, 11224-11235. (2) Shi, Y. Acc. Chem. 

Res. 2004, 37, 488-496.

Use of Acetonitrile/Hydrogen Peroxide as Oxidant



2.4.1 Epoxidation: Ketones as Catalysts
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(1) Wang, Z. X.; Tu, Y.; Frohn, M.; Zhang, J. R.; Shi, Y. J. Am. Chem. Soc. 1997, 119, 11224-11235. (2) Shi, Y. Acc. Chem. 

Res. 2004, 37, 488-496.

Model for Selectivity



2.4.2 Aziridination
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(1) Evans, D. A.; Faul, M. M.; Bilodeau, M. T.; Anderson, B. A.; Barnes, D. M. J. Am. Chem. Soc. 1993, 115, 5328-5329. 

(2) Li, Z.; Conser, K. R.; Jacobsen, E. N. J. Am. Chem. Soc. 1993, 115, 5326-5327.

Evans Copper Catalyst with BOX Ligands1
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2.4.2 Aziridination

12
(1) Brandt, P.; Sodergren, M. J.; Andersson, P. G.; Norrby, P. O. J. Am. Chem. Soc. 2000, 122, 8013-8020.

Possible Mechanism

Triplet Intermediate Singlet Intermediate

Singlet and Triplet are very close in 

energy



2.4.3 Cyclopropanation: Introduction
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Cyclopropanation with Diazo Compounds

Several Pathways for Cyclopropanation

MLn

N CO2Et
NN CO2Et

N

N CO2Et
N

MLn

CO2Et

MLn

CO2Et

CO2Et

MLn

CO2Et

CO2Et

MLn

CO2Et

MLn

•

•

CO2Et

MLn

CO2Et

MLn

CO2Et

MLn

MLn

Synchronous

Stepwise

Dual Activation

Reductive Elimination



2.4.3 Cyclopropanation: Early Examples
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Cyclopropanation of Styrene: One of the First Catalytic Asymmetric Reaction1

Nakamura: Towards Useful Enantioselectivity2,3
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(1) Nozaki, H.; Takaya, H.; Moriuti, S.; Noyori, R. Tetrahedron 1968, 24, 3655. (2) Nakamura, A.; Konishi, A.; Tatsuno, Y.; 

Otsuka, S. J. Am. Chem. Soc. 1978, 100, 3443-3448. (3) Nakamura, A.; Konishi, A.; Tsujitani, R.; Kudo, M.; Otsuka, S. J. 

Am. Chem. Soc. 1978, 100, 3449-3461.



2.4.3 Cyclopropanation: Early Examples
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Pfaltz: Vitamin B12 Inspired Semicorrin Ligands1
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Evans: BOX Ligands2

Vitamin B12

(1) Fritschi, H.; Leutenegger, U.; Pfaltz, A. Angew. Chem., Int. Ed. Engl. 1986, 25, 1005-1006. (2) Evans, D. A.; Woerpel, 

K. A.; Hinman, M. M.; Faul, M. M. J. Am. Chem. Soc. 1991, 113, 726-728.



2.4.3 Cyclopropanation: Early Examples
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Nishiyama: Ru-Pybox Catalyst1

Also ligands with C1 symmetry can be successful2
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(1) Nishiyama, H.; Itoh, Y.; Matsumoto, H.; Park, S. B.; Itoh, K. J. Am. Chem. Soc. 1994, 116, 2223-2224. (2) Nishiyama, 

H.; Soeda, N.; Naito, T.; Motoyama, Y. Tetrahedron: Asymmetry 1998, 9, 2865-2869.



2.4.3 Cyclopropanation: Rh Catalysis
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Doyle: Rh-Catalyzed Intramolecular Cyclopropanation

(1) Doyle, M. P.; Austin, R. E.; Bailey, A. S.; Dwyer, M. P.; Dyatkin, A. B.; Kalinin, A. V.; Kwan, M. M. Y.; Liras, S.; Oalmann, 

C. J.; Pieters, R. J.; Protopopova, M. N.; Raab, C. E.; Roos, G. H. P.; Zhou, Q. L.; Martin, S. F. J. Am. Chem. Soc. 1995, 

117, 5763-5775.

ZR1

R2 O

N2n
Z

O

R1

R2 n

1 mol% Rh2L*4

DCM

NO

RhRh
NO

ON
N O

CO2Me

H

Rh2(5S-MEPY)4

NO

RhRh
NO

ON
N O

CO2CH2CMe3

H

Rh2(5S-NEPY)4

N

O

O

RhRh
NO

ON
N O

CO2Me

H

Rh2(4S-MEOX)4

N

N

O

RhRh
NO

ON
N O

CO2Me

H

Rh2(4S-MPAIM)4

O

R

Model for Selectivity



2.4.3 Cyclopropanation: Rh Catalysis

18

Corey: Rh-Catalyzed Cyclopropanation of Alkynes

(1) Lou, Y.; Horikawa, M.; Kloster, R. A.; Hawryluk, N. A.; Corey, E. J. J. Am. Chem. Soc. 2004, 126, 8916-8918. (2) Lou, 

Y.; Remarchuk, T. P.; Corey, E. J. J. Am. Chem. Soc. 2005, 127, 14223-14230.
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2.4.3 Cyclopropanation: Rh Catalysis
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Calculation: Tetrabridged Structures and Direct Cyclopropanation are Favored

(1) Nowlan, D. T.; Singleton, D. A. J. Am. Chem. Soc. 2005, 127, 6190-6191.

Model for Selectivity



2.4.3 Cyclopropanation: Alternative Radical Mechanism
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Zhang: Cobalt porphyrin catalysts favoring a radical rebound mechanism

Lee, W.-C. C.; Wang, D.-S.; Zhang, C.; Xie, J.; Li, B.; Zhang, X. P. Chem 2021, 1588-1601.



2.4.3 Cyclopropanation: Alternative to Diazo Compounds
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Hypervalent Iodine as Carbene Precursor: Rh Catalyst1

(1) Muller, P.; Ghanem, A. Org. Lett. 2004, 6, 4347-4350. (2) Moreau, B.; Charette, A. B. J. Am. Chem. Soc. 2005, 127, 

18014-18015.
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2.4.3 Cyclopropanation: Alternative to Diazo Compounds
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Toste: Propargylic Ester as Au-Carbenes Precursors

(1) Johansson, M. J.; Gorin, D. J.; Staben, S. T.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 18002-18003.
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2.4.3 Cyclopropanation: Alternative to Diazo Compounds
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Zhuo: From carbonyl groups using a Mo catalyst and phosphine as reductant

(1) Cao, L.-Y.; Wang, J.-L.; Wang, K.; Wu, J.-B.; Wang, D.-K.; Peng, J.-M.; Bai, J.; Zhuo, C.-X. J. Am. Chem. Soc. 

2023, 145, 2765-2772.



2.4.4 Dihydroxylation: Sharpless
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1. Generation Sharpless Dihydroxylation1
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2. Generation Sharpless Dihydroxylation: Dimeric Ligands and Ad-Mix2,3
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(1) Wai, J. S. M.; Marko, I.; Svendsen, J. S.; Finn, M. G.; Jacobsen, E. N.; Sharpless, K. B. J. Am. Chem. Soc. 1989, 111, 

1123-1125. (2) Sharpless, K. B.; Amberg, W.; Bennani, Y. L.; Crispino, G. A.; Hartung, J.; Jeong, K. S.; Kwong, H. L.; 

Morikawa, K.; Wang, Z. M.; Xu, D. Q.; Zhang, X. L. J. Org. Chem. 1992, 57, 2768-2771. (3) Kolb, H. C.; Vannieuwenhze, 

M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483-2547.



2.4.4 Dihydroxylation: Sharpless
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Ligands for Asymmetric Dihydroxylation
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2.4.4 Dihydroxylation: Sharpless
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2.4.4 Dihydroxylation: Sharpless
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Mechanism for Dihydroxylation Using NMO



2.4.4 Dihydroxylation: Sharpless
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Mechanism for Dihydroxylation Using Add Mix



2.4.4 Dihydroxylation: Sharpless
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Origin of Enantioselectivity



2.4.4 Dihydroxylation: Sharpless
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Importance of Structure and Mnemotechnic Model



2.4.4 Dihydroxylation: Sharpless
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Corey: The Importance of p-p Interactions for Selectivity

Kinetic Resolution Using Sharpless Dihydroxylation

(1) Corey, E. J.; Guzmanperez, A.; Noe, M. C. J. Am. Chem. Soc. 1995, 117, 10805-10816. (2) Corey, E. J.; Noe, M. C.; 

Guzmanperez, A. J. Am. Chem. Soc. 1995, 117, 10817-10824.
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2.4.4 Dihydroxylation: Sharpless
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Model for Selectivity

(1) Corey, E. J.; Guzmanperez, A.; Noe, M. C. J. Am. Chem. Soc. 1995, 117, 10805-10816. (2) Corey, E. J.; Noe, M. C.; 

Guzmanperez, A. J. Am. Chem. Soc. 1995, 117, 10817-10824.



2.4.4 Aminohydroxylation: Sharpless
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Sharpless: Asymmetric Aminhydroxylation

(1) Li, G. G.; Chang, H. T.; Sharpless, K. B. Angew. Chem., Int. Ed. Engl. 1996, 35, 451-454. (2) Bodkin, J. A.; McLeod, M. 

D. J. Chem. Soc. Perkin Trans. 1 2002, 2733-2746.

R OR

O

R OR

OTsNH

OH

R OR

OTsNH

OH

AD-Mix

Me

S

O O

N

Cl

Na

Chloramine T

(DHQD)2-PHAL

(DHQ)2-PHAL

52-65%
53-71% ee

52-65%
77-81% ee

R
S

O O

N
Cl

Na
RO

C
N

Cl

Na

O

R
C

N
Br

O

Li

Best Nitrogen Sources



2.4.5 C-H/X-H Functionalization: Introduction
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CH Functionalization
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2.4.4 C-H Functionalization: Oxygen Transfer
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Karasch-Sosnovsky Allylic Oxidation

O
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Andrus: Minor Improvements2
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(1) Gokhale, A. S.; Minidis, A. B. E.; Pfaltz, A. Tetrahedron Lett. 1995, 36, 1831-1834. (2) Andrus, M. B.; Zhou, Z. N. J. Am. 

Chem. Soc. 2002, 124, 8806-8807.



2.4.4 C-H Functionalization: Oxygen Transfer
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Proposed Mechanism

(1) Gokhale, A. S.; Minidis, A. B. E.; Pfaltz, A. Tetrahedron Lett. 1995, 36, 1831-1834. (2) Andrus, M. B.; Zhou, Z. N. J. Am. 

Chem. Soc. 2002, 124, 8806-8807.



2.4.4 C-H Functionalization: Carbenes
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Doyle: Intramolecular C-H Insertion1

(1) Doyle, M. P.; Vanoeveren, A.; Westrum, L. J.; Protopopova, M. N.; Clayton, T. W. J. Am. Chem. Soc. 1991, 113, 8982-

8984. (2) Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861-2903. (3) Davies, H. M. L.; Manning, J. R. 

Nature 2008, 451, 417-424.

Davies: Intermolecular C-H Insertion2
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2.4.4 C-H Functionalization: Carbenes
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Different Kinds of Carbenoids

(1) Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861-2903.

Compared Reactivity of Substrates with Rh2(S-DOSP)4 and Donor-Acceptor Carbenoids
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2.4.4 C-H Functionalization: Carbenes
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Davies: Asymmetric Synthesis of Erogorgiaene

(1) Davies, H. M. L.; Walji, A. M. Angew. Chem., Int. Ed. 2005, 44, 1733-1735.
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2.4.4 C-H Functionalization: Carbenes
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Model for Selectivity

(1) Davies, H. M. L.; Walji, A. M. Angew. Chem., Int. Ed. 2005, 44, 1733-1735.



2.4.4 X-H Functionalization: Carbenes
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Fu: Cu-Catalyzed Insertion into OH Bonds1

(1) Maier, T. C.; Fu, G. C. J. Am. Chem. Soc. 2006, 128, 4594. (2) Liu, B.; Zhu, S. F.; Zhang, W.; Chen, C.; Zhou, Q. L. J. 

Am. Chem. Soc. 2007, 129, 5834. (3) Zhu, S. T.; Chen, C.; Cai, Y.; Zhou, Q. L. Angew. Chem., Int. Ed. 2008, 47, 932.
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Zhou: Cu-Catalyzed Insertion into NH Bonds2 or water3



2.4.4 Carbene multi-functionalization

42
Ma, X.; Jiang, J.; Lv, S.; Yao, W.; Yang, Y.; Liu, S.; Xia, F.; Hu, W. Angew. Chem. Int. Ed. 2014, 53, 13136.

Hu: Rh-Catalyzed multi-functionalization cascade



2.4.4 Carbene multi-functionalization

43
Hari, D. P.; Waser, J. J. Am. Chem. Soc. 2017, 139, 8420-8423.

Waser: Multi-functionalization with EBX (Ethynylbenziodoxolone) hypervalent iodine reagents



2.4.4 C-H Functionalization: Nitrenes
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Du Bois: Rh-catalyzed nitrene insertion with hypervalent iodine1

(1) Zalatan, D. N.; Du Bois, J. J. Am. Chem. Soc. 2008, 130, 9220. (2) Milczek, E.; Boudet, N.; Blakey, S. Angew. Chem., 

Int. Ed. 2008, 47, 6825.

Blakey: Ru-catalyzed nitrene insertion with hypervalent iodine2



2.4.4 C-H Functionalization: Nitrenes
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Zhang: Co-catalyzed nitrene insertion via radicals1

(1) Li, C. Q.; Lang, K.; Lu, H. J.; Hu, Y.; Cui, X.; Wojtas, L.; Zhang, X. P., Angew. Chem., Int. Ed. 2018, 57, 16837-16841.



2.4.5 Other Reactions: Azidation of Radicals

(1) Ge, L.; Zhou, H.; Chiou, M.-F.; Jiang, H.; Jian, W.; Ye, C.; Li, X.; Zhu, X.; Xiong, H.; Li, Y.; Song, L.; Zhang, X.; Bao, H. 

Nat. Catal. 2021, 4, 28. (2) Cao, M.; Wang, H.; Ma, Y.; Tung, C.-H.; Liu, L. J. Am. Chem. Soc. 2022, 144, 15383-15390.

Bao: Iron-catalyzed carboazidation1

46

Also possible starting from benzylic C-H bonds2



2.4.5 Other Reactions: Reaction of Oxy-Allyl Cation

47

Jacobsen: Lewis acidity enhancement

Banik, S. M.; Levina, A.; Hyde, A. M.; Jacobsen, E. N. Science 2017, 358, 761-764.



2.4.5 Other Reactions: Amination of Enolates

48

Yamamoto: Acid-Catalyzed Nitroso-Aldol Reaction with Enamines: 

Amination or Hydroxylation Depending on Catalyst

(1) Momiyama, N.; Yamamoto, H. J. Am. Chem. Soc. 2005, 127, 1080-1081.
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2.4.5 Other Reactions: Sulfide Oxidation

49

Ellman: Asymmetric Oxidation of Disulfide

(1) Blum, S. A.; Bergman, R. G.; Ellman, J. A. J. Org. Chem. 2003, 68, 150-155.

Synthesis of Ellman’s Auxiliary
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2.4.5 Other Reactions: Asymmetric Chlorination

50

(1) Whitehead, D. C.; Yousefi, R.; Jaganathan, A.; Borhan, B., J. Am. Chem. Soc. 2010, 132, 3298. (2) Nicolaou, K. C.; 

Simmons, N. L.; Ying, Y. C.; Heretsch, P. M.; Chen, J. S., J. Am. Chem. Soc. 2011, 133, 8134.

Nicolaou: Dichlorination2

Bohran: Chlorolactonization1



2.4.5 Other Reactions: Asymmetric Fluorination

51
Rauniyar, V.; Lackner, A. D.; Hamilton, G. L.; Toste, F. D. Science 2011, 334, 1681-1684.

Toste: Enantioselective oxyfluorination based on phase-transfer of the cation!



2.4.5 Other Reactions: Via Sulfonium
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(1) Denmark, S. E.; Jaunet, A. J. Am. Chem. Soc. 2013, 135, 6419. (2) Lin, S.; Jacobsen, E. N. Nat. Chem. 2012, 

4, 817.

Denmark: intermolecular sulfonium formation1

Jacobsen: intramolecular sulfonium formation2



2.4.5 Other Reactions: Via Sulfonium

53

(1) Denmark, S. E.; Chi, H. M. J. Am. Chem. Soc. 2014, 136, 3655. (2) Denmark, S. E.; Hartmann, E.; 

Kornfilt, D. J. P.; Wang, H. Nat. Chem. 2014, 6, 1056.



2.4.5 Other Reactions: Via Sulfonium

54
Lin, S.; Jacobsen, E. N. Nat. Chem. 2012, 4, 817.



2.2.4 Other Reactions: Hypervalent Iodine

55

• Hypervalent with involvement of 5p orbitals

• Only partial bond character (4 electrons-3 centres bond)

• Exceptional reactivity



2.4.5 Other Reactions: Hypervalent Iodine

56

(1) Uyanik, M.; Okamoto, H.; Yasui, T.; Ishihara, K. Science 2010, 328, 1376. (2) Uyanik, M.; Hayashi, H.; Ishihara, 

K. Science 2014, 345, 291. (3) Uyanik, M.; Yasui, T.; Ishihara, K. Angew. Chem., Int. Ed. 2010, 49, 2175. 

Ishihara: Oxidative cyclization with inorganic hypervalent iodine1-2

Ishihara: Oxidative Spirolactonization3



2.4.5 Other Reactions: Hypervalent Iodine

57

(1) Dohi, T.; Takenaga, N.; Nakae, T.; Toyoda, Y.; Yamasaki, M.; Shiro, M.; Fujioka, H.; Maruyama, A.; Kita, Y. J. 

Am. Chem. Soc. 2013, 135, 4558.

Kita: Oxidative Spirolactonization1



2.4.5 Other Reactions: Hypervalent Iodine
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(1) Haubenreisser, S.; Woste, T. H.; Martinez, C.; Ishihara, K.; Muniz, K. Angew. Chem., Int. Ed. 2016, 55, 413-417. (2) 

Muniz, K.; Barreiro, L.; Romero, R. M.; Martinez, C. J. Am. Chem. Soc. 2017, 139, 4354-4357.

Muniz/Ishihara: Diacetoxylation of olefins1

Muniz: Diamination2



2.4.5 Other Reactions: Hypervalent Iodine

59

Banik, S. M.; Medley, J. W.; Jacobsen, E. N. Science 2016, 353, 51-54. (2) Banik, S. M.; Medley, J. W.; Jacobsen, E. N. J. 

Am. Chem. Soc. 2016, 138, 5000-5003. (3) Scheidt, F.; Schafer, M.; Sarie, J. C.; Daniliuc, C. G.; Molloy, J. J.; Gilmour, R. 

Angew. Chem.-Int. Edit. 2018, 57, 16431-16435.

Jacobsen/1,2 Gilmour:3 enantioselective difluorination.



2.4.5 Other Reactions: Hypervalent Iodine

60Jacobsen, E. N.; Houk, K. N.; Xue, X. S., J. Am. Chem. Soc. 2018, 140, 15206-15218.

Jacobsen/Houk: Calculated best transition states


