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2.1 Carbonyl and Imine Activation: Introduction
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2.1.1 Aldol Reaction: General Scheme

General Catalytic Cycle for Asymmetric Mukaiyama Aldol Reaction
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For aldol reactions: difficult to prevent competing racemic cycle!




2.1.1 Aldol Reaction: Early Examples

Corey Asymmetric Aldol Reaction?!
YF
OSiMeg

Chiral Boranes: Design of ”Chiral BF;”

Model for Selectivity

H p-Stacking

N R

N\ Hydrogen Bond
A

OSiMes

O, .-
9O e

Me

HN / O
Tos"\l\B/O .
propionitrile, -78 °C
56-100%
86-93% ee
*
N . N
H/Y X\H 2 Y\B,X
]
R

bond and = stacking

X, Y =0,NR

- 2 interactions to fixe substrate: hydrogen

- One face blocked by indole of tryptophane

(1) E. J. Corey, C. L. Cywin, T. D. Roper, Tetrahedron Lett. 1992, 33, 6907-6910.



2.1.1 Aldol Reaction: Early Examples

Carreira Asymmetric Aldol Reactions

Acetate Aldol Reaction?

‘Bu
(1)
“Ti—0  Br
o I o
OO 0 o]
tBu
o 2 mol% ‘Bu OH O
+ OMe > ~
RJ\H Et,0, -10 °C R/\)J\OMe
94-97% ee
Acetone Aldol Reaction?
Ti cat
j\ + Me 2 mol% /(E)i)oj\
ﬁ/ > R Me
R H . Et,0, -10 °C
OSiMe; 79-99%

66-98% ee

(1) Carreira, E. M.; Singer, R. A.; Lee, W. S. J. Am. Chem. Soc. 1994, 116, 8837-8838.
(2) Carreira, E. M.; Lee, W.; Singer, R. A. J. Am. Chem. Soc. 1995, 117, 3649-3650.



2.1.1 Aldol Reaction: Early Examples

A Modular Catalyst Design

‘Bu Salicylaldehyde derivative
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Counter Anion
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2.1.1 Aldol Reaction: Two Points Binding

Evans Aldol with (Benzyloxy)acetaldehyde?

2+
Me Me |20Tf'
S PN
§/N\ N
Cu -
'Bu

N

‘Bu
H O
o OTMS 10 mol% ©
+ >  BnO ~
BnO\)J\H )\StBu DCM, -78 °C \/\)J\StBu
91% ee
2+
X
PYBOX | | 2 SbF6-
~
N—Cu—N~—/
Ph Ph
OH O
0 j\TMS 10 mol% z
+ > BnO ~
BnO\)J\H StBU DCM, 78 °C \/\)J\StBu
99% ee
(1) Evans, D. A.; Kozlowski, M. C.; Murry, J. A.; Burgey, C. S.; Campos, K. R.; Connell, B. T.; Staples, R. J.
J. Am. Chem. Soc. 1999, 121, 669-685.



2.1.1 Aldol Reaction: Two Points Binding

BOX and PYBOX: Privileged ligands
BOX (BisOXazoline)

Me, Me R NEt s
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Well-Defined Steric Disposition
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2.1.1 Aldol Reaction: Two Points Binding

Mechanism Proposed by Evans?

0 OSnMea

D
[Cu(Ph- pybﬂx}] SbFg)s
DECGmﬂFEXﬂffﬂff/ \%omp!exanon
Me Si
)_L/-\/Qan 2 SbFg™ H)l\/OBn 2 SbFg~
RS 25
Silylation
Me;sSiO
RS

(1) Evans, D. A.; Kozlowski, M. C.; Murry, J. A.; Burgey, C. S.; Campos, K. R.; Connell, B. T.; Staples, R. J.
J. Am. Chem. Soc. 1999, 121, 669-685.



2.1.1 Aldol Reaction: Two Points Binding

Observed Non-Linear Effect: Reservoir Effect

% ee product (S)

| == 24
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W
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[Cul((R,R)-Ph-pybox)|(SbFe)z
enf-4c
0 o 40 60 8 100
0 20 [Cul(S,S)-Ph-pybox)
n% ee catalyst (S,5)

((R,R)-Ph-pybox)](SbFg)z

catalytically inactive reservoir
for minor enantiomeric ligand
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2.1.1 Aldol Reaction: Two Points Binding

Model for Selectivity

—l 2+

O RN‘?h' -0 ‘"“”Ph]

HBnG LH H Dﬁ)

Nu (si face) p, (re face) /' H

31a productive 31b nonproductive
j observed product l
OH O OH O
BnD\/I\)I\ BnD\/:\/U\
SR SR
(S) (R)

Based on the structure of similar copper complexes, a square planar pyramidal coordination is
expected, but how to rationalize the binding mode of the substrate?

11



2.1.1 Aldol Reaction: Two Points Binding

Crystal Structure of Substrate-Catalyst Adduct

Selected bond lengths (A)
and angles (deg)

Cul-N1
Cul-N2
Cul-N3
Cul-03
Cul-04
Cu1-F1
Cul-F12
N1-Cu1-03
M1-Cui-04

03-Cul-04  73.6(3)

1.952(10)
1.989(10)
2,014(9)
1.086(8)
2 328(8)
2,619(7)
5.265(7)
168.0(4)
117.4(3)

[Cu{Ph-pybox)}{(BnOCH,CHO}(SbFg),

F12 32-}{[‘}1}’

12



2.1.1 Aldol Reaction: Two Points Binding

BOX ligand: absolute stereochemistry of product is dependent of counter anion!

Me Me —1 2+ Me Me —l 1+
Me,C .D%—D\ H MEBG.D-])%—JD‘ H
I +X~ %—ll |
u

CMES

40 “_.-’ siface }\ 41
S'Bu -7

OH O OH O
E"”D\/:\‘)J\
Bno\/l\)\s‘eu s'Bu
(S) (R)
Observed with X = SbF, Observed with X = OTf

13



2.1.2 Allylation Reactions: Sakural and Ene Reactions

Ho, R? H,0, H* MO RZ o

R1>\/\ -~ \

cat*
Catalyst Release Activation
cat

cat*—0O

R1>\\/g/ M

Rl 'R?
M=H, Ene _
Bond Formation A>oM M = Si, Sakurai
M = Sn, Keck

For the ene, the reaction is usually synchronous via a chair transition state

14



2.1.2 Allylation Reactions: Keck Allylation

Keck Allylation12

\ )

N
7
OH
_~_OH
| (R)-Binol

A

X

mQ

RJJ\H + /\/SI’]BU?)

0
o
o

20 mol% H
o

. R XX —> /\)I\ /\)]\OH
10 mol%Ti(O'Pr),

DCM, -78 to -20 °C

| OH
OH
O (R)-Binol
O Me

OH Me
20 mol% = @)
SnBu > /_\/& 3 =
R)‘]\H + )\/ 3 R R —_— R/\)L
10 mol%Ti(O'Pr),

; 80-99%
DCM, -78 to -20 °C 86-99% ee

73-98%
87-95% ee

The catalyst (unknown structure!) is prepared directly before reaction

(1) Keck, G. E.; Tarbet, K. H.; Geraci, L. S. J. Am. Chem. Soc. 1993, 115, 8467-8468. (2) Keck, G. E
Krishnamurty, D.; Grier, M. C. J. Org. Chem. 1993, 58, 6543-6544.
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2.1.3 Other Nucleophiles: TMSCN

General Considerations for the Silylcyanation of Aldehydes

NCE(OSiMeg, AN RJ\H
R H XxM/Y
N
P Xo Y
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MegSp ===~ 07 R)J\H
e
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NC.,, NT I
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- Two Mechanisms can be envisaged
- | Direct silylcyanation
-1l Activation of the silyl group via a heteroatom of the ligand

‘ Modern reactions are designed on dual activation




2.1.3 Other Nucleophiles: TMSCN

Corey Boron Catalyst: Purely Lewis Acidic??

0 10 mol%
J\ + Me;Si—CN >
R H 20 mol% PhsP=0
toluene, 0 °C

OSiMes

CN

The Privileged Proline Scaffold and Bronsted Acid Activation of Lewis Acid

I:I Ar
(N O O@—E
CO,H N X
R R
Proline oxazaborolidine oxazaborolidinium
activated
A New Cyanation Reagent?
OSiMez
PhsP=0 + MesSi—CN =~—== PhsR
N
N

-
Me;’&.)‘ﬂ-.q
H™ | 7 H\
O
© \
TfO Mf
®R

Without Ph;P=0: Very low selectivity!

(1) Ryu, D. H.; Corey, E. J. J. Am. Chem. Soc. 2004, 126, 8106-8107. (2) Ryu, D. H.; Corey, E. J. J.

Am. Chem. Soc. 2005, 127, 5384-5387.




2.1.3 Other Nucleophiles: Isonitriles

Asymmetric Passerini 3 Components Reactlonl
SALEN

tBudo/ él\ob 0
'‘Bu 10 mol% o 51-70%
= NHR3 63-99% ee

o) ® ©
R3-N=C:

toluene, -60 °C R1/\n/

(o)

Mechanism
@O,LA*
1 N

: (/«\\\N@ N>
"R —> /\fr@) —
1

O R R1/\(

NHR3

o R'" "H
. ~H
szl\o’

@
N=C.

R3_
Other important multi-component reaction: Ugi 4 components reaction
® O
-N=C: + R*-NH, —
RN

(o) (o) s
+ + R
N Loy

Int. Ed. 2008, 47, 388.

(1) Wang, S. X.; Wang, M. X.; Wang, D. X.; Zhu, J. P. Angew. Chem
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2.1.3 Other Nucleophiles: Hetero Diels-Alder

Jacobsen: Cr-Catalyzed Hetero-Diels Alder Reaction with Aldehydes

oot

0
N Me . J\ 3 mol% . ~Me
RY H 4R MS, 23 °C G,
Me then TBAF Me" 0”7 ‘R
78-99%
Other Dienes 94-99% ee
OTES 0 OTES o)
wMe
N - Me
Me M o u,, OTBS | n,, ~OTBS
78%
50%
98% ee 91% ee
X =
| —_—
MeO Meo™ o~ - OTBS
91%
99% ee

(1) Dossetter, A. G.; Jamison, T. F.; Jacobsen, E. N. Angew. Chem., Int. Ed. 1999, 38, 2398-2400.



2.1.4 Mannich: Introduction

Comparison Imine - Carbonyl

Released Amine still very good ligand: E or Z imine formed prior to reaction

Catalyst release is more difficult /
R N/R
HN Nu
cat*
Imlne more basic: activation is easier
cat*
cat*—N Nu JL
Rl)\RZ Rl R2 */x
catt®p  CA @
/ rd
\’( N N
\)J\RZ R]_JJ\RZ
Nu

R group offers new possibilities for 2
points binding

Choice of R group is essential to

modulate activation and catalyst release!

20



2.1.4 Mannich: First Examples

Kobayashi: the First Efficient Catalytic System

ROONNGSH
o. ,0
lzr\
O O
HO OH
) o s . CX

10 mol%

N NH O
bl . Mes AN o o
R™ 'H Me Me R! R2
N Me Me
[,} DCM, -45 °C 56-100%
N 80-98% ee
30 mol%

Deprotection of the Product

@[OH
NH O NH, O

1) Mel, K2003

Rl%Rz 2) CAN Rl%RZ

Me Me Me Me

(1) Ishitani, H.; Ueno, M.; Kobayashi, S. J. Am. Chem. Soc. 1997, 119, 7153-7154.



2.1.4 Mannich: First Examples

HO =
Proposed Mechanism D

N o
Br
FI1AL‘H
LN . OSiMe;
a -
H"]

5a

LT
gees

L= NMI cr DM

R R*
10

(1) Ishitani, H.; Ueno, M.; Kobayashi, S. J. Am. Chem. Soc. 2000, 122, 8180-8186. 22



2.1.4 Mannich: Phosphoric acids

Akiyama: The First Chiral H*!12

" “OH
O OH
HO ©:
:@ OSiMe, X

X

o, ,O

7

NH O
0, A
N . Me 10 mol% - z
)J\ OMe toluene, -78 °C Ph OMe
Ph™ H Me Me Me
X yield ee
HH 57% 0%
Ph 100% 27%
0, 0,
@NOZ 96% 87%
HO OH
@ OS|M63
N H H O 65-100%
L + OMe — > AN 85-96% ee
R "H R2 R ~ OMe 86:14-100:0 syn:anti
RZ

(1) Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem., Int. Ed. 2004, 43, 1566-1568. (2) Yamanaka, M.; Itoh,

J.; Fuchibe, K.; Akiyama, T. J. Am. Chem. Soc. 2007, 129, 6756-6764.



2.1.4 Mannich: Phosphoric acids

2 Pathways for Activation
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2.1.4 Mannich: Phosphoric acids

Proposed Mechanism
0, 0---H-0
'(D:F%E_‘[_ @D Me,SiO._OMe
0 ) X
N Ftr’J
|

OH
(X )
NH O OH 99" o
: o_,0
Ar OMe ( P NH @ _SiMey
0" “OH
H,O* /D> /><L\DME

25



2.1.4 Mannich: Phosphoric acids

Calculation for Transition States

— 1589 ;
ngg/gﬂ 0 1:? D\
— L8] F‘ *
_...r'.-
H-- b:b
N1 746 N
1373 2169b1325
MesSing I
10
e |

T33r (0.0 kcalimal)

— 1519 P’

= o
QQJ?H__ - G @;\ﬂ A

2.180
1.376 2114 I'_““1.329
~| Ph
Me;Si
3 '\.ID n_.,ﬁ‘a o
A,

Me

TS3s (+5.7 keal/mol)

side view
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2.1.4 Mannich: Phosphoric acids

Terada Simultaneous Discovery of Chiral H*!

Boc«
N/BOC 0o 0o 2 mol% NH O
JJ\ + )J\/U\ » =
R H Me Me DCM, 23 °C R1 Me
O Me
Transformation into Amino Acids
Boc<
'}'H Q 1) oxone, K,COg, acetone Boc.
Rl Me 2) DIBALH o
R coMm
3) KMNQO,4, NalO e
0% “Me ) 4 4 2

4) CH,N,

(1) Uraguchi, D.; Terada, M. J. Am. Chem. Soc. 2004, 126, 5356-5357. 27



2.1.4 Mannich: Phosphoric acids

Is it really chiral Chiral H*!

|\ Ar
/O o_,0
/4
/P\
s~ O O OH
N\ A

r

Boc.
-Boc (o) (o) 2 mol%

DCM, 23 °C R Me

0~ Me
catalyst purified on SiO,: 92% ee
catalyst washed with HCI: -93% ee

l/\ A

NAN\F 00

/\ Z O’P\O LCa 92% ee!
N X Ar

(1) Hatano, M.; Moriyama, K.; Maki, T.; Ishihara, K. Angew. Chem., Int. Ed. 2010, 49, 3823-3826.
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2.1.4 Mannich: Phosphoric acids

TS-1 (favored) TS-2 (disfavored)
to be anti-4 to be syn-4

With H*

A more accurate model using A ﬁ

bifunctional activation can explain
these results (see chapter 4)!
With Ca \ TS-3 (favored)

(1) Hatano, M.; Moriyama, K.; Maki, T.; Ishihara, K. Angew. Chem., Int. Ed. 2010, 49, 3823-3826. 29




2.1.4 Mannich: Other acids

Lambert: New type of chiral Bronsted catalyst

OH
. X
:@ OSiMe; catalyst NH O
N Me . z
P * OMe EtOAc, -78 °C Ph OMe
Ph H Me

e Ph.,.
el 0 W p &
Ph* O o
i-Pr O o) Me (0]
(0] 7 ~OH
Me, 0) 7 ~OH MeOzC HN Me MeOzC HN Me o
& /~OH /™~OH O—O Ph
° LPr MeO,C MeO,C . -
P MeOC  ome MeO.C  Oume i
7 wei-Pr
Me Mo 15 8 16
1 mol% 0.01 ng’/;(o.s M) 10 mol%, 24 h 10 mol%, 6 h 10 mol%, 8 h 5 mol%, 5 min
1h 98% vyield, 89% ee 88% vield, —30% 85% yield, 44% 90% yield 89%
97% yield, 97% ee 90% yield, 97% ee )(/toluene) @ Yie o ee o yie o ee o yie b ee

Gheewala, C. D.; Collins, B. E.; Lambert, T. H. Science 2016, 351, 961-965. 30



2.1.5 Other Reactions with Imines: Strecker

Jacobsen Urea Catalyst: The First Use of Urea in Asymmetric Catalysis!?

Me fBuj)\
Ph N ~ \\\
O N
HO
1 mol%
Bn\N ‘Bu ‘Bu
JU _ + Hen -
RL” “R2 toluene, -78 °C
. Me Bu S
Second Generation Catalyst: ' : Jj\
/N W
e
O N
1 mol% HO~
NN
‘Bu OCO'Bu

(1) Sigman, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 1998, 120, 4901-4902. (2) Vachal, P.; Jacobsen, E. N. J. Am.

Chem. Soc. 2002, 124, 10012-10014.

86-99.3% ee

I?n
HN, CN
Rl;(RZ

85-99%
70-96% ee



2.1.5 Other Reactions with Imines: Strecker

Discovery of the Urea Catalyst:
A Surprising Control Experiment. 90%
80%
70%
60%
50%
40%
+30%
-20%
~10%
3
i g = " 0%
Library 3 (R, Al-Diamines o - . ARl A s
B 8 ‘AT D o o . 09 >0 o
w o P, CH g O s ok 2 - Z0
TN N'l\l' cP N R
0 H H M. o o
L-Amino Acids HpN Ph o
Leu, lle, Met, Phe, OH  3aj ehydes
Tyr (O'Buj, Val, Thr(O'Bu), CHO X= OMe
Mor (Morleucing), Phg, R’ r? HOY H
Chg (Cyclohexylglycine), ‘Bu
t-Leu (fert-Leucine) By x Br
Library Siza: 132 Compounds

(1) Sigman, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 1998, 120, 4901-4902. (2) Vachal, P.; Jacobsen, E. N. J. Am.
Chem. Soc. 2002, 124, 10012-10014. 32



2.1.5 Other Reactions with Imines: Aza-Friedel-Craft

Jacobsen: Catalytic Asymmetric Pictet-Spengler Reaction?!

'Bu tBu S
N
g
Me—\\ NAc
X
R N + i > R+ TN
Z N ZJ\ . . = N R
H R H AcCl, lutidine, -78 to -30 °C H 2
65-76%
85-95%ee
Terada: Aza-Friedel-Craft with Furans?2
Me
Mes = Me
Me
.Boc
HN
Me0\<i7 N’BOC Mes MeO\G/'\R
* > \ /)
\ / R)]\H DCE, -35 °C
80-95%
86-97% ee
(1) Taylor, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 2004, 126, 10558-10559. (2) Uraguchi, D.; Sorimachi, K.; Terada 33

M. J. Am. Chem. Soc. 2004, 126, 11804-11805.



2.1.5 Other Reactions with Imines: Aza-Friedel-Craft

Jacobsen: Catalytic Asymmetric Pictet-Spengler Reaction for tetracyclic systems?
‘B S
o : Q
R, CsHqy” \[]/\N Ph
N /{lj o)
OH
Me—4 | ~ N
X > R4+
R1_' \ =
L TMSCI, TBME, -78 to -55 °C N R

N

H

H 2

52-94%
: : : : . 81-99% ee
Mechanism: A Unique Anion-Urea Interaction is Proposed! °

CHa Bu  $

:)CSH{N\[{-\,’\,/LLIF\
O H

A
\ﬂ/
\
HN

(1) Raheem, I. T.; Thiara, P. S.; Peterson, E. A.; Jacobsen, E. N. J. Am. Chem. Soc. 2007, 129, 13404-13405. 34



2.1.5 Other Reactions with Imines: Reduction

List: Reduction of Imines with Hantsch Ester!?

H  H i i
.Boc EtO,C CO,Et
I\I,Boc EtO,C CO,Et HN 2N A | 2
) || - A - S
R” “Me Me™ “N” “Me Toluene, 35 °C R Me Mew N Me
_ Hantsch ester _ 84-98%
Hantsch ester: a simpler analog of the bioreductant NADH and NADPH 80-93% ee
@)
Q NH NH,
H N—NH, NH H ) 2 Nf\
H \ >N
N B /2
\ A \ o owo. <)
N o o'P\\o ,P\\O 0 N $ 0L O
S °S
HO OH HO O. /°
HO OH HO OH P~
HO OH
NADH (Nicotinamide Adenine Dinucleotide) NADPH (Nicotinamide Adenine Dinucleotide Phosphate)

(1) Hoffmann, S.; Seayad, A. M.; List, B. Angew. Chem., Int. Ed. 2005, 44, 7424-7427. 35



2.1.5 Other Reactions with Imines: Reduction

Mac Millan: Catalytic Asymmetric Reductive Amination
O, //
z O OH
O OMe
e EtO,C CO,Et SiPhs /©/
© 2 ﬁ 2 10 moise o

>
R 5 A MS, benzene, 40-50 °C R Me
Hantsch ester 84-98%
_ _ _ 80-93% ee
Reduction of Cyclic Imines 1
N f R = Me (6], 82% vield, 97% ee
] I o R =Et (7), 27% yield, 79% ee
NeoR e N
L, A Y
o~ o ' J;—-’l " | -::l.r.-,,_. | 1,.;1

—— selective for

H 1
N_\R @ .l__. 1. a7 methyl versus ethyl ketones
O O - i I

® =-H Siface exposed
MM3-7 Si-face @ =Me Siface blocked

(1) Storer, R. I.; Carrera, D. E.; Ni, Y.; MacMillan, D. W. C. J. Am. Chem. Soc. 2006, 128, 84-86. 36



2.1.5 Other Reactions with Imines: Reduction

Reduction of Imines: Old Simple Mechanism ‘

redS )
o \O
Os\\/§R3
|
0O-

4
,

H H
New Calculated Mechanism? P“\;j EtOOQ&{)OEt
L _H— Q
Front view: Fh \ \/ \r\\J
. ¥ w:

q Y
Q
H H
] lll More space
R =H, Me “® for phenyl
can just fit hydrogens

H
imine at the front

H
I
N
I;I represents the
Nu Hantzsch ester | |
EtO,C CO,Et

(1) Simon, L.; Goodman, J. M. J. Am. Chem. Soc. 2008, 130, 8741-8747. 37

Rg - smaller group
Ry - larger group




2.1.5 Extension to Carbonyls Activation

Rueping: One of the First Examples of Activation of Carbonyles for Ene Reaction?!

Me (o)

1 mol% FsC OH 55-96%
. > : 92.97%
R’& F3cJ\cozEt R "

xylene, 10 °C CO,Et

Key Discovery: Enhanced acidity of Trifluoromethansulfonyl Imides

RO, //o 0\\ //O o RO_ ,9
P~ -9~ more acidic than ~
RO N CFs rRo’ OH

(1) Rueping, M.; Theissmann, T.; Kuenkel, A.; Koenigs, R. M. Angew. Chem., Int. Ed. 2008, 47, 6798-6801.



2.1.5 Extension to Carbonyls Activation

List: Confined Lewis Acid catalysts for the Aldol reaction?

o\P W O
ZWSN°

0

Tf
Ar Ar

j\ OSiR; 0.5-1.5 mol% R;SiO O 69-95%
+ > -989
R” “H H CHCI,, -60 °C R)\/U\H 78-98% ee

O
/l\)':: .
R H
Prins-like
or @
i re-face shielded
B~y "o o181 85 S

A L .
ddition fi -f:
R/l\)J\H H/&/;\J]\R [ addition from si-face

(rapidly released) | ene-like

T

(1) Schreyer, L.; Kaib, P. S. J.; Wakchaure, V. N.; Obradors, C.; Properzi, R.; Lee, S.; List, B., Science 2018, 362, 216-219. 39



