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2

O

R1 R2

cat*

O

R1 R2

cat*

cat* Activation

O

R1 R2

O

R2

cat*

X

Two Point Binding

Nu

Bond Formation

O

R1 R2

Nucat*

Catalyst Release

HO

R1 R2

Nu MO

R1 R2

Nu
or

M or H+



2.1.1 Aldol Reaction: General Scheme
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For aldol reactions: difficult to prevent competing racemic cycle!

General Catalytic Cycle for Asymmetric Mukaiyama Aldol Reaction
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2.1.1 Aldol Reaction: Early Examples
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Corey Asymmetric Aldol Reaction1

Model for Selectivity

(1) E. J. Corey, C. L. Cywin, T. D. Roper, Tetrahedron Lett. 1992, 33, 6907-6910.

- 2 interactions to fixe substrate: hydrogen

bond and p stacking

- One face blocked by indole of tryptophane
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2.1.1 Aldol Reaction: Early Examples
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Carreira Asymmetric Aldol Reactions

(1) Carreira, E. M.; Singer, R. A.; Lee, W. S. J. Am. Chem. Soc. 1994, 116, 8837-8838. 

(2) Carreira, E. M.; Lee, W.; Singer, R. A. J. Am. Chem. Soc. 1995, 117, 3649-3650.

Acetate Aldol Reaction1

Acetone Aldol Reaction2
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2.1.1 Aldol Reaction: Early Examples
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A Modular Catalyst Design

Binaphthyl, a Privileged Scaffold for Asymmetric Catalysis
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2.1.1 Aldol Reaction: Two Points Binding
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Evans Aldol with (Benzyloxy)acetaldehyde1

(1) Evans, D. A.; Kozlowski, M. C.; Murry, J. A.; Burgey, C. S.; Campos, K. R.; Connell, B. T.; Staples, R. J. 

J. Am. Chem. Soc. 1999, 121, 669-685.
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2.1.1 Aldol Reaction: Two Points Binding
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BOX and PYBOX: Privileged ligands

BOX (BisOXazoline)

PYBOX (PYridineBisOXazoline)
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2.1.1 Aldol Reaction: Two Points Binding
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Mechanism Proposed by Evans1

(1) Evans, D. A.; Kozlowski, M. C.; Murry, J. A.; Burgey, C. S.; Campos, K. R.; Connell, B. T.; Staples, R. J. 

J. Am. Chem. Soc. 1999, 121, 669-685.



2.1.1 Aldol Reaction: Two Points Binding
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Observed Non-Linear Effect: Reservoir Effect



2.1.1 Aldol Reaction: Two Points Binding
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Model for Selectivity

Based on the structure of similar copper complexes, a square planar pyramidal coordination is

expected, but how to rationalize the binding mode of the substrate?



2.1.1 Aldol Reaction: Two Points Binding
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Crystal Structure of Substrate-Catalyst Adduct



2.1.1 Aldol Reaction: Two Points Binding
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BOX ligand: absolute stereochemistry of product is dependent of counter anion!

Observed with X = SbF6 Observed with X = OTf



2.1.2 Allylation Reactions: Sakurai and Ene Reactions
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For the ene, the reaction is usually synchronous via a chair transition state
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2.1.2 Allylation Reactions: Keck Allylation
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Keck Allylation1,2

The catalyst (unknown structure!) is prepared directly before reaction

(1) Keck, G. E.; Tarbet, K. H.; Geraci, L. S. J. Am. Chem. Soc. 1993, 115, 8467-8468. (2) Keck, G. E.; 

Krishnamurty, D.; Grier, M. C. J. Org. Chem. 1993, 58, 6543-6544.
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2.1.3 Other Nucleophiles: TMSCN
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General Considerations for the Silylcyanation of Aldehydes

- Two Mechanisms can be envisaged

- I Direct silylcyanation

-II Activation of the silyl group via a heteroatom of the ligand

Modern reactions are designed on dual activation
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2.1.3 Other Nucleophiles: TMSCN
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Corey Boron Catalyst: Purely Lewis Acidic?1

(1) Ryu, D. H.; Corey, E. J. J. Am. Chem. Soc. 2004, 126, 8106-8107. (2) Ryu, D. H.; Corey, E. J. J. 

Am. Chem. Soc. 2005, 127, 5384-5387.

The Privileged Proline Scaffold and Bronsted Acid Activation of Lewis Acid

A New Cyanation Reagent?
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2.1.3 Other Nucleophiles: Isonitriles
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Asymmetric Passerini 3 Components Reaction1

(1) Wang, S. X.; Wang, M. X.; Wang, D. X.; Zhu, J. P. Angew. Chem., Int. Ed. 2008, 47, 388.

Mechanism

Other important multi-component reaction: Ugi 4 components reaction:



2.1.3 Other Nucleophiles: Hetero Diels-Alder
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Jacobsen: Cr-Catalyzed Hetero-Diels Alder Reaction with Aldehydes

(1) Dossetter, A. G.; Jamison, T. F.; Jacobsen, E. N. Angew. Chem., Int. Ed. 1999, 38, 2398-2400.
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2.1.4 Mannich: Introduction

20

Comparison Imine - Carbonyl

E or Z imine formed prior to reaction

Imine more basic: activation is easier

R group offers new possibilities for 2 

points binding

Released Amine still very good ligand: 

Catalyst release is more difficult

Choice of R group is essential to 

modulate activation and catalyst release!
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2.1.4 Mannich: First Examples
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Kobayashi: the First Efficient Catalytic System

Deprotection of the Product

(1) Ishitani, H.; Ueno, M.; Kobayashi, S. J. Am. Chem. Soc. 1997, 119, 7153-7154.
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2.1.4 Mannich: First Examples

22(1) Ishitani, H.; Ueno, M.; Kobayashi, S. J. Am. Chem. Soc. 2000, 122, 8180-8186.

Proposed Mechanism



2.1.4 Mannich: Phosphoric acids
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Akiyama: The First Chiral H+!1,2

(1) Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem., Int. Ed. 2004, 43, 1566-1568. (2) Yamanaka, M.; Itoh, 

J.; Fuchibe, K.; Akiyama, T. J. Am. Chem. Soc. 2007, 129, 6756-6764.
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2.1.4 Mannich: Phosphoric acids
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2 Pathways for Activation



2.1.4 Mannich: Phosphoric acids
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Proposed Mechanism



2.1.4 Mannich: Phosphoric acids
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Calculation for Transition States



2.1.4 Mannich: Phosphoric acids
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Terada Simultaneous Discovery of Chiral H+1

Transformation into Amino Acids

(1) Uraguchi, D.; Terada, M. J. Am. Chem. Soc. 2004, 126, 5356-5357.
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2.1.4 Mannich: Phosphoric acids
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Is it really chiral Chiral H+1

(1) Hatano, M.; Moriyama, K.; Maki, T.; Ishihara, K. Angew. Chem., Int. Ed. 2010, 49, 3823-3826.



2.1.4 Mannich: Phosphoric acids
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With H+

(1) Hatano, M.; Moriyama, K.; Maki, T.; Ishihara, K. Angew. Chem., Int. Ed. 2010, 49, 3823-3826.

With Ca

A more accurate model using

bifunctional activation can explain

these results (see chapter 4)!



2.1.4 Mannich: Other acids
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Gheewala, C. D.; Collins, B. E.; Lambert, T. H. Science 2016, 351, 961-965.

Lambert: New type of chiral Bronsted catalyst



2.1.5 Other Reactions with Imines: Strecker
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Jacobsen Urea Catalyst: The First Use of Urea in Asymmetric Catalysis1,2

(1) Sigman, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 1998, 120, 4901-4902. (2) Vachal, P.; Jacobsen, E. N. J. Am. 

Chem. Soc. 2002, 124, 10012-10014.
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2.1.5 Other Reactions with Imines: Strecker
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Discovery of the Urea Catalyst:

A Surprising Control Experiment.

(1) Sigman, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 1998, 120, 4901-4902. (2) Vachal, P.; Jacobsen, E. N. J. Am. 

Chem. Soc. 2002, 124, 10012-10014.



2.1.5 Other Reactions with Imines: Aza-Friedel-Craft

33

Jacobsen: Catalytic Asymmetric Pictet-Spengler Reaction1

(1) Taylor, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 2004, 126, 10558-10559. (2) Uraguchi, D.; Sorimachi, K.; Terada, 

M. J. Am. Chem. Soc. 2004, 126, 11804-11805.

Terada: Aza-Friedel-Craft with Furans2
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2.1.5 Other Reactions with Imines: Aza-Friedel-Craft
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Jacobsen: Catalytic Asymmetric Pictet-Spengler Reaction for tetracyclic systems1

(1) Raheem, I. T.; Thiara, P. S.; Peterson, E. A.; Jacobsen, E. N. J. Am. Chem. Soc. 2007, 129, 13404-13405.

Mechanism: A Unique Anion-Urea Interaction is Proposed!



2.1.5 Other Reactions with Imines: Reduction
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List: Reduction of Imines with Hantsch Ester1

(1) Hoffmann, S.; Seayad, A. M.; List, B. Angew. Chem., Int. Ed. 2005, 44, 7424-7427.

Hantsch ester: a simpler analog of the bioreductant NADH and NADPH
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2.1.5 Other Reactions with Imines: Reduction
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Reduction of Cyclic Imines

(1) Storer, R. I.; Carrera, D. E.; Ni, Y.; MacMillan, D. W. C. J. Am. Chem. Soc. 2006, 128, 84-86.
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2.1.5 Other Reactions with Imines: Reduction

37(1) Simon, L.; Goodman, J. M. J. Am. Chem. Soc. 2008, 130, 8741-8747.

Reduction of Imines: Old Simple Mechanism

New Calculated Mechanism1



2.1.5 Extension to Carbonyls Activation
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Rueping: One of the First Examples of Activation of Carbonyles for Ene Reaction1

(1) Rueping, M.; Theissmann, T.; Kuenkel, A.; Koenigs, R. M. Angew. Chem., Int. Ed. 2008, 47, 6798-6801.

Key Discovery: Enhanced acidity of Trifluoromethansulfonyl Imides



2.1.5 Extension to Carbonyls Activation
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List: Confined Lewis Acid catalysts for the Aldol reaction1

(1) Schreyer, L.; Kaib, P. S. J.; Wakchaure, V. N.; Obradors, C.; Properzi, R.; Lee, S.; List, B., Science 2018, 362, 216-219.


