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ABSTRACT: An iridium-catalyzed stereoselective coupling of allylic ethers and alkynes to generate 3,4-substituted 1,5-enynes is
reported. Under optimized conditions, the coupling products are formed with excellent regio-, diastereo-, and enantioselectivities,
and the protocol is functional group tolerant. Moreover, we report conditions that allow the reaction to proceed with complete
reversal of diastereoselectivity. Mechanistic studies are consistent with an unprecedented dual role for the iridium catalyst, enabling
the propargylic deprotonation of the alkyne through z-coordination, as well as the generation of a z-allyl species from the allylic

ether starting material.

he enantioselective functionalization of C(sp*)—H bonds

constitutes a conceptually simple and direct approach for
the synthesis of valuable stereodefined products from simple
starting materials." Given the widespread availability of alkyne
derivatives,” the enantioselective construction of a C—C or C—
X (X =N, O, etc.) bond at the propargylic position is an
especially attractive strategy for accessing versatile chiral
building blocks en route to stereochemically and functionally
complex targets.”* However, in contrast to a variety of well-
developed protocols that employ prefunctionalized alkyne
derivatives for asymmetric propargylation®~” or metal acetylide
precursors for enantioselective nucleophilic addition to
synthesize a-chiral alkynes,®” the use of simple alkynes for
enantioselective propargylic C—H functionalization remains an
underdeveloped approach (Scheme 1A)."%7"?

Scheme 1. Asymmetric Propargylic Functionalization for
1,5-Enyne Synthesis
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Metal nitrene or carbene insertion constitutes one general
strategy for enantioselective propargylic C—H functionalization
(Scheme 1B, top). A number of transition metals and ligand
systems have been reported to facilitate enantioselective
nitrene (or nitrene radical) transfer.'*™™'*~ Likewise, several
examples of enantioselective carbene insertion into a
propargylic C—H bond have been disclosed.'”" In addition,
enantioselective propargylic C—H functionalization reactions
proceeding via radical—organometallic crossover mechanisms
are also known, constituting another promising strategy.'”
Given their potential applicability toward establishing stereo-
chemistry at both the a- and f-positions of the alkyne,*"*"''
the development of new stereoselective propargylic C—H
functionalization strategies has continued to attract interest.

Our research group and others have previously demon-
strated an alternative approach to catalytic propargylic C—H
functionalization wherein deprotonation of an a-C—H bond of
a metal-bound alkyne enables the subsequent electrophilic
trapping of the resultant allenylmetal nucleophile to deliver the
product of propargylic functionalization (Scheme 1B,
bottom).">"* Zhang and co-workers have further demon-
strated that such a process could be rendered enantioselective
in the intramolecular sense using a chiral Au catalyst."**

In this context, we wondered whether we could develop an
intermolecular coupling strategy by intercepting the allenylme-
tal species with a stereodefined organometallic electrophile.'®
Although originally envisaged as a cooperative catalysis
strategy,'® we disclose herein our serendipitous finding that a
single dual-function catalyst enables the simultaneous
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an alkyne and an allylic ether, to generate synthetically versatile
1,5-enyne products with high levels of regio- and stereo-
selectivity (Scheme 1C)."*

We initially hypothesized that, by combining our previously
reported Fe-based catalysts for propargylic C—H deprotona-
tion'” with an Ir-based system for enantioselective allylic
substitution,'”*’ we could develop a cooperative strategy for
the enantioselective synthesis of 1,5-enynes by intercepting a
chiral, nonracemic electrophilic z-allyliridium intermediate
with a nucleophilic o-allenyliron intermediate. To validate
the proposed reactivity, we examined the stoichiometric
reaction of an Fp*-based o-allenyliron species (Fp* = (-
CsMe;)Fe(CO),)"** toward a previously characterized -
allyliridium complex (A*TfO~) bearing a phosphoramidite—
alkene ligand system developed by Carreira and co-workers.”*
Indeed, the desired product was obtained in moderate yield
and excellent enantioselectivity, albeit with little control over
the diastereoselectivity (1:1.7 dr) (Scheme 2A).

Scheme 2. Preliminary Results for Propargylic C—H
Allylation

A. Stoichiometric reaction with well-characterized intermediates
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alkyne allylic ether Fp*(thf)BF4 (20 mol %): 36% yield, 2.4:1 dr, >99%, ~33% ee
Iron-free conditions:  Fp*(thf)BF, (0 mol %): 92% yield, 3.7:1 dr, >99%, ~92% ee

Next, we attempted to implement a catalytic system by using
1-phenyl-1-butyne and allylic ether 2a as starting materials
while employing substoichiometric amounts of Fe (20 mol %)
and Ir (3 mol % [Ir(cod)Cl],, 6 mol % based on Ir) complexes.
In addition, in analogy to our previously reported Fe-catalyzed
a-C—H functionalization reactions, BF;-OEt, and 2,2,6,6-
tetramethylpiperidine (TMPH) were included in the reaction
mixture to promote ionization of the allylic ether and to
deprotonate the metal—alkyne complex, respectively.'” These
conditions afforded the same coupling product, though with
lower yield and significant differences in the stereoisomeric
composition (Scheme 2B). During the course of optimization,
we performed a series of control experiments and found, to our
surprise, that the reaction proceeded in excellent yield without
the need for the iron complex.”" These results suggested the
possibility that, in addition to facilitating the generation of the
s-allyl electrophile, the Ir complex could serve the additional
role of activating the alkyne to allow for the removal of a
propargylic proton under mildly basic conditions. To the best
of our knowledge, this second role has not prev1ously been
demonstrated for Ir—phosphoramidite complexes.”™

After extensive optimization of the identity and stoichiom-
etry of allylic electrophile, base, ligand, and Lewis acid,
conditions that delivered the anti-diastereomer 3a in high yield
and superb stereoselectivity (91% isolated yield, >20:1 dr,
>99% ee) were identified (Table 1, entry 1). Of note, the use
of additional allylic methyl ether (3.0 equiv) was found to
improve diastereoselectivity (entry 1 vs 2). Moreover, the

Table 1. Optimization of the Ir-Catalyzed Alkyne-Allyl
Coupling Reaction”

[Ir(cod)Cl] (1.5 mol %, 3 mol % Ir)

/\M ome (S)-Ls (6 mol %)
e 4
e ph)\/ BF3+OEt, (3.5 equiv), TMPH (4.0 equiv)

1a 2a PhCF [1 M], 35 °C, 14n
(3.0 equiv)

entry variation % yield (% ee) 3a:4a’

1  none 92¢ (>99) >20:1
2 2a (2.0 equiv) 88 (>99) 5.1:1
3 2ab instead of 2a NP* --

4 2acinstead of 2a 69 (>99) >20:1
S Et:N, DBU, or KOBu as base NP --

6 BPh; or B(CsFs)s as Lewis acid NP -

7 [Ir]:(S)-Li = 1:1, with 3 mol % Ir NP -

8  (S)-La or (R)-Ls asligand NP --

9¢ L, as ligand <10 <1:20
10" (£)-Liasligand 99 <1:20
117 [Ir]:(S)-Li = 1:2, with 1 mol % Ir 19 (>99) >20:1
12 atrt(23°C) 70 (>99) >20:1

13 no [Ir], (§)-Li, TMPH, or BF+:OEt, NP

L 200 23

(S)-Ly CH=CH (S)-Lp CH,CH,

“On 0.1 mmol scale. Yields (3a+4a) were determined by 1H NMR
spectroscopy of the crude reaction mixture, using 2,4-dinitrotoluene
as the 1nternal standard. Enantiomeric excesses were determined by
chiral HPLC. YDiastereomeric ratios (3a:4a) were determined b} 'H
NMR spectroscopy of the crude mixture. “In 91% isolated yield. “NP:
no desired product observed. “°CH,Cl, (1 M) as solvent. £.0 equiv 2a
were added.

ligand-to-metal ratio was found to be critical (entry 1 vs

7).50200) Surprisingly, when achiral ligand L, was employed, a
complete reversal of the diastereoselectivity was observed, with
syn-diastereomer 4a formed in >20:1 dr though in low yield
(entry 9). By using racemic ligand (#)-L;, 4a could be
obtained in excellent yield and diastereoselectivity (entry 10).
Control experiments showed that the reaction fails in the
absence of [Ir(cod)Cl],, (S)-L,, TMPH, or BF;-OEt,,
indicating the necessity of each component (entry 13).

With optimized conditions in hand, we investigated the
generality of the anti-selective propargyl—allyl coupling
protocol with respect to the alkyne coupling partner (Table
2). A collection of aryl ethyl acetylenes bearing electron-
donating (3b, 3¢, 3g, 3h) or electron-withdrawing substituents
(3d, 3e) were transformed into the corresponding 1,5-enynes
in moderate to high yields and excellent diastereo- and
enantioselectivities. Furthermore, a number of heterocycles
were accommodated, including a thiophene (3i), a furan (3j),
and a benzofuran (3k). An alkyne bearing a phthalimido group
(31) also reacted efficiently with high stereoselectivity.
Moreover, higher aryl alkyl acetylenes, including those
possessing pendent ether or sulfonate ester groups (3m—3o0),
were also competent substrates. The synthesis of 3n bearing a
p-toluenesulfonate ester was carried out on S mmol scale to
deliver 1.58 g of the product (73% isolated yield, >99:1 dr,
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Table 2. Substrate Scope for the Alkyne Coupling Partner”

[Ir(cod)Cl]; (3 mol % Ir) R,
OMe
Pz Ry
R /\ * )\/

(S)-L1 (6 mol %)
1 Ar

BF3+OEt;, (3.5 equiv), TMPH (4.0 equiv) B
PhCF3 [1 M], 35 °C, 14~ 20 h Ri ~

1 (0.2 mmol) 2 (3.0 equiv) 3

(+)-3a, 91% yield
>20:1 dr, >99% ee

(+)-3b, 88% yield
14:1 dr, 294% ee

(+)-3c, 40% yield
9:1 dr, >99% ee

F4CO’
(+)-3d, 88% yield
>20:1 dr, >99% ee

(+)-3e, 69% yield
>20:1 dr, >99% ee

(+)-3f, 61% yield
>20:1 dr, >99% ee

(+)-39, 81% yield
15:1 dr, >99% ee

(+)-3i, 84% yield

- % Vi
(+)-3h. 69% yield 1111 dr, >99% ee

16:1 dr, >99% ee

PhthN

(+)-3j, 57% yield
11:1 dr, >99% ee

(+)-3K, 82% yield

(+)-31, 85% yield”
16:1 dr, >99% ee

>20:1 dr, >99% ee

TsO MeO'
Ph
s Ph y = Ph
Ph EN Ph B Ph' N
(+)-3m, 77% yield® (-)-3n, 91% yield® (~)-30, 48% yield®
>20:1 dr, >99% ee >20:1 dr, >99% ee >20:1 dr, 99% ee
5 mmol: 73% yield?
>99:1 dr, >99% ee

Ph
Me R // Y
/\/\{Ph & H HC ~
Ph X N Ph N

X

(+)-3r
(+)-3p, 58% yield® (-)-3qa, R = p-Br, 49% yield, >99% ee 11% yield, >99% ee
>20:1 dr, >99% ee  (-)-3db, R = p-CO,Me, 57% yield, >99% ee (15% yield by NMR)

(+)-31 (-)-3n

CCDC 2174025 CCDC 2174027
“Isolated yields. Enantiomeric excesses were determined by chiral
HPLC. Diastereomeric ratios were determined by 'H NMR
spectroscopy of the crude material. bCH,Cl, (0.2 mL) as solvent.
‘[Ir(cod)Cl], (6 mol % Ir), (S)-L; (12 mol %) were used.
[1r(cod)Cl], (4 mol % Ir), (S)-L, (8 mol %), 36 h; purified by
recrystallization.

>99% ee) after recrystallization of the crude material. A
conjugated enyne (3p) likewise delivered a successful out-
come. The primary propargylic C—H bonds of aryl methyl
acetylenes could also be functionalized (3qa—3qb),"'*** giving
the final product with good enantioselectivity, albeit in only
moderate yields. Finally, we tested the reactivity of a dialkyl
acetylene, 2-hexyne (3r). Only one regioisomer was isolated in
excellent enantiomeric excess, though the low yield demon-
strates a limitation of our current protocol.

Subsequently, the scope with respect to the allylic ether
coupling partner was examined (Table 3). A range of racemic
allylic ethers could be coupled to give the desired 1,5-enyne
products in moderate to high yields as a single diastereomer.

Table 3. Substrate Scope for the Allylic Ether Coupling
Partner”

[Ir(cod)Cl], (3 mol % Ir)

Me
oMe (S)-Ly (6 mol %)
/\Me . /k/ - /'\_/Ar
Ph Ar BF3+OEt; (3.5 equiv), TMPH (4.0 equiv) zZ H

PhCF3 [1 M], 35 °C, 14— 20 h P ~
1a (0.2 mmol) 2 (3.0 equiv) 5
Me cl Me Me
4 Y 4 é Me 4 é OMe
Ph BN Ph ~ P ~

(+)-5¢, 73% yield
>20:1dr, 98% ee

(+)-5b, 68% yield
>20:1 dr, >99% ee

Ph
Me
Ph \

(+)-5e, 73% yield
>20:1 dr, 98% ee

(+)-5a, 87% yield
>20:1 dr, >99% ee

Me
Z I
Ph N F

(+)-5d, 81% yield
>20:1 dr, 97% ee

(+)-5f, 83% yield
>20:1 dr, >99% ee

OMe

Ve OCF, Me ;(F Me
F ;
Z Z Z o
Ph BN Ph S P ~

(+)-5i, 65% yield

- 9, i
(+)-5h, 89% yield >20:1 dr, 96% ee

>20:1 dr, >99% ee

(+)-59, 84% yield
>20:1 dr, >99% ee

Ts

oTs 4
Me Me Me “Me
Ph N : H

(+)-51, 41% yield®
>20:1 dr, >99% ee

(+)-5k, 54% yield
>20:1 dr, >99% ee

(+)-5], 80% yield
>20:1 dr, >99% ee

Z

Ph’ B
(+)-5m, 95% yield
>20:1 dr, >99% ee

(+)-5n, 44% yield
20:1 dr, >99% ee

“Isolated yields. Enantiomeric excesses were determined by chiral
HPLC. Diastereomeric ratios were determined by 'H NMR
spectroscopy of the crude material. PCH,CI, (0.2 mL) as solvent.

Aryl groups with various substitution patterns (Sa—S5i) were
compatible substrates, as were substrates bearing a trimethyl-
silyl substituent (5j), a sulfonate ester (Sk), a sulfonamide (5l1),
a carboxylic ester (5m), and a tertiary amide (Sn).

We then examined a subset of the alkyne/allylic ether
combinations from Tables 2 and 3 to probe the generality of
the reaction conditions employing (+)-L; that selectively
affords the syn-diastereomer of the 1,5-enyne (Table 4). In all
cases examined, nearly complete reversal of the reaction
diastereoselectivity was observed. Moreover, the yields of
coupling products (+)-4 and (+)-6 were generally comparable
or higher than those observed for the formation of the
corresponding diastereomeric products 3 and 5. Notably, the
synthesis of (+)-4a could be performed on 1 mmol scale with
near-quantitative yield, even at a reduced catalyst loading of 2
mol % Ir.

The synthetic value of this method was further demon-
strated through the preparation of diverse carbo- and
heterocyclic scaffolds with high molecular complexity (Scheme
3). The Au-catalyzed cycloisomerization of 1,5-enynes
efficiently afforded bicyclo[3.1.0]hexene 7n in 91% yield
with >99% ee and 12:1 dr.'®* Moreover, tricyclic indole
derivative 8n was synthesized via a palladium-catalyzed cascade
process in 52% yield without the loss of enantioselectivity.””
Finally, a chemo- and regioselective hydroboration—oxidation
sequence, followed by O-tosylation and cyclization with

https://doi.org/10.1021/jacs.2c07297
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Table 4. Diastereoselective Synthesis of the syn-Isomer”
[Ir(cod)Cl]; (6 mol % Ir)

Ry
OMe (£)-L1 (12 mol %) A
= R, r
R /\ + =
R A

! Ar)\/ BF3°OEt, (3.5 equiv), TMPH (4.0 equiv)
(£)-4 or (£)-6

PhCF3[1 M], 30 °C, 14-20 h
2 (2.0 equiv)
Me

e Ph

Me
Ph
Ph 7 Me Z q
FZ N
Ph X MeO
Cl
Me

(+)-4h, 81% yield

(£)-4a, 90% yield, >20:1 dr ()-4d, 94% yield
1 mmol: 98% yieldb, >20:1 dr >20:1dr >20:1 dr

Me Me Me
Ph Ph Ph
Z o P Z
7 X MeO,C ] N N
s \
PhthN

(£)-4i, 82% yield (£)-4i, 97% yield (+)-41, 93% yield®
>20:1 dr 11:1 dr >20:1 dr

e TsO MeO'
Ph Ph Ph
F FZ FZ
Ph ™ Ph’ e Ph’ X

(¢)-4m, 90% yield (+)-4n, 99% yield (¢)-40, 72% yield
17:1 dr

>20:1 dr >20:1 dr
Me c Me Me
7 & ome
Ph ™ Ph X Ph’ X F
(+)-6¢, 89% yield

(+)-6a, 93% yield (+)-6d, 65% yield
>20:1 dr >20:1 dr >20:1 dr

OM f
Me O Me ©
Me N Q
Z = CF.
4 =z 3
Ph N O Ph N &
Ph X

(£)-6f, 93% yield (£)-6i, 93% yield (£)-6n, 76% yield
>20:1 dr >20:1 dr >20:1 dr

1 (0.2 mmol)

“Isolated yields. Diastereomeric ratios were determined by 'H NMR
spectroscopy of the crude material. “[Ir(cod)Cl], (2 mol % Ir),
(£)-L; (4 mol %) were used, 24 h. “°CH,Cl, (0.2 mL) as solvent.

Scheme 3. Diversification of Product 3n“

H

Ph,y H
= a

B

rso—/ \/:[: 91% yield

®h 12:4 dr

52% yield
>99% ee

(=)-7n >99% ee
NBn _)-3n |
cde >g(;9)% " N g-4-MeOCeH,
= i repared on O//\\O
= 71% yield prep | 8s
Ph ph (+)9n  97% ee 1.58 g scale

“Conditions: (a) PhyPAuCl (cat.), AgSbF; (cat.), CH,CL, rt, 0.5 h;
(b) Sulfonamide 8S, Pd(OAc), (cat.), PhyP (cat.), Cs,CO;, CsI,
norbornene, DMF, 130 °C, 12 h; (c) 9-BBN, THF, 2 h; NaBO;-H,0,
H,0, rt, 3 h; (d) TsCl, Et;N, DMAP, CH,Cl,, rt, 4 h; (e) BnNH,,
K,CO;, MeCN, reflux, 22 h.

BnNH, as a lynchpin, afforded 4,5-disubstituted azepane 9n in
good yield and excellent enantioselectivity.

We performed a series of additional experiments to gain
some insight into the mechanistic details of the catalytic system
(Scheme 4). First, a plot of conversion of 1a over time revealed
that the reaction was subject to an induction period. While this
complicated efforts to measure rate constants, we next
subjected ethyl-deuterated la-ds to the same conditions and
observed a smaller maximum velocity and slower overall rate,
indicating a significant kinetic isotope effect (KIE). Under
conditions of intermolecular competition, a KIE of ky/kp = 4.5
was measured (Scheme 4A). Combined, these data suggest
rate-limiting proton abstraction at the propargylic position.”*

Scheme 4. Selected Mechanistic Studies and Proposed
Catalytic Cycle

A. KIE experiment

2a (3 equiv) '
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o 16% yield
B. Effect of ligand i icl nt on di lectivity and observation of non-linear effect
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Role B: Activation of alkyne for

(ligand structure further simplified for clarity) propargylic deprotonation (M)

To probe the nature of the stereocontrol of this trans-
formation, we investigated the relationship between the
enantiomeric excess of the ligand and the diastereo- and
enantiomeric composition of the product (Scheme 4B). The
observation of nonlinear effects” (particularly for formation of
product 3a) suggests the presence of two ligands on the metal
center in the enantiodetermining transition states. Moreover,
the (S,S)-(L;),[Ir] homochiral complex is primarily respon-
sible for formation of 3a, while formation of 3a from the (R,S)-
(Ly),[Ir] heterochiral complex is slow. The effect of the
enantiomeric composition of 2a was then examined (Scheme
4C). When racemic 2a was used, a kinetic resolution was
observed, with the less reactive (R)-2a accumulating in the
reaction mixture. In addition, a large difference in the
diastereomeric ratio of the product was observed when (S)-
and (R)-2a were used as starting materials.”® This suggests that
departure of the methoxy group of the iridium-coordinated
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allylic ether takes place after coordination (and perhaps
deprotonation) of the alkyne coupling partner.”*

On the basis of these results, a plausible though still
speculative mechanism is proposed in Scheme 4D. Carreira’s
complex (in the form of A*[BF;0Me]™) was observed to be
the sole Ir—phosphoramidite species by *'P{'"H} NMR analysis
of the reaction mixture at the beginning of the reaction and
continued to be the major phosphorus-containing species in
the reaction mixture up to 14 h later.”* Moreover, A*TfO~
was found to be a competent catalyst for the reaction (89%
NMR yield, >20:1 dr, >99% ee). Thus, we postulate that 18-
electron complex A" acts as an initial reservoir for on-cycle
catalytically active species. In particular, we propose that
formation of allylic ether complex I with loss of ClI™ allows for
binding of the alkyne,”” with the key deprotonation step taking
place from cationic intermediate IL>® Subsequent abstraction
of methoxide from the bound allylic ether and ligand coupling
with reduction at Ir then furnishes 3a.%%’ Finally, coordination
of the allylic ether to V regenerates I to close the catalytic
cycle.

In summary, we have described the Ir-catalyzed enantiose-
lective and diastereodivergent propargylic C(sp®)—H allylation
of alkynes, including a mechanistically novel role for the
catalyst. Further studies of the detailed mechanism and
explorations of additional applications of this strategy are
ongoing and will be reported in due course.
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(27) Addition of [BnMe;N]*CI™ (10 mol %) to the reaction mixture
was found to completely inhibit formation of the desired product. On
the other hand, conducting the reaction using an Ir catalyst solution
prepared using AgBF, to remove Cl~ resulted in a reaction profile
with almost no induction period (see the Supporting Information for
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(28) A reviewer suggested that complexation of the alkyne to
unreacted [Ir(cod)Cl], could activate it toward deprotonation.
However, use of excess ligand ([Ir]:(S)-L; = 1:4) for the coupling
of 1a and 2a did not significantly change the result (83% NMR yield,
>20:1 dr, >99% ee), making this hypothesis less likely. We cannot
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