

Received: 6 June 2011,

Revised: 5 August 2011,

Accepted: 4 October 2011,

Published online in Wiley Online Library: 9 November 2011

(wileyonlinelibrary.com) DOI: 10.1002/poc.1945

Kinetic study of BH_3 reduction of benzaldehydes: identification of effective reducing species

Masatsugu Abe^a and Hiroshi Yamataka^{a*}

A kinetic study was carried out for the reaction of benzaldehyde and borane (BH_3) in tetrahydrofuran. The effect of BH_3 concentration on the rate constant showed that the reaction order with respect to BH_3 was 1.6. Substituent effects gave a linear Hammett plot with a ρ value of -0.51 . It was concluded that the reaction proceeds through a rate-determining hydride-transfer transition state with two BH_3 molecules, in which one molecule of BH_3 acts as a reducing agent and the other serves as a catalyst. Copyright © 2011 John Wiley & Sons, Ltd.

Keywords: catalytic transition state; metal hydride reduction; reaction order; substituent effect

INTRODUCTION

The reduction of aldehydes and ketones is one of the most fundamental reactions in organic chemistry. Metal hydrides are common reducing reagents for such a reaction in an organic laboratory, and the reaction mechanism has been studied extensively.^[1–7] Simple metal hydrides such as borane (BH_3) and aluminum hydride have interesting characteristics in that they are Lewis acids and thus electrophilic at the metal center, whereas the hydrogens are nucleophilic and therefore the reactions could be either electrophilic or nucleophilic. These reductions consist of two key steps: an initial complex formation between the metal and the carbonyl oxygen and hydride transfer from the metal to the carbonyl carbon (Eqn (1)). The apparent electrophilic versus nucleophilic nature of the reaction depends on the position of the rate-determining step and the relative stability of the complex. If the k_1 step is rate-determining, the reaction becomes electrophilic. If, on the other hand, the initial equilibrium lies largely on the complex side, the complex becomes an effective reactant and hence the reaction becomes nucleophilic.

The mechanism of the reactions of benzophenone with four simple metal hydride reagents has been examined experimentally. The Hammett ρ values were reported to be -0.12 , -0.76 , 1.03 , and 0.47 at 25°C for the reactions of $\text{BH}_3/\text{Et}_2\text{O}$, 9-borabicyclo[3.3.1]nonane/tetrahydrofuran (THF), $\text{AlH}_3/\text{Et}_2\text{O}$, and diisobutylaluminum hydride/hexane, respectively.^[8] The Hammett plots show that the electronic effects on the reaction rates varied depending on the reagents; the balance of electrophilic and nucleophilic attacks by the metal atom and the hydrogen atom differs for these reagents.

Further mechanistic complexity arises from the monomer–dimer equilibrium. It has been shown that borane exists in THF as the BH_3 –THF complex and species like B_2H_6 or B_2H_6 –THF plays a negligible role in THF.^[9–11] On the other hand, a computational study on the reactions of benzaldehyde (BA) and BH_3 in the literature showed that the hydride-transfer step from the encounter complex had a much smaller activation free energy (7.2 kcal/mol) for the dimer reaction than for the monomer reaction (16.2 kcal/mol) at MP26-311G*.^[12] The initial complex formation of BA with free BH_3 was exergonic (-5.4 kcal/mol), whereas it was

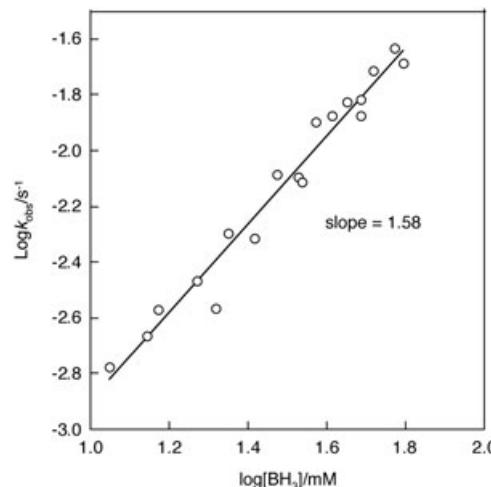
endergonic (18.7 kcal/mol) with B_2H_6 . Thus, the monomer complex is more stable than the dimer complex, but the hydride-transfer transition state (TS) is more stable with the dimer in the gas phase. It is thus not *a priori* clear whether an actual reacting species is monomer or dimer for the reaction of a carbonyl compound with BH_3 in THF.

In the present study, we have carried out a kinetic experiment for the reaction of ring-substituted benzaldehydes (1-X) and BH_3 and examined the effects of the substituent and the concentration of BH_3 to answer two important questions: (1) whether the reaction is electrophilic or nucleophilic in nature and what is the origin of that, and (2) which is the actual reacting species, monomer or dimer, at the rate-determining TS? The results showed that the overall reaction is electrophilic, that both free BA and the BA– BH_3 complex exist in pre-equilibrium, and that the subsequent rate-determining hydride-transfer TS contains two molecules of BH_3 , one acting as a reducing agent and the other as a catalyst.

RESULTS AND DISCUSSION

It has been reported that the presence of NaBH_4 as a stabilizer in a commercial BH_3 –THF solution leads to a drastic acceleration of the reduction.^[5] To examine the intrinsic reactivity of BH_3 , we prepared a fresh THF solution of BH_3 by the reaction of BF_3 and NaBH_4 according to the literature.^[13] The concentration of the BH_3 solution was determined by azotometry, in which the amount of H_2 gas evolved by mixing BH_3 –THF and 50% aqueous glycerol was measured. The rates of the reactions of 1-X and BH_3 were determined by running the reaction of 1-X (1 mM) with a large excess of BH_3 (35.8 mM) and by following the decay of absorbance of 1-X photometrically at 25°C .

* Correspondence to: Hiroshi Yamataka Department of Chemistry and the Research Center for Smart Molecules, Rikkyo University, Nishi-Ikebukuro, Toshima-ku 171-8501 Tokyo, Japan.
E-mail: yamataka@rikkyo.ac.jp


^a M. Abe, H. Yamataka
Department of Chemistry and the Research Center for Smart Molecules, Rikkyo University, Nishi-Ikebukuro, Toshima-ku 171-8501 Tokyo, Japan

Concentration effect

The effect of BH_3 concentration on the reaction rate was measured to examine the reaction order in BH_3 . In Table 1 are listed pseudo first-order rate constants for the reaction of 1-H (1.0 mM) with BH_3 of variable concentrations. Logarithmic plots between the pseudo first-order rate constants and the concentrations of BH_3 gave a linear correlation with a slope of 1.58 (Fig. 1).

In a previous kinetic study, Jockel and Schmidt reported that the reaction order of BH_3 for the reaction of pinacolone and BH_3 in THF was 1.0.^[5] They also carried out AM1 calculations and estimated reaction enthalpies for the initial complex-formation and subsequent hydride-transfer steps as -11 and -137 kcal/mol, respectively. It was then concluded that the complex-formation step is rate determining because the step was much less exothermic than the second step. The proposed mechanism with the rate-determining complex formation was claimed to be consistent with the reaction order of 1.0.^[5] However, it should be noted that a large exothermic step does not necessarily have a low barrier and hence the computational results were not conclusive without information on the activation energies. A kinetic deuterium isotope effect ($k_{\text{BH}_3}/k_{\text{BD}_3} = 1.07$) was measured for the oxazaborolidine-catalyzed reaction of acetophenone, which indicated that the hydride-transfer step is rate-determining.^[14] The relatively small isotope effect lets authors suggest an early TS,^[14] which was later supported by calculations.^[7] A carbonyl carbon kinetic isotope effect ($k_{12}/k_{14} = 1.035 \pm 0.002$) determined for the BH_3 reduction of benzophenone in THF also suggested that the C-H bond-formation step is rate-determining.^[8]

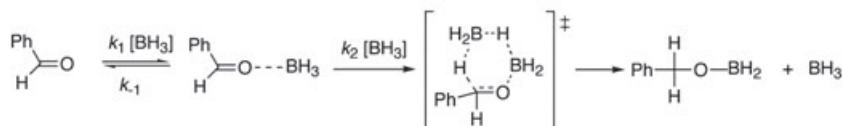
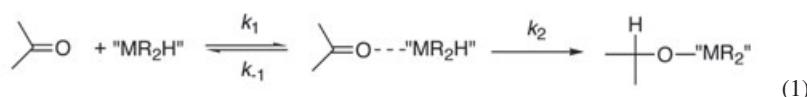
Kinetic analyses of the BH_3 reduction are not simple because of the secondary reactions of the initially formed alkoxide (ROBH_2). Nevertheless, the present kinetic study provides information on the reaction of BH_3 because the reactions were carried out with a large excess of BH_3 over benzaldehyde. The concentration dependence in Fig. 1 reveals that the reaction of benzaldehyde with BH_3 in THF is 1.6th order with respect to

Figure 1. Logarithmic plots between pseudofirst-order rate constants and concentrations of BH_3 for the reduction of PhCHO in THF at 25 °C. $[\text{PhCHO}] = 0.1 \text{ mM}$

BH_3 , which differs from the reported value of 1.0 for the reaction of pinacolone with BH_3 .^[5] The origin of the discrepancy is not clear, but the difference in BH_3 concentration would be responsible; a high concentration range (0.1–0.6 M) was used in the previous study, whereas we used a much lower concentration range (0.011–0.063 M) because of a larger absorbance of 1-H than pinacolone (*vide infra*).

The 1.6th reaction order for BH_3 requires that more than 1 molecule of BH_3 are involved at the rate-determining TS. A likely interpretation is illustrated in Scheme 1, in which the initial complex formation is first order in BH_3 , and the second BH_3 molecule attacks the complex to form a sterically favorable six-membered TS. A similar six-membered TS has been proposed for the oxazaborolidine-catalyzed BH_3 reduction of ketones.^[7] In the TS in Scheme 1, one BH_3 molecule acts as a reducing agent and the other serves as a catalyst and facilitates the reaction. If the initial complexation equilibrium lies on the left-hand side, the overall reaction order of BH_3 would be 2. If, on the other hand, the equilibrium lies completely on the right-hand side with the formation of a stable complex, the complex becomes an effective reactant and hence the reaction order of BH_3 would be 1.0. Thus, the apparent reaction order of BH_3 can be a value somewhere between 1.0 and 2.0 depending on the position of the equilibrium. The present results can be rationalized by assuming that a mixture of free aldehyde and the BH_3 complex existing in equilibrium serves as an effective reactant state. It is likely that in the previous study on the BH_3 reduction of pinacolone, the high concentrations of BH_3 made the complex the effective reactant giving the reaction order of 1.0.^[5]

Substituent effect

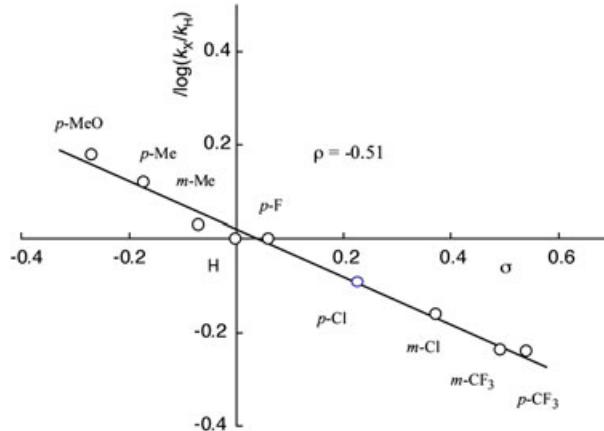


The pseudo first-order rate constants for the reactions of 1-X and BH_3 are listed in Table 2. The Hammett plot of the reaction is shown in Fig. 2. The observed small negative ρ value is similar to those observed for the reductions of benzophenones with boron hydride reagents and indicates that the reduction with BH_3 -THF is electrophilic in nature.

The position of the initial equilibrium should influence the sign and the size of the Hammett ρ value for the reaction of 1-X. Because of the amphoteric nature of BH_3 , the reactions

Table 1. Pseudo first-order rate constants for BH_3 reduction of 1-H with various BH_3 concentrations in THF at 25 °C^a

$[\text{BH}_3]/\text{mM}$	$10^3 k_{\text{obs}}/\text{s}^{-1}$
11.25	1.65 ± 0.39
14.00	2.16 ± 0.42
15.00	2.63 ± 0.43
18.75	3.37 ± 0.70
20.85	2.69 ± 0.17
22.50	5.01 ± 0.17
26.25	4.80 ± 0.27
30.00	8.10 ± 0.63
33.75	7.93 ± 0.36
34.75	7.51 ± 0.50
37.50	12.5 ± 0.4
41.25	13.1 ± 0.4
45.00	14.8 ± 0.2
48.75	15.1 ± 0.8
48.85	13.2 ± 0.6
52.50	19.3 ± 0.6
60.00	23.1 ± 0.8
62.55	20.5 ± 0.8

^a[1-H] = 1.0 mM.


Scheme 1. Plausible mechanism of the reaction of benzaldehyde with excess BH_3 in THFTable 2. Pseudofirst-order rate constants for BH_3 reduction of 1-X in THF at 25 °C^a

X	$10^2 k_{\text{obs}}/\text{s}^{-1}$
p-MeO	1.67 ± 0.02
p-Me	1.46 ± 0.05
m-Me	1.18 ± 0.09
H	1.11 ± 0.03
p-F	1.11 ± 0.06
p-Cl	0.896 ± 0.074
m-Cl	0.760 ± 0.022
m-CF ₃	0.643 ± 0.022
p-CF ₃	0.637 ± 0.042

^aConcentration of 1-X is 1 mM and that of BH_3 is 35.8 mM. See Experimental section for details.

of 1-X may give either a positive or negative ρ value. The initial complex formation is an electrophilic reaction of BH_3 , and thus a ρ value on this equilibrium should be negative. Indeed, it was reported that the Hammett ρ value for the complex-formation equilibrium between 1-X and BF_3 in CH_2Cl_2 was largely negative (-3.5 at -78°C).^[15] Although BF_3 is a much stronger acid and therefore forms a much stronger complex with aldehyde than BH_3 , the result clearly indicated that the complex formation is a strongly electrophilic process. The subsequent hydride-transfer step is a nucleophilic process and should give a positive ρ value. A previous computational study on the reaction of benzaldehyde and BH_3 has shown that the Hammett ρ value for the initial complex formation is -1.71 at MP26-311 G*, whereas the subsequent hydride-transfer step gives a positive ρ value of 0.66 .^[12] Although a comparison between the gas-phase calculations and solution experiments is not straightforward, the calculated ρ values are larger for the first step in their absolute magnitude than the second step, meaning that the reaction is electrophilic in the overall reactivity ($\rho = -1.71 + 0.66 = -1.05$). A positive ρ value would be detected only when the complex serves as an effective reactant. The observed small ρ value of -0.51 is consistent with the mechanism in Scheme 1, in which free benzaldehyde and the BH_3 complex coexist in equilibrium.

In conclusion, the present kinetic study revealed that the reaction of benzaldehyde and BH_3 in THF proceeds through a rate-determining hydride-transfer TS with two BH_3 molecules, in which one molecule of BH_3 acts as a reducing agent and the other serves as a catalyst.

Figure 2. Hammett correlation of the BH_3 reduction of $\text{XC}_6\text{H}_4\text{CHO}$ in THF at 25 °C

EXPERIMENTAL SECTION

Materials

Tetrahydrofuran was dried over benzophenone ketyl and distilled before use. The BH_3 -THF solution was prepared from NaBH_4 and $\text{BF}_3 \cdot \text{OEt}_2$ in diglyme according to the literature.^[13] The concentration of BH_3 in THF was determined by measuring the H_2 evolved by adding a known amount of the BH_3 -THF solution to $\text{H}_2\text{O}-\text{glycerol}$ (1:1). Substituted benzaldehydes were commercially available and were purified by distillation.

Kinetics

Dry THF solutions of aldehyde (2.0 mM) and BH_3 at preset concentrations were prepared in a constant temperature bath at $25 \pm 0.1^\circ\text{C}$. The reaction was carried out by mixing equal amounts (1.5 mL) of these two solutions in a UV cell at $25 \pm 0.5^\circ\text{C}$. Rate constants were determined under pseudofirst-order conditions by following the decay of the absorbance of aldehydes photometrically. Experimental errors listed in Tables 1 and 2 are standard deviations from at least five determinations.

Acknowledgement

The study was supported in part by the Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan

REFERENCES

[1] H. C. Brown, B. C. S. Rao, *J. Am. Chem. Soc.* **1960**, *82*, 681.
[2] S. S. White, Jr., H. C. Kelly, *J. Am. Chem. Soc.* **1970**, *92*, 4203.
[3] S. S. White, Jr., H. C. Kelly, *J. Chem. Soc. Perkin Trans. 2* **1973**, 1948.
[4] E. J. Corey, R. K. Bakshi, S. Shibata, *J. Am. Chem. Soc.* **1987**, *109*, 5551.
[5] H. Jockel, R. Schmidt, *J. Chem. Soc. Perkin Trans. 2* **1997**, 2719.
[6] C. Eckhardt, H. Jockel, R. Schmidt, *J. Chem. Soc. Perkin Trans. 2* **1999**, 2155.
[7] L. P. Linney, C. R. Self, I. H. Williams, *J. Chem. Soc. Chem. Commun.* **1994**, 1651.
[8] H. Yamataka, T. Hanafusa, *J. Org. Chem.* **1988**, *53*, 772.
[9] J. R. Elliot, W. L. Roth, G. F. Roedel, E. M. Boldebuck, *J. Am. Chem. Soc.* **1952**, *74*, 5211.
[10] B. Rice, J. A. Livasy, G. W. Schaeffer, *J. Am. Chem. Soc.* **1955**, *77*, 2750.
[11] J. D. Pasto, B. Lepeska, T. C. Cheng, *J. Am. Chem. Soc.* **1972**, *94*, 6083.
[12] T. Kudo, T. Higashine, S. Ikeda, H. Yamataka, *J. Org. Chem.* **2005**, *70*, 5157.
[13] H. C. Brown, R. L. Sharp, *J. Am. Chem. Soc.* **1968**, *90*, 2915.
[14] E. J. Coey, J. O. Link, R. K. Bakshi, *Tetrahedron Lett.* **1992**, *33*, 7107.
[15] H. Yamataka, K. Nishikawa, T. Takatsuka, T. Hanafusa, *J. Phys. Org. Chem.* **1995**, *8*, 35.