
1/41

Machine Learning Meets (Quantum) Chemistry:
Introduction and Short Overview

K. Briling, P. van Gerwen, A. Fabrizio, B. Meyer, R. Fabregat
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Introduction: why ML for chemistry?

Can a computer learn (quantum) chemistry?
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Learn what?

For example, learn to predict the (quantum) chemical properties
from molecular structural formulas

How does it react 

with another 

compound?

How are its spectra 

(Infrared, NMR,...)

Pharmacological

properties ?

Is its solid 

form stable?
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Learn why?

D. Folmsbee and G. Hutchison, “Assessing conformer energies using electronic structure and machine learning methods”, Int.
J. Quantum Chem. 121, e26381 (2020)

https://doi.org/10.1002/qua.26381
https://doi.org/10.1002/qua.26381
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Learn how?

A computer can learn, just like first experimental chemists have
typically learned chemistry...

Empirically: Based on their experience as opposed to a priori
theoretical knowledge

Starting from a dataset of theoretical or experimental data with
molecular structures and the corresponding observable properties

The computer can find relationships between molecular structures
and the properties

It learns! And can apply the knowledge to new situations!
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From data to knowledge

KNOWLEDGE

INFORMATION

DATA

Generalization

Context

Measurement or Computation

WISDOM

Inductive 
Reasoning

Deductive 
Reasoning

Quantum 
Chemistry

Machine 
Learning

ML is traditionally used in quantitative structure property (or activity)
relationships (QSPR/QSAR)

Can we unify the two worlds to extend the current quantum chemistry
toolbox by “quantum machine learning” (QML)?

QML: classical machine learning applied to quantum-chemical properties

O. A. von Lilienfeld, “Quantum machine learning in chemical compound space”, Angew. Chem. Int. Ed. 57, 4164–4169
(2018)

https://doi.org/10.1002/anie.201709686
https://doi.org/10.1002/anie.201709686
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ML meets quantum chemistry: guideline

P
RR

R
N NR R

R

R
R

N

P(C)(C)(C)[Pd@SP1](*)(*)C1(=N(C)CCN(C)1)

Pd Pt Cu AuAgNiM =

=
L1
L2

ML1 L2

3D Geometry

ab initio Geometries 
and Energies for

ML1 L2 and ML1 L2

Br

(1) 

ΔE
 

(2) (1)-RxnA =
ΔERxn

Machine Learning Models

1.0

0.8

0.6

0.4

0.2

0.0

Descriptors
Targeted Properties

Catalysts Library

25,116 catalysts Eel(2)Eel

Eel Eel

A. Fabrizio et al., “Quantum chemistry meets machine learning”, CHIMIA 73, 983 (2019)

https://doi.org/10.2533/chimia.2019.983


Machine learning methods: a short overview
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Three paradigms of ML

Supervised learning (Classification, Regression)
Find relations between your data (molecules) and a target variable

(chemical properties) that you want to be able to predict

Unsupervised learning (Clustering, Dimensionality Reduction)
Searching for indirect hidden structures, clusters, patterns or features in

the raw (molecular) data

Reinforcement learning
Solving interactive problems with an environment (e.g., a chess engine)

Close to supervised learning but reward (feedback) instead of labels
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Supervised ML:

Making predictions about the future

In supervised learning the model is constructed from training molecules
with known properties that allows us to make predictions about unseen
molecules

Classification task: assign discrete class labels

Regression task: the chemical property is a continuous value
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Supervised ML: Classification

Goal: predict the categorical labels of new molecules based on past
observations

Applications: electronic structure computations outcomes (good/bad),
ground state spins, . . .

C. Duan et al., “Learning from failure: Predicting electronic structure calculation outcomes with machine learning models”, J.
Chem. Theory Comput. 15, 2331–2345 (2019); Y. Cho et al., “Automated prediction of ground state spin for transition metal
complexes”, Digital Discovery 3, 1638–1647 (2024)

https://doi.org/10.1021/acs.jctc.9b00057
https://doi.org/10.1021/acs.jctc.9b00057
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Supervised ML: Regression

Task: prediction of continuous properties

Applications: heat capacity at room temperature, HOMO–LUMO gap,
receptor–ligand binding, stability of molecular conformers, . . .

Can be applied successfully if:

Cause and effect relationship connecting
system to property

Query scenario is interpolative in nature

Sufficient training data available

Y = f(descriptors)

Molecular descriptors
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s

M. Rupp, O. A. von Lilienfeld, and K. Burke, “Guest editorial: Special topic on data-enabled theoretical chemistry”, J. Chem.
Phys. 148, 241401 (2018)

https://doi.org/10.1063/1.5043213
https://doi.org/10.1063/1.5043213
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Unsupervised ML:

Finding subgroups with clustering

Exploratory data analysis technique that allows to organize information into
meaningful subgroups (clusters) without any prior knowledge

Each cluster defines a group of objects that share a certain degree of similarity
but are more dissimilar to objects in other clusters

Applications: representative sample, subsets selection, conformational analysis

R. Laplaza, M. D. Wodrich, and C. Corminboeuf, “Overcoming the pitfalls of computing reaction selectivity from ensembles
of transition states”, J. Phys. Chem. Lett. 15, 7363–7370 (2024)

https://doi.org/10.1021/acs.jpclett.4c01657
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Unsupervised ML: Dimensionality reduction

Clustering identifies agglomeration of data but do not offer an overall
picture of the relations between different structures

Dimensionality reduction compresses the data onto a smaller dimensional
subspace while retaining most of the relevant information

Data visualization: a high-dimensional feature set can be projected onto
1-, 2-, or 3D spaces

Applications: representation of chemical space, pattern recognition

B. Sawatlon et al., “Data mining the C–C cross-coupling genome”, ChemCatChem 11, 4096–4107 (2019); M. Haeberle et al.,
“Integer linear programming for unsupervised training set selection in molecular machine learning”, Mach. Learn.: Sci.
Technol. 6, 025030 (2025)

https://doi.org/10.1002/cctc.201900597
https://doi.org/10.1088/2632-2153/adcd38
https://doi.org/10.1088/2632-2153/adcd38
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ML method example: Decision Trees

Decision Trees (DTs) are a non-parametric supervised learning method
used for classification and regression

Learns simple decision rules inferred from the data features

DT split a set of objects into subsets (usually 2 in binary trees) that are
purer in composition

Rules are selected based on how well splits can differentiate
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Decision Trees: chemical example

Starting with a root composed by a set of 30 catalysts and knowing the
ones that are “good” or “bad” for a given reaction

Each catalyst is described by several simple molecular descriptors (e.g.,
molecular weight, shape index, molecular volume, # of C atoms, # of
rotatable bonds. . .
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Decision Trees: chemical example

DT algorithm searches a rule that yields the highest decrease in impurity

Once a rule is selected and splits a node into two
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Decision Trees: chemical example

The same logic is applied to each “child” node

Stops when no further gain / stopping rules met

Root

Internal 
nodes

(15/15)

(5/10)(10/5)

Decision rule MW > 300 ?

YesNo

(8/1) (2/4)
(1/9)

(4/1)

No No YesYes

# Mvol > 1000 ?# carbon < 5 ?

Leaves

Good catalyst
Bad catalyst
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Decision Trees

Why classification and regression trees (CART) is a successful tool?

Universally applicable to classification and regression problems with no
assumptions on the data structure

The picture of the tree structure gives valuable insights into which
variables are important

Terminal nodes give a natural clustering of the data into homogenous
groups

Can handle large data sets: O(DM logM)
(M is # of molecules, D is # of descriptors)

But. . .

Decision-tree learners can create over-complex trees that do not generalize
the data well

This is called overfitting
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Overfitting and early stopping

Decision trees can overfit data

So, it is necessary to use a validation set in order to prune the tree at an
optimal size

Size of tree (number of nodes)

A
cc

u
ra

cy

On test data
On training data

Y. Xu and R. Goodacre, “On splitting training and validation set: a comparative study of cross-validation, bootstrap and
systematic sampling for estimating the generalization performance of supervised learning”, J. Anal. Test. 2, 249–262 (2018)

https://doi.org/10.1007/s41664-018-0068-2
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Perceptron

Artificial neurons are inspired from biological neurons

An artificial neuron has one or many inputs, each associated to a weight

If the weighted sum of inputs is lower than a threshold, the neuron remains
inactive

If the weighted sum bypass the threshold, the neuron is activated and
produce an output signal

During the learning phase, this output is used to calculate the error of the
prediction and update the weights
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Perceptron: Chemical example

Starting with the same set of 30 catalysts and knowing the ones that are “good”
or “bad” for a given reaction

Molecular weight 

Molecular shape 

# C atoms 

Bad catalyst

Good catalyst

or

Descriptors
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Perceptron: Chemical example

During the learning phase, the outputs are used to update the weights
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Perceptron: Chemical example

If the two classes are linearly separable, the perceptron will converge to a solution

Molecular shape (X1)

M
o
le

cu
la

r 
v
o
lu

m
e
 (

X
2
)

w 1
X 1

 +
 w

2
X 2

Linearly separable
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Perceptron: Chemical example

However, if the two classes are not linearly separable, either we accept the error,
either we need more than a single neuron

Molecular shape (X1)

M
o
le

cu
la

r 
v
o
lu

m
e
 (

X
2
)

Not linearly separable
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(Deep) artificial neural network

Learns non-linear models for classification and prediction

Molecular

Weight

Molecular

Shape

# of C

atoms

Molecular

Volume

Molecular shape (X1)

M
o
le

cu
la

r 
v
o
lu

m
e
 (

X
2
)

Not linearly separable

Requires tuning a large number of hyperparameters

Can learn new data descriptors itself

E. Heid et al., “Chemprop: A machine learning package for chemical property prediction”, J. Chem. Inf. Model. 64, 9–17
(2023)

https://doi.org/10.1021/acs.jcim.3c01250
https://doi.org/10.1021/acs.jcim.3c01250
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Kernel trick:

Another way to solve non-linear problem

Any non-linear problem can be mapped (φ) into a higher-dimensional
feature space where it becomes linearly separable

Computationally very expensive

The step φ(x) · φ(x′) is replaced by a kernel function K(x,x′)
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Kernel ridge regression

Roughly speaking, kernels can be interpreted as similarity measures between pair
of molecules

The most widely used kernels are Gaussian K(x,x′) = exp
(
−γ2(x− x′)2

)
and

Laplacian K(x,x′) = exp
(
−γ
∑D
d

∣∣xd − x′d∣∣)

The prediction for yt is a weighted sum of kernel functions centered on each
training point: yt =

∑N
i K(xt,xi)w

?
i

The regression coefficients represent the contribution of each training point to
the target value and minimize the quadratic loss function on the training set:
w? = (K + η1)−1 y



22/41

Kernel ridge regression

Roughly speaking, kernels can be interpreted as similarity measures between pair
of molecules

The most widely used kernels are Gaussian K(x,x′) = exp
(
−γ2(x− x′)2

)
and

Laplacian K(x,x′) = exp
(
−γ
∑D
d

∣∣xd − x′d∣∣)
The prediction for yt is a weighted sum of kernel functions centered on each
training point: yt =

∑N
i K(xt,xi)w

?
i

The regression coefficients represent the contribution of each training point to
the target value and minimize the quadratic loss function on the training set:
w? = (K + η1)−1 y



Molecular representations
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Molecular descriptors

“. . . the final result of a logic and mathematical procedure which
transforms chemical information encoded within a symbolic
representation of a molecule into a useful number”

Vast majority:

constitutional (# of atoms, MW,...)

graph-based (bond-, distance-, adjacency
matrices,...)

mainly used in bio or chemo-informatics
for QSAR applications

R. Todeschini and V. Consonni, Handbook of molecular descriptors, Vol. 11, Methods and Principles in Medicinal Chemistry
(Wiley, 2000); R. Todeschini and V. Consonni, Molecular descriptors for chemoinformatics, Vol. 41, Methods and Principles in
Medicinal Chemistry (Wiley, 2009)
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Molecular representations

Focus on QML models: physics-based, systematic, universal

To better distinguish QML from QSAR, we prefer “representation” to
“descriptor”

The ground state of a chemical system is defined by its Hamiltonian

Hamiltonian depends on elemental composition and geometry (and number
of electrons)

Ĥ(Zi,Ri)
QM−−→ E

Representation in ML plays the role of Hamiltonian/wavefunction in QM

It should be a vector which encodes composition and geometry (and
charge/spin) of a molecule

representation(Zi,Ri)
ML−−→ E



24/41

Molecular representations

Focus on QML models: physics-based, systematic, universal

To better distinguish QML from QSAR, we prefer “representation” to
“descriptor”

The ground state of a chemical system is defined by its Hamiltonian

Hamiltonian depends on elemental composition and geometry (and number
of electrons)
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Molecular representations

electronic
structure

density
of neighbors

ACE
BP-SF
SOAP

SPAHM
MAOC
MODA

...

internal
coordinates

BoB
MBTR

model
potentials

FCHL(18,19)
SLATM

{Zi, Ri} ➦ x

OrbNet
MO-ML

...

Criteria:

injectivity

continuity and differentiability

invariance/equivariance w.r.t.:

permutations

translations

rotations
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CM: the Coulomb matrix representation

Square atom-by-atom matrix

Off-diagonal elements correspond to the Coulomb repulsion between nuclei

Diagonal elements remind the electronic energy of a H-like atom

Mij =


ZiZj

|Ri −Rj |
for i 6= j

0.5Z2.4
i for i = j

M = 

O

C

Pd

Cl

Cl

Cl

P

P Cl Cl Cl Pd C O

332

4893290 179 237

20 2016 37

22 18

82

124

94

232

136

122 449

449

449

22 22 116 43 74

20

94122

43

116136

82

94

124 122

94

232

20 22

22

2220

179

122 290

16

237

20

18

No well-defined ordering of the atoms in the matrix

M. Rupp et al., “Fast and accurate modeling of molecular atomization energies with machine learning”, Phys. Rev. Lett. 108,
058301 (2012)

https://doi.org/10.1103/PhysRevLett.108.058301
https://doi.org/10.1103/PhysRevLett.108.058301
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Variants of CM

Represent the molecule as a vector of sorted eigenvalues of the CM

Invariant with respect to atom permutations

Loss of information

K. Hansen et al., “Assessment and validation of machine learning methods for predicting molecular atomization energies”, J.
Chem. Theory Comput. 9, 3404–3419 (2013)

https://doi.org/10.1021/ct400195d
https://doi.org/10.1021/ct400195d
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Variants of CM

Permute the matrix in order to sort the rows and the columns by their norm

Unique CM representation

More information than eigenspectrum

K. Hansen et al., “Assessment and validation of machine learning methods for predicting molecular atomization energies”, J.
Chem. Theory Comput. 9, 3404–3419 (2013)

https://doi.org/10.1021/ct400195d
https://doi.org/10.1021/ct400195d
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Variants of CM

Construct several CMs based on a random ordering of the atoms, adding a
random noise ε to the row norms ||C|| and determine the permutation than
minimizes ||C||+ ε

Approximate sampling of all possible valid CMs given a specific molecule

Increased the computational costs

K. Hansen et al., “Assessment and validation of machine learning methods for predicting molecular atomization energies”, J.
Chem. Theory Comput. 9, 3404–3419 (2013)

https://doi.org/10.1021/ct400195d
https://doi.org/10.1021/ct400195d
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BoB: the Bag of Bonds representation

Inspired by NLP: bag-of-words descriptor encodes the frequency of occurrence of
words in text

Each bag corresponds to a specific type of atomic pair

For example, all P-Cl pairs in the molecule are grouped into the bag labeled as
PCl

Crucial higher-order information (angles and dihedrals) missing

K. Hansen et al., “Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in
chemical space”, J. Phys. Chem. Lett. 6, 2326–2331 (2015)

https://doi.org/10.1021/acs.jpclett.5b00831
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SLATM: the Spectrum of London

and Axilrod–Teller–Muto potential

Represents an atom i by accounting for all possible interactions between it and
its neighboring atoms through many-body potential terms multiplied by a
Gaussian distribution G and put in bags

The one-body term: simply the nuclear charge (x1 = Zi)

The two-body term:

x2(r) =
1

2

Nat∑
j 6=i

Gσ2(r −Rij) ·
ZiZj
|r|6

The three-body term:

x3(θ) =
1

3

Nat∑
k 6=j 6=i

Gσ3(θ − θijk) · ZiZjZk [1 + cos θ cos θjki cos θkij ]

|Rij |3|Rjk|3|Rik|3

F. A. Faber et al., “Alchemical and structural distribution based representation for universal quantum machine learning”, J.
Chem. Phys. 148, 241717 (2018); B. Huang and O. A. von Lilienfeld, “Quantum machine learning using
atom-in-molecule-based fragments selected on the fly”, Nat. Chem. 12, 945–951 (2020)

https://doi.org/10.1063/1.5020710
https://doi.org/10.1063/1.5020710
https://doi.org/10.1038/s41557-020-0527-z


29/41

SLATM: the Spectrum of London

and Axilrod–Teller–Muto potential

Represents an atom i by accounting for all possible interactions between it and
its neighboring atoms through many-body potential terms multiplied by a
Gaussian distribution G and put in bags

The one-body term: simply the nuclear charge (x1 = Zi)

The two-body term:

x2(r) =
1

2

Nat∑
j 6=i

Gσ2(r −Rij) ·
ZiZj
|r|6

The three-body term:

x3(θ) =
1

3

Nat∑
k 6=j 6=i

Gσ3(θ − θijk) · ZiZjZk [1 + cos θ cos θjki cos θkij ]

|Rij |3|Rjk|3|Rik|3

F. A. Faber et al., “Alchemical and structural distribution based representation for universal quantum machine learning”, J.
Chem. Phys. 148, 241717 (2018); B. Huang and O. A. von Lilienfeld, “Quantum machine learning using
atom-in-molecule-based fragments selected on the fly”, Nat. Chem. 12, 945–951 (2020)
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SOAP: smooth overlap of atomic positions

Local similarity measure between atoms

Each atom i is represented as sum of neighbor nuclei densities smoothened with

a Gaussian, %i(r) =
∑
k exp

(
− |Rk−r|2

2σ2
%

)
Similarity is the overlap averaged over rotations

K̄ij =

∫
dR̂

[∫
%i(r)%j(R̂r) d3r

]2
, Kij =

[
K̄ij√
K̄iiK̄jj

]ζ
In practice, %i is decomposed onto atom-centered basis leading to power
spectrum representations p

Kij =

 pᵀ
ipj√

pᵀ
ipi · p

ᵀ
jpj

ζ =
[
p̄ᵀ
i p̄j
]ζ
, pi,nn′` =

√
8π2

2`+1

∑
m

ci,n`mc
∗
i,n′`m

A. P. Bartók, R. Kondor, and G. Csányi, “On representing chemical environments”, Phys. Rev. B 87, 184115 (2013)

https://doi.org/10.1103/PhysRevB.87.184115
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Simple molecular properties

QM9 database (molecules with up to 9 heavy atoms)

F. A. Faber et al., “Prediction errors of molecular machine learning models lower than hybrid DFT error”, J. Chem. Theory
Comput. 13, 5255–5264 (2017)

https://doi.org/10.1021/acs.jctc.7b00577
https://doi.org/10.1021/acs.jctc.7b00577
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Density functional optimization

Average energy curvature is CNavg
∫ N
N−1

∂2E
∂x2

(x) dx = εNHOMO − εN−1
LUMO

Minimization of C is a criterion for the optimal tuning of range-separated hybrid
density functionals (γ)

Pipeline: predict curvature for different γ and find the optimal γ with spline
interpolation

A. Fabrizio, B. Meyer, and C. Corminboeuf, “Machine learning models of the energy curvature vs particle number for optimal
tuning of long-range corrected functionals”, J. Chem. Phys. 152, 154103 (2020)

https://doi.org/10.1063/5.0005039
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Organometallic properties

Spin-state ordering, sensitivity to HF exchange, spin-state
specific bond lengths

Graph theory based descriptors: Atomic connectivity,
Kier index. Preferred to 3-d structural information
(e.g., Coulomb Matrix).

Complex Based: Metal identity, oxidation state,
empirical pairwise Pauling electronegativity, . . .

Atomic descriptors: Charge, mass, . . .

0

0.5

1

M
A

E
, 
eV

invariant

equivariant

SLATM

HOMO energy

0

0.5

1

M
A

E
, 
eV

invariant

equivariant

SLATM

LUMO energy

0

0.2

0.4

M
A

E
, 
eV

invariant

equivariant

SLATM

HOMO–LUMO gap

0

1.2

2.4

M
A

E
, 
D

eb
ye

Dipole moment

0

0.015

0.03

M
A

E

Metal charge (Hirshfeld)

0

4.5

9

M
A

E
, 
kc

al
/m

ol

Spin-splitting energy

KRR + molecular representations (local, global,
structure, electronic. . . )

Invariant/equivariant tensor field neural network

J. P. Janet and H. J. Kulik, “Predicting electronic structure properties of transition metal complexes with neural networks”,
Chem. Sci. 8, 5137–5152 (2017); Y. Cho et al., “Automated prediction of ground state spin for transition metal complexes”,
Digital Discovery 3, 1638–1647 (2024)

https://doi.org/10.1039/c7sc01247k
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Homogeneous catalysis

Prediction of the reaction performance in C–N cross-coupling and
deoxylfluorination with sulfonyl fluorides from experimental training set
constructed by ultra-high-throughput nanoscale experimentation

Molecular descriptors: Molecular volume, Surface area, Molecular weight,
EHOMO, ELUMO

Atomic descriptors: Electrostatic charge and NMR shift

Vibrational descriptors: Frequency and intensity

D. T. Ahneman et al., “Predicting reaction performance in C–N cross-coupling using machine learning”, Science 360,
186–190 (2018); M. K. Nielsen et al., “Deoxyfluorination with sulfonyl fluorides: Navigating reaction space with machine
learning”, J. Am. Chem. Soc. 140, 5004–5008 (2018)

https://doi.org/10.1126/science.aar5169
https://doi.org/10.1126/science.aar5169
https://doi.org/10.1021/jacs.8b01523
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ML applied to homogeneous catalysis

Exploit machine learning algorithms to accurately predict selective
catalysts for the chiral phosphoric acid-catalyzed thiol addition to
N-acylimines reactions

ML models used: Support Vector Machines (SVM) and Neural Network

Descriptors: average steric occupancy (ASO), computed electrostatic
parameters and NBO charges.

A. F. Zahrt et al., “Prediction of higher-selectivity catalysts by computer-driven workflow and machine learning”, Science 363,
eaau5631 (2019)

https://doi.org/10.1126/science.aau5631
https://doi.org/10.1126/science.aau5631
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Reaction barrier prediction

QML for reactions is more challenging

Involve 2+ components (reactant(s) and product(s))

Representations design: transition state instead of Hamiltonian
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P. van Gerwen et al., “Benchmarking machine-readable vectors of chemical reactions on computed activation barriers”, Digital
Discovery 3, 932–943 (2024)

https://doi.org/10.1039/D3DD00175J
https://doi.org/10.1039/D3DD00175J
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Chemical properties: Beyond

There are many other chemical properties to predict, and not only scalar
properties...

A. Fabrizio et al., “Electron density learning of non-covalent systems”, Chem. Sci. 10, 9424–9432 (2019); J. Behler, “Four
generations of high-dimensional neural network potentials”, Chem. Rev. 121, 10037–10072 (2021)

https://doi.org/10.1039/c9sc02696g
https://doi.org/10.1021/acs.chemrev.0c00868
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Quiz 1

You want to machine-learn the HOMO energies of molecules.

Which family of machine learning methods would you use:
Unsupervised or Supervised?

If Unsupervised, would you used a Clustering or a Dimensionality
Reduction algorithm?

If Supervised, would you used a Regression or a Classification algorithm?

Supervised learning, Regression algorithm
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Quiz 2

You want to machine-learn the atomization energies of a set of molecules.

How do you need to describe your molecules for this purpose?

Need to describe the molecules with molecular representations (and not
with common molecular descriptors used in QSAR/QSPR approches)
that encode the basic information contained in the molecular
Hamiltonian. For example: SLATM
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Quiz 3

A company provides you a list of 10000 molecules and asks to choose
good catalysts for a given reaction.

You only have the budget for testing experimentally 1000 compounds.

Which steps would you follow?

First, we need to describe our molecules with molecular representations
or descriptors.

Then, we can use a clustering algorithm and pick the molecules from
different clusters found to obtain a representative subset of 1000
molecules.

We run the experiments.

Then, we train a model on those 1000 compounds and predict the key
property on the rest of the set.
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Molecular representations:

beyond this introduction
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An ensemble ML method: Random Forests

Ensemble methods combine the predictions of several base estimators built
with a given ML algorithm in order to improve generalizability / robustness
over a single model

Random forest algorithm is an ensemble technique that combines multiple
decision trees

Predictions are made by majority vote of the individual trees

Better generalization than an individual decision tree due to randomness
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An ensemble ML method: Random Forests

It runs efficiently on large databases

It can handle thousands of input variables without variable deletion

It gives estimates of what variables are important although less
interpretative than single DT

Performance increases with the number of trees until it saturates
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