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Introduction: why ML for chemistry?
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Learn what?

m For example, learn to predict the (quantum) chemical properties
from molecular structural formulas

Pharmacological How does it react

properties ?

compound?
\ OH /
How are its spectra \ Is its solid

(Infrared, NMR,...) form stable?

with another
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D. Folmsbee and G. Hutchison, “Assessing conformer energies using electronic structure and machine learning methods”, Int.

J. Quantum Chem. 121, 26381 (2020) 4/41
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Learn how?

m A computer can learn, just like first experimental chemists have
typically learned chemistry...
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Learn how?

A computer can learn, just like first experimental chemists have
typically learned chemistry...

Empirically: Based on their experience as opposed to a priori
theoretical knowledge

Starting from a dataset of theoretical or experimental data with
molecular structures and the corresponding observable properties

The computer can find relationships between molecular structures
and the properties

It learns! And can apply the knowledge to new situations!

5/41



From data to knowledge

Deductive Inductive
Reasoning Reasoning
Quantum ISDOM Machine
Chemistry Learning
KNOWLEDGE
Generalization
INFORMATION
Context
DATA
Measurement or Computation

m ML is traditionally used in quantitative structure property (or activity)
relationships (QSPR/QSAR)

O. A. von Lilienfeld, “Quantum machine learning in chemical compound space”, Angew. Chem. Int. Ed. 57, 4164-4169
(2018) 6/41
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EPFL From data to knowledge

Deductive Inductive
Reasoning Reasoning
Quantum ISDOM Machine
Chemistry Learning
KNOWLEDGE
Generalization

INFORMATION
Context

DATA

Measurement or Computation

m ML is traditionally used in quantitative structure property (or activity)
relationships (QSPR/QSAR)

m Can we unify the two worlds to extend the current quantum chemistry
toolbox by “quantum machine learning” (QML)?

m QML: classical machine learning applied to quantum-chemical properties

O. A. von Lilienfeld, “Quantum machine learning in chemical compound space”, Angew. Chem. Int. Ed. 57, 4164-4169

(2018) 6/41
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ML meets quantum chemistry: guideline
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A. Fabrizio et al., “Quantum chemistry meets machine learning”, CHIMIA 73, 983 (2019) 7/41
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Machine learning methods: a short overview
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Find relations between your data (molecules) and a target variable
(chemical properties) that you want to be able to predict
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Three paradigms of ML

Supervised learning (Classification, Regression)

Find relations between your data (molecules) and a target variable
(chemical properties) that you want to be able to predict
Unsupervised learning ( Clustering, Dimensionality Reduction)
Searching for indirect hidden structures, clusters, patterns or features in
the raw (molecular) data

Reinforcement learning

Solving interactive problems with an environment (e.g., a chess engine)
Close to supervised learning but reward (feedback) instead of labels

8/41



EPFL Supervised ML:
Making predictions about the future

m In supervised learning the model is constructed from training molecules
with known properties that allows us to make predictions about unseen
molecules

m (Classification task: assign discrete class labels

m Regression task: the chemical property is a continuous value

Machine Learning
Algorithm

New Data ll:‘\>| Predictive Model IE>[ Prediction
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EPFL Supervised ML: Classification

m Goal: predict the categorical labels of new molecules based on past
observations

m Applications: electronic structure computations outcomes (good/bad),
ground state spins,

geometry spin
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C. Duan et al., “Learning from failure: Predicting electronic structure calculation outcomes with machine learning models”, J.
Chem. Theory Comput. 15, 2331-2345 (2019); Y. Cho et al., “Automated prediction of ground state spin for transition metal
complexes”, Digital Discovery 3, 1638-1647 (2024) 10/41
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Supervised ML: Regression

m Task: prediction of continuous properties

m Applications: heat capacity at room temperature, HOMO-LUMO gap,
receptor—ligand binding, stability of molecular conformers, . ..

M. Rupp, O. A. von Lilienfeld, and K. Burke, “Guest editorial: Special topic on data-enabled theoretical chemistry”, J. Chem.
Phys. 148, 241401 (2018) 11/41


https://doi.org/10.1063/1.5043213
https://doi.org/10.1063/1.5043213

=L Supervised ML: Regression Sk )

m Task: prediction of continuous properties

m Applications: heat capacity at room temperature, HOMO-LUMO gap,
receptor—ligand binding, stability of molecular conformers, . ..

Y = f(descriptors)
Can be applied successfully if:

m Cause and effect relationship connecting
system to property

m Query scenario is interpolative in nature

Chemical properties

m Sufficient training data available

Molecular descriptors

M. Rupp, O. A. von Lilienfeld, and K. Burke, “Guest editorial: Special topic on data-enabled theoretical chemistry”, J. Chem.
Phys. 148, 241401 (2018) 11/41
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EPFL Unsupervised ML:
Finding subgroups with clustering

m Exploratory data analysis technique that allows to organize information into
meaningful subgroups (clusters) without any prior knowledge

m Each cluster defines a group of objects that share a certain degree of similarity
but are more dissimilar to objects in other clusters

m Applications: representative sample, subsets selection, conformational analysis
b) TSb

a) Tsa

180
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o Lo

down cluster down cluster
d) TSb reopt. Side view Front view

Distance (A)

down cluster down cluster

R. Laplaza, M. D. Wodrich, and C. Corminboeuf, “Overcoming the pitfalls of computing reaction selectivity from ensembles
of transition states”, J. Phys. Chem. Lett. 15, 73637370 (2024)
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https://doi.org/10.1021/acs.jpclett.4c01657

Unsupervised ML: Dimensionality reduction [k

m Clustering identifies agglomeration of data but do not offer an overall
picture of the relations between different structures

m Dimensionality reduction compresses the data onto a smaller dimensional
subspace while retaining most of the relevant information

m Data visualization: a high-dimensional feature set can be projected onto
1-, 2-, or 3D spaces

m Applications: representation of chemical space, pattern recognition
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B. Sawatlon et al., “Data mining the C—C cross-coupling genome”, ChemCatChem 11, 4096-4107 (2019); M. Haeberle et al.,
“Integer linear programming for unsupervised training set selection in molecular machine learning”, Mach. Learn.: Sci.
Technol. 6, 025030 (2025) 13/41
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ML method example: Decision Trees

Decision Trees (DTs) are a non-parametric supervised learning method
used for classification and regression

Learns simple decision rules inferred from the data features

DT split a set of objects into subsets (usually 2 in binary trees) that are
purer in composition

Rules are selected based on how well splits can differentiate

Yes No
l Stay in ‘ [ Outlook? J

Sunny Rainy

Over-
cast

Go to beach Go running Friends busy?

Yes No
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Decision Trees: chemical example

m Starting with a root composed by a set of 30 catalysts and knowing the
ones that are “good” or “bad” for a given reaction

m Each catalyst is described by several simple molecular descriptors (e.g.,
molecular weight, shape index, molecular volume, # of C atoms, # of
rotatable bonds. . .

L 4
(15/15)

@ Good catalyst
@ Bad catalyst

15/41



CMD)

: : illllllll

Decision Trees: chemical example

m DT algorithm searches a rule that yields the highest decrease in impurity

m Once a rule is selected and splits a node into two

@ Good catalyst
Decision rule I MW > 3007 @ Bad catalyst

No I I Yes

0000® |hternal 90000

(10/5) OO0 00000 (5/10)
00000 "°des 90000

15/41



Decision Trees: chemical example

m The same logic is applied to each “child” node

m Stops when no further gain / stopping rules met

L d
(15/15)

@ Good catalyst
Decision rule I MW > 300 ? @ Bad catalyst

No I I Yes

o G858 i 3 oo

# carbon <57 # M,y > 1000 ?

Yes No No Yes
000 o0 [ 11 000
000 [ T o0 000
000 e o 000
(8/1) (2/4) (4/1) ()

(1/9)
Leaves
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Decision Trees AL

Why classification and regression trees (CART) is a successful tool?
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EPFL Decision Trees

Why classification and regression trees (CART) is a successful tool?

m Universally applicable to classification and regression problems with no
assumptions on the data structure

m The picture of the tree structure gives valuable insights into which
variables are important

m Terminal nodes give a natural clustering of the data into homogenous
groups

m Can handle large data sets: O(DM log M)
(M is # of molecules, D is # of descriptors)
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Decision Trees @~ & Fm

Why classification and regression trees (CART) is a successful tool?

Universally applicable to classification and regression problems with no
assumptions on the data structure

The picture of the tree structure gives valuable insights into which
variables are important

Terminal nodes give a natural clustering of the data into homogenous
groups

Can handle large data sets: O(DM log M)
(M is # of molecules, D is # of descriptors)

But. ..

Decision-tree learners can create over-complex trees that do not generalize
the data well

This is called overfitting

16/41



ePrL Overfitting and early stopping

m Decision trees can overfit data

m So, it is necessary to use a validation set in order to prune the tree at an
optimal size

]
oes 1/ Stop learning here

06 On training data e
On test data =« =«

Accuracy

o 10 0 0 40 50 60 0 0 9% 100

Size of tree (number of nodes)

Y. Xu and R. Goodacre, “On splitting training and validation set: a comparative study of cross-validation, bootstrap and
systematic sampling for estimating the generalization performance of supervised learning”, J. Anal. Test. 2, 249-262 (2018)17/41


https://doi.org/10.1007/s41664-018-0068-2
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Overfitting and early stopping

m Decision trees can overfit data

m So, it is necessary to use a validation set in order to prune the tree at an
optimal size

Training data set

/
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— Train with different
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g 7/,
s o7 H I . Record validation
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O ' Stop learning here parameter
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On test data === model parameters
055
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Y. Xu and R. Goodacre, “On splitting training and validation set: a comparative study of cross-validation, bootstrap and

systematic sampling for estimating the generalization performance of supervised learning”, J. Anal. Test. 2, 249-262 (2018)17/41


https://doi.org/10.1007/s41664-018-0068-2

Perceptron

Artificial neurons are inspired from biological neurons
An artificial neuron has one or many inputs, each associated to a weight

If the weighted sum of inputs is lower than a threshold, the neuron remains
inactive

If the weighted sum bypass the threshold, the neuron is activated and
produce an output signal

During the learning phase, this output is used to calculate the error of the
prediction and update the weights

Weight update I l
E
—

rror

L— Output

Net input Activation
function function
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Perceptron: Chemical example

Starting with the same set of 30 catalysts and knowing the ones that are “good”
or “bad” for a given reaction

Weight update I E |
— 1 I’I'OI'[

@ Good catalyst

Molecular weight G @ m Output or
D

@ Bad catalyst

Net input Activation

Molecular shape
u function function

# C atoms
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Perceptron: Chemical example

During the learning phase, the outputs are used to update the weights

Molecular volume (X5)

Molecular shape (X;)
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Perceptron: Chemical example

If the two classes are linearly separable, the perceptron will converge to a solution

Linearly separable
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Perceptron: Chemical example

However, if the two classes are not linearly separable, either we accept the error,
either we need more than a single neuron

Not linearly separable
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(Deep) artificial neural network

m Learns non-linear models for classification and prediction

Input  Hidden  Hidden  Output Not linearly separable
layer layer layer layer.

Molecular Molecular

Weight Volume

Molecular volume (X,)

Molecular

Shape

Molecular shape (X;)

m Requires tuning a large number of hyperparameters

m Can learn new data descriptors itself

bond features

aggregate ropert
S g s () > BT

prediction
molecule

embedding
molecule SMILES J—

Bond 211 New vector

bond-level
message passing

Bonds into 2:
352,42

E. Heid et al., “Chemprop: A machine learning package for chemical property prediction”, J. Chem. Inf. Model. 64, 9-17

(2023)
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EPFL Kernel trick:

Another way to solve non-linear problem

m Any non-linear problem can be mapped (@) into a higher-dimensional
feature space where it becomes linearly separable

m Computationally very expensive

m The step ¢(x) - ¢(x') is replaced by a kernel function K (x,x’)

Input Space Feature Space

21/41
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ePrL Kernel ridge regression

m Roughly speaking, kernels can be interpreted as similarity measures between pair

of molecules
m The most widely used kernels are Gaussian K (x,x’) = exp (—7*(x — x’)*) and

Laplacian K(x,x’) = exp (—'y D lzg — mﬁl|)
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Kernel ridge regression

Roughly speaking, kernels can be interpreted as similarity measures between pair
of molecules

The most widely used kernels are Gaussian K (x,x’) = exp (—7*(x — x’)*) and
Laplacian K(x,x’) = exp (—'y S wa - m;l|)

The prediction for y; is a weighted sum of kernel functions centered on each
training point: y; = Zf\’ K (x¢,%; )wy

The regression coefficients represent the contribution of each training point to

the target value and minimize the quadratic loss function on the training set:
w=(K+n1)"'y

22/41
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EPFL Molecular descriptors

“...the final result of a logic and mathematical procedure which
transforms chemical information encoded within a symbolic
representation of a molecule into a useful number”

R. Todeschini and V. Consonni, Handbook of molecular descriptors, Vol. 11, Methods and Principles in Medicinal Chemistry
(Wiley, 2000); R. Todeschini and V. Consonni, Molecular descriptors for chemoinformatics, Vol. 41, Methods and Principles in
Medicinal Chemistry (Wiley, 2009) 23/41
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EPFL Molecular descriptors

“...the final result of a logic and mathematical procedure which
transforms chemical information encoded within a symbolic
representation of a molecule into a useful number”

Vast majority: Handbook of &
. . Molecular
m constitutional (# of atoms, MW,...) Descriptors

m graph-based (bond-, distance-, adjacency
matrices,...)

®m mainly used in bio or chemo-informatics
for QSAR applications

R. Todeschini and V. Consonni, Handbook of molecular descriptors, Vol. 11, Methods and Principles in Medicinal Chemistry
(Wiley, 2000); R. Todeschini and V. Consonni, Molecular descriptors for chemoinformatics, Vol. 41, Methods and Principles in
Medicinal Chemistry (Wiley, 2009) 23/41
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m Focus on QML models: physics-based, systematic, universal
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Molecular representations

Focus on QML models: physics-based, systematic, universal

To better distinguish QML from QSAR, we prefer “representation” to
“descriptor”

The ground state of a chemical system is defined by its Hamiltonian

Hamiltonian depends on elemental composition and geometry (and number
of electrons)

0z, R) M E
Representation in ML plays the role of Hamiltonian/wavefunction in QM

It should be a vector which encodes composition and geometry (and
charge/spin) of a molecule

representation(Z;, R;) M. B

24/41
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Molecular representations

Criteria:
m injectivity
m continuity and differentiability

m invariance/equivariance w.r.t.:
® permutations

T
L

model

potentials

FCHL(18,19)
SLATM

density
of neighbors

ACE
BP-SF
SOAP

m translations

,}._H.._.

m rotations

Yoo |

internal
coordinates

electronic
structure

BoB.
MBTR
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CM: the Coulomb matrix representation

m Square atom-by-atom matrix
m Off-diagonal elements correspond to the Coulomb repulsion between nuclei

m Diagonal elements remind the electronic energy of a H-like atom

ZiZ;
fori#j
M;; = R —Ry|
0.5 224 fori = j

PCICICIPd CO

P |332124 122 122 290 20 22

Cl |124 449 94 94 179 16 18

Cl 122 94 449 82 232 20 22

> M = CI [122 94 82 449237 20 22
Pd |290 179 232 2374893136 116

20 16 20 20 136 37 43

O |22 18 22 22 116 43 74

0

M. Rupp et al., “Fast and accurate modeling of molecular atomization energies with machine learning”, Phys. Rev. Lett. 108,
058301 (2012) 26/41
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CM: the Coulomb matrix representation

m Square atom-by-atom matrix
m Off-diagonal elements correspond to the Coulomb repulsion between nuclei

m Diagonal elements remind the electronic energy of a H-like atom

ZiZ;
fori#j
M;; = R —Ry|
0.5 224 fori=j

PCICICIPd CO

P |332124 122 122 290 20 22

Cl |124 449 94 94 179 16 18
Cl 122 94 449 82 232 20 22
> M = CI [122 94 82 449237 20 22
Pd |290 179 232 2374893136 116
C |20 16 20 20 136 37 43

O |22 18 22 22 116 43 74

m No well-defined ordering of the atoms in the matrix

M. Rupp et al., “Fast and accurate modeling of molecular atomization energies with machine learning”, Phys. Rev. Lett. 108,
058301 (2012) 26/41
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EPFL Variants of CM

m Represent the molecule as a vector of sorted eigenvalues of the CM
m Invariant with respect to atom permutations

m Loss of information

PCICICIPd CO

P [332124 122 122 200 20 22 4954
Cl |124 449 94 94 179 16 18 ot
Cl |22 94 449 82 232 20 22 367

Cl |122 94 82 440 237 20 22| — | 350

Pd |290 179 232 2374893136 116 220
C |20 16 20 20 136 37 43 93
O |22 18 22 22 116 43 74 8

K. Hansen et al., “Assessment and validation of machine learning methods for predicting molecular atomization energies”, J.
Chem. Theory Comput. 9, 3404-3419 (2013) 27/41


https://doi.org/10.1021/ct400195d
https://doi.org/10.1021/ct400195d

PFL Variants of CM

m Permute the matrix in order to sort the rows and the columns by their norm
m Unique CM representation

m More information than eigenspectrum

PCICICIPd CO

P 332124 122 122 290 20 22

PdCICICI P CO

Pd 4893 237 232 179 290 20 22

449 94 449 179 16 18
Cl 124 Cl | 237 449 82 94 122 16 18

Cl |122 94 449 82 232 20 22 Cl |232 82 449 94 122 20 2

Cl |122 94 82 449 237 20 22 — 1|79 94 04 449 124 20 22

Pd 290 179 232 2374893136 116 P |200 122 122 124 332 136 116

C |20 16 20 20 136 37 43 C |20 16 20 20 136 37 43

22 18 22 22 116 43 74
o o

22 18 22 22 116 43 74

K. Hansen et al., “Assessment and validation of machine learning methods for predicting molecular atomization energies”, J.
Chem. Theory Comput. 9, 3404-3419 (2013) 27/41
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Variants of CM

m Construct several CMs based on a random ordering of the atoms, adding a
random noise € to the row norms ||C|| and determine the permutation than
minimizes ||C|| + €

m Approximate sampling of all possible valid CMs given a specific molecule

m Increased the computational costs

Cl
Cl
Cl
Pd

P CICICIPd C

(o]

332124 122 122 290 20

124 449 94 94 179 16

122 94 449 82 232 20

122 94 82 449 237 20

290 179 232 237 4893136

20 16 20 20 136 37

22 18 22 22 116 43

22

18

22

22

116

43

74

PCICICIPd CO

124
122 P

122Cl
290 Cl
2 CI
, Pd

—C
(o]

332124 122 122 290 20 22|

P CICICIPd CO

124 4
122 Pd
Cl
Cl

290 1
c

122 ¢

20

P
12 ¢
o

Pd CICI CI

332124 122 122 290 20 22|

P CO

4893 237 232 179
237 449 82 94
232 82 449 94
179 94 94 449
290 122 122 124
20 16 20 20

22 18 22 22

290 20 22
122 16 18
122 20 22
124 20 22
332 136 116
136 37 43

116 43 74

K. Hansen et al., “Assessment and validation of machine learning methods for predicting molecular atomization energies”, J.
Chem. Theory Comput. 9, 3404-3419 (2013)
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BoB: the Bag of Bonds representation

m Inspired by NLP: bag-of-words descriptor encodes the frequency of occurrence of
words in text

m Each bag corresponds to a specific type of atomic pair

m For example, all P-Cl pairs in the molecule are grouped into the bag labeled as
PCl

m Crucial higher-order information (angles and dihedrals) missing

PCICICIPd C O pCi
Plr PCI
PdC| pcl
Cl |pa| C
PCI|CICI| CI
b Cl > cicl
J Cl |pcifcicifcicl| ci cicl
Pd |Ppd|pacipdcilpaci| Pd C:C cicl
cic
C |rc|cic|cic|cic|pdc| ¢ cic .
O |Pojcio|cio|cio|pdojco | O .

K. Hansen et al., “Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in
chemical space”, J. Phys. Chem. Lett. 6, 2326-2331 (2015) 28/41


https://doi.org/10.1021/acs.jpclett.5b00831

EPFL SLATM: the Spectrum of London 2
and Axilrod—Teller—Muto potential

m Represents an atom i by accounting for all possible interactions between it and
its neighboring atoms through many-body potential terms multiplied by a
Gaussian distribution G and put in bags
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EPFL SLATM: the Spectrum of London
and Axilrod—Teller—Muto potential

m Represents an atom i by accounting for all possible interactions between it and
its neighboring atoms through many-body potential terms multiplied by a
Gaussian distribution G and put in bags

m The one-body term: simply the nuclear charge (z1 = Z;)
m The two-body term:

1 7,2,
ZG"Z - Rij) - |r[6
J#Z
m The three—body term:
Nat
ZiZ; Zy [1 + cos 0 cos Ok; cos O]
GU 9 91 J J J
3 Z s i*) IRs; 2R3 R |?
k#]#l

,[17] [51 [45] [15] T 8 B 100 I6: 1 16: 35T
15, . 6 B

F. A. Faber et al., “Alchemical and structural distribution based representation for universal quantum machine learning”, J.
Chem. Phys. 148, 241717 (2018); B. Huang and O. A. von Lilienfeld, “Quantum machine learning using
atom-in-molecule-based fragments selected on the fly”, Nat. Chem. 12, 945-951 (2020) 29/41


https://doi.org/10.1063/1.5020710
https://doi.org/10.1063/1.5020710
https://doi.org/10.1038/s41557-020-0527-z

SOAP: smooth overlap of atomic positions

m Local similarity measure between atoms

A. P. Barték, R. Kondor, and G. Csanyi, “On representing chemical environments”, Phys. Rev. B 87, 184115 (2013) 30/41


https://doi.org/10.1103/PhysRevB.87.184115

SOAP: smooth overlap of atomic positions

m Local similarity measure between atoms

m Each atom i is represented as sum of neighbor nuclei densities smoothened with
2
a Gaussian, g;(r) =3, exp( 'R’“ r‘ )

SV
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L

SOAP: smooth overlap of atomic positions

m Local similarity measure between atoms

m Each atom i is represented as sum of neighbor nuclei densities smoothened with
a Gaussian, g;(r) =3, exp( ‘R’“ r‘ )

m Similarity is the overlap averaged over rotations

K :/df% [/Qi(r)gj(l%r)d?’rr’ Kij = {{i]]—(ﬂ]g

A. P. Barték, R. Kondor, and G. Csanyi, “On representing chemical environments”, Phys. Rev. B 87, 184115 (2013) 30/41
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SOAP: smooth overlap of atomic positions

Local similarity measure between atoms

m Each atom i is represented as sum of neighbor nuclei densities smoothened with
. R, —
a Gaussian, g;(r) =3, exp( | gc;‘ )

m Similarity is the overlap averaged over rotations

Ki; :/dﬁi [/gi(r)g]-(l%r)d3r]2, Kij = {\/%]C

In practice, p; is decomposed onto atom-centered basis leading to power
spectrum representations p

¢

T
pi p j =T= 1¢ 71'2 *
Kij = | ——2— = [pzpj] sy Pinn’e =\ ;gﬁ Zci,nlmci,n’fm
\/ PP, p}p]- m

A. P. Barték, R. Kondor, and G. Csanyi, “On representing chemical environments”, Phys. Rev. B 87, 184115 (2013) 30/41
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Few examples: ML applied to chemical properties



ePrL Simple molecular properties
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QM9 database (molecules with up to 9 heavy atoms)

F. A. Faber et al., “Prediction errors of molecular machine learning models lower than hybrid DFT error”, J. Chem. Theory
Comput. 13, 5255-5264 (2017) 31/41
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https://doi.org/10.1021/acs.jctc.7b00577

Density functional optimization

9%’E

N-1
m Average energy curvature is Cavg fN 1 57 (x)de = eNomo — ETono

m Minimization of C is a criterion for the optimal tuning of range-separated hybrid
density functionals ()

m Pipeline: predict curvature for different v and find the optimal ~ with spline
interpolation

Regression Curvature 14 Max. error
in the test set
y=0.1 @ Spline 09
Interpolatlon Optimal 0.8
y=0.2 @ —_— @ Gamma 0.7 Max. error
’ \ Per Compound O in the test set

@ —O— @
~0—Q~
'

L LC-wPBE LC-wPBE (y-tuned)

IP Error vs IP-EOM-CCSD [eV]

A. Fabrizio, B. Meyer, and C. Corminboeuf, “Machine learning models of the energy curvature vs particle number for optimal
tuning of long-range corrected functionals”, J. Chem. Phys. 152, 154103 (2020) 32/41


https://doi.org/10.1063/5.0005039

=PFL

Spin-state ordering, sensitivity to HF exchange, spin-state
specific bond lengths

Input  Hidden  Hidden  Output
layer layer layer layer

m  Graph theory based descriptors: Atomic connectivity,
Kier index. Preferred to 3-d structural information
(e.g., Coulomb Matrix).

m  Complex Based: Metal identity, oxidation state,
empirical pairwise Pauling electronegativity, . ..

m  Atomic descriptors: Charge, mass, . ..

Organometallic properties

HOMO energy LUMO energy HOMO-LUMO gap

. invariant
equivariant

| mm sLat™

MAE, &V

Dipole moment Metal charge (Hirshfeld) ~ Spin-splitting energy

0015

m KRR + molecular representations (local, global,
structure, electronic...)

m Invariant/equivariant tensor field neural network

J. P. Janet and H. J. Kulik, “Predicting electronic structure properties of transition metal complexes with neural networks”,

Chem. Sci. 8, 5137-5152 (2017); Y. Cho et al., “Automated prediction of ground state spin for transition metal complexes”,
33/41

Digital Discovery 3, 1638-1647 (2024)


https://doi.org/10.1039/c7sc01247k

EPFL Homogeneous catalysis

Prediction of the reaction performance in C—N cross-coupling and
deoxylfluorination with sulfonyl fluorides from experimental training set
constructed by ultra-high-throughput nanoscale experimentation

— experimental training set — r machine learning — prediction of high- —_
Q\S,E} yielding cnm::liun;au
" s
OH R°F 4 A ol N
), A-l;—a- A “m-Bu
ase %
. Ad .
t— «

] I +]

- [] 82% yield

sulfonyl Muoride: PBSF
random forest model - BTPP

m Molecular descriptors: Molecular volume, Surface area, Molecular weight,

Enomo, ELumo
m Atomic descriptors: Electrostatic charge and NMR shift

m Vibrational descriptors: Frequency and intensity

D. T. Ahneman et al., “Predicting reaction performance in C—N cross-coupling using machine learning”, Science 360,
186-190 (2018); M. K. Nielsen et al., “Deoxyfluorination with sulfonyl fluorides: Navigating reaction space with machine
learning”, J. Am. Chem. Soc. 140, 5004-5008 (2018) 34/41


https://doi.org/10.1126/science.aar5169
https://doi.org/10.1126/science.aar5169
https://doi.org/10.1021/jacs.8b01523

=PFL

ML applied to homogeneous catalysis

m Exploit machine learning algorithms to accurately predict selective
catalysts for the chiral phosphoric acid-catalyzed thiol addition to
N-acylimines reactions

m ML models used: Support Vector Machines (SVM) and Neural Network

m Descriptors: average steric occupancy (ASO), computed electrostatic
parameters and NBO charges.

*Test set
«Training set

l

AAG (Predicted)

ST

AAG (Observed)

A. F. Zahrt et al., “Prediction of higher-selectivity catalysts by computer-driven workflow and machine learning”, Science 363,
eaau5631 (2019) 35/41


https://doi.org/10.1126/science.aau5631
https://doi.org/10.1126/science.aau5631

Reaction barrier prediction

m QML for reactions is more challenging
m Involve 24+ components (reactant(s) and product(s))

m Representations design: transition state instead of Hamiltonian

(a) GDB7-22-TS
EquiReact(xtb) 5.33:0.16
EquiReact(dft) 5.09:+0.21
- + B2R?+KRR(xtb) 10.46:0.20
Fd B2R2+KRR(dft) .19:0.26
SLATMy+KRR(xtb) .. .
SLATMy+KRR(dft) .91:+0.;

MAE AE* [kcal/mol]

'))\./‘,O" (b) Cyclo-23-TS
+ nd : .

MAE AG* [kcal/mol]

(c) Proparg-21-TS

EquiReact(xtb) 0.46+0.07
EquiReact(dft) 0.31+0.04
B2R2+KRR(xtb) 1.05+0.10
B2R2+KRR(dft)
e SLATMg+KRR(xtb) 0.72:0.08
SLATMy+KRR(dft) 0.35+0.06
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

MAE AE* [kcal/mol]

P. van Gerwen et al., “Benchmarking machine-readable vectors of chemical reactions on computed activation barriers”, Digital
Discovery 3, 932-943 (2024) 36/41
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=PFL

Chemical properties: Beyond

There are many other chemical properties to predict, and not only scalar
properties...

Tensorial properties
Scalar fields Vectorial fields

T

Electron Density Molecular Force Fleld

A. Fabrizio et al., “Electron density learning of non-covalent systems”, Chem. Sci. 10, 9424-9432 (2019); J. Behler, “Four
generations of high-dimensional neural network potentials”, Chem. Rev. 121, 10037-10072 (2021) 37/41
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https://doi.org/10.1021/acs.chemrev.0c00868
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=PFL Quiz 1

You want to machine-learn the HOMO energies of molecules.

Which family of machine learning methods would you use:
Unsupervised or Supervised?

If Unsupervised, would you used a Clustering or a Dimensionality
Reduction algorithm?

If Supervised, would you used a Regression or a Classification algorithm?
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PFL Quiz 2

You want to machine-learn the atomization energies of a set of molecules.

How do you need to describe your molecules for this purpose?
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EPFL Quiz 2

You want to machine-learn the atomization energies of a set of molecules.
How do you need to describe your molecules for this purpose?

Need to describe the molecules with molecular representations (and not

with common molecular descriptors used in QSAR/QSPR approches)
that encode the basic information contained in the molecular
Hamiltonian. For example: SLATM
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PFL Quiz 3

A company provides you a list of 10000 molecules and asks to choose
good catalysts for a given reaction.

You only have the budget for testing experimentally 1000 compounds.

Which steps would you follow?
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EPFL Quiz 3

A company provides you a list of 10000 molecules and asks to choose
good catalysts for a given reaction.

You only have the budget for testing experimentally 1000 compounds.
Which steps would you follow?

First, we need to describe our molecules with molecular representations
or descriptors.

Then, we can use a clustering algorithm and pick the molecules from
different clusters found to obtain a representative subset of 1000
molecules.

We run the experiments.

Then, we train a model on those 1000 compounds and predict the key
property on the rest of the set.
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EPFL Molecular representations:

beyond this introduction

1 Fingerprints
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An ensemble ML method: Random Forests

Ensemble methods combine the predictions of several base estimators built
with a given ML algorithm in order to improve generalizability / robustness
over a single model

Random forest algorithm is an ensemble technique that combines multiple
decision trees

Predictions are made by majority vote of the individual trees
Better generalization than an individual decision tree due to randomness
F (Root )
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(o) (Fool

oL 2 2
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An ensemble ML method: Random Forests

It runs efficiently on large databases
It can handle thousands of input variables without variable deletion

It gives estimates of what variables are important although less
interpretative than single DT

Performance increases with the number of trees until it saturates

LT

E o B
H z B
SK-N=
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