
148 PART | I Basics

ular Dynamics and Monte Carlo simulations. However, in addition to the static
equilibrium properties, we can also measure dynamic equilibrium properties in
a Molecular Dynamics simulation. At first sight, a dynamic equilibrium prop-
erty appears to be a contradiction: in equilibrium all properties are independent
of time, hence any time dependence in the macroscopic properties of a system
would seem to be related to non-equilibrium behavior. However, as explained
in section 2.5.2 on Linear Response Theory, the time-dependent behavior of
a system that is only weakly perturbed is completely described by the time-
correlation function of fluctuations in the system at equilibrium.

Before discussing the relation between time-correlation functions and trans-
port coefficients, we first describe another widely used method to study transport
properties using equilibrium simulations, using the coefficient of self-diffusion
as an example.

5.2.1 Diffusion

Diffusion is the process whereby an initially nonuniform concentration profile
(e.g., an ink drop in water) is smoothed in the absence of flow (no stirring).
Diffusion is caused by the molecular motion of the particles in the fluid. The
macroscopic law that describes diffusion is known as Fick’s law, which states
that the flux j of the diffusing species is proportional to the negative gradient in
the concentration of that species:

j = −D∇c, (5.2.1)

where D, the constant of proportionality, is referred to as the diffusion coeffi-
cient.7 In what follows, we shall be discussing a particularly simple form of
diffusion, namely, the case where the molecules of the diffusing species are iden-
tical to the other molecules, but for a label that does not affect the interaction of
the labeled molecules with the others. For instance, this label could be a partic-
ular polarization of the nuclear spin of the diffusing species (see e.g., [149]) or
a modified isotopic composition. Diffusion of a labeled molecule among other
identical molecules is called self-diffusion.8

We can use Fick’s law to compute the time-dependence of the concentration
profile c(r, t) of the tagged species, under the assumption that, at time t = 0, the
tagged species was concentrated at the origin of our coordinate frame. To com-
pute the time evolution of the concentration profile, we combine Fick’s law with

7 In Appendix D we discuss diffusion in the context of non-equilibrium thermodynamics, where
the primary driving force is the gradient of the chemical potential, rather than the concentration
gradient.
8 Eq. (5.2.1) is a simplification of the basic diffusion equation relating the particle flux to the
gradient of the chemical potential. The full expression can be found in ref. [57]. However, for self-
diffusion, Eq. (5.2.1) is not an approximation.
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an equation that expresses conservation of the total amount of labeled material:

∂c(r, t)
∂t

+ ∇ · j(r, t) = 0. (5.2.2)

Combining Eq. (5.2.2) with Eq. (5.2.1), we obtain

∂c(r, t)
∂t

− D∇2c(r, t) = 0. (5.2.3)

We can solve Eq. (5.2.3) with the boundary condition

c(r,0) = δ(r) (5.2.4)

(δ(r) is the d-dimensional Dirac delta function) to yield

c(r, t) = 1
(4πDt)d/2 exp

(
− r2

4Dt

)
, (5.2.5)

where r is the scalar distance from the origin. As before, d denotes the dimen-
sionality of the system. For what follows we do not need c(r, t) itself, but only
the time dependence of its second moment:

〈
r2(t)

⎡
≡

⎣
dr c(r, t)r2, (5.2.6)

where we have used the fact that we have imposed
⎣

dr c(r, t) = 1. (5.2.7)

We can obtain an expression for the time evolution of 〈r2(t)〉 by multiplying
Eq. (5.2.3) by r2 and integrating over all space. We then obtain:

∂

∂t

⎣
dr r2c(r, t) = D

⎣
dr r2∇2c(r, t). (5.2.8)

The left-hand side of this equation is simply equal to

∂
⎤
r2(t)

⎦

∂t
. (5.2.9)

Applying partial integration to the right-hand side, we obtain

∂
⎤
r2(t)

⎦

∂t
= D

⎣
dr r2∇2c(r, t)

= D

⎣
dr ∇ · (r2∇c(r, t)) − D

⎣
dr ∇r2 · ∇c(r, t)
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= D

⎣
dS (r2∇c(r, t)) − 2D

⎣
dr r · ∇c(r, t)

= 0 − 2D

⎣
dr (∇ · rc(r, t)) + 2D

⎣
dr (∇ · r)c(r, t)

= 0 + 2dD

⎣
dr c(r, t)

= 2dD. (5.2.10)

Eq. (5.2.10) relates the (self)diffusion coefficient D to the width of the concen-
tration profile. Eq. (5.2.10) was derived by Einstein and is therefore called an
Einstein relation. The important feature of Eq. (5.2.10) is that it relates a macro-
scopic transport coefficient (D), to a microscopic observable (〈r2(t)〉), which is
the mean-squared distance over which the labeled molecules have moved in a
time interval t . Eq. (5.2.10) suggests how to measure D in a computer simula-
tion. For every particle i, we measure the distance traveled in time t , $ri (t), and
we plot the mean square of these distances as a function of the time t :

〈
$r(t)2

⎡
= 1

N

N∑

i=1

$ri (t)
2. (5.2.11)

An example of such a plot is shown in Fig. 5.9. We should be specific about what
we mean with the displacement of a particle in a system with periodic boundary
conditions. The displacement that we are interested in, is the time integral of the
velocity of the tagged particle:

$r(t) =
⎣ t

0
dt ′ v(t ′). (5.2.12)

Eq. (5.2.12) allows us to express the diffusion coefficient in terms of the particle
velocities. We start with the relation

2D = lim
t→∞

∂
⎤
x2(t)

⎦

∂t
, (5.2.13)

where, for convenience, we consider only one Cartesian component of the mean-
squared displacement. Expressing x(t) as the time integral of the x-component
of the tagged-particle velocity, we obtain

〈
x2(t)

⎡
=

〈(⎣ t

0
dt ′ vx(t

′)
)2

〉

=
⎣ t

0

⎣ t

0
dt ′dt ′′

⎤
vx(t

′)vx(t
′′)

⎦

= 2
⎣ t

0

⎣ t ′

0
dt ′dt ′′

⎤
vx(t

′)vx(t
′′)

⎦
. (5.2.14)
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The quantity
⎤
vx(t

′)vx(t
′′)

⎦
is the velocity autocorrelation function of the tagged

particle (see section 2.5.2, Eq. (2.5.9)). It measures the correlation between the
velocity of a particle at times t ′ and t ′′. As time correlation functions in equilib-
rium only depend on the difference of t ′ and t ′′, we can write

⎤
vx(t

′)vx(t
′′)

⎦
=

⎤
vx(t

′ − t ′′)vx(0)
⎦
. (5.2.15)

Inserting Eq. (5.2.14) in Eq. (5.2.13), we obtain

2D = lim
t→∞ 2

⎣ t

0
dt ′′

⎤
vx(t − t ′′)vx(0)

⎦

D =
⎣ ∞

0
dτ 〈vx(τ )vx(0)〉 . (5.2.16)

In the last line of Eq. (5.2.16) we introduced the coordinate τ ≡ t − t ′′.
Eq. (5.2.16) shows that we can relate the diffusion coefficient D to the inte-
gral of the velocity auto-correlation function. Eq. (5.2.16) is an example of a
Green-Kubo relation (see section 2.5.2).

One note of caution: the calculation of the diffusion coefficient is subject
to large and slowly decaying finite-size effects. Due to the hydrodynamic in-
teractions between a particle and its periodic images, the diffusion coefficient
approaches the infinite-system limit as 1/N1/3 [150–152] in 3d. In 2d, the dif-
fusion coefficient diverges.9

Illustration 3 (Diffusion coefficients). There are different ways to measure
diffusion coefficients experimentally. An interesting example is the diffu-
sion coefficient of gases adsorbed in a porous material (e.g., a zeolite or
metal-organic framework). These materials are used to separate gases or as
membranes. For these applications, it is important to have a molecular under-
standing of the diffusion of these gases in the pores.

With pulse-field-gradient NMR, one can measure the self-diffusion coeffi-
cient, Ds [153]. However, in practical applications of these materials, we are
more interested in the transport or Fick diffusion coefficient Dt . This diffusion
coefficient is often estimated from the rate at which the weight of material
increases upon adsorption. These two diffusion coefficients are not the same,
so in comparing molecular simulation results with experimental data, it is
important to be aware of these differences.

The transport or Fick diffusion coefficient Dt , is obtained by measuring
the flux, J caused by a gradient in the concentration:

J (c) ≡ −Dt(c)∇c. (5.2.17)

9 The fact that the integral in Eq. (5.2.16) may diverge does not mean that particles diffuse infinitely

fast, just that
〈
x2(t)

⎡
increases faster than linear with t .


