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Substitution of this equation in the condition of detailed balance (6.1.1), with
Eq. (6.1.2) and substitution of the desired distribution (6.2.1) gives as condition
for the acceptance rules

acc(o ! n)

acc(n ! o)
= exp{−β[U(n) − U(o)]}. (6.2.5)

It is easy to verify that the acceptance rule (6.2.3) obeys this condition.

6.3 Isobaric-isothermal ensemble

The isobaric-isothermal (constant-NPT ) ensemble is widely used in Monte
Carlo simulations. This is not surprising because most real experiments are
carried at constant pressure and temperature. An advantage of constant-NPT

simulations is that they can be used to measure the equation of state of a model
system for which the evaluation of the virial expression for the pressure is cum-
bersome. This is the case, for instance, for systems with non-pairwise additive
interactions, but also for certain models of non-spherical hard-core molecules.

Finally, it is often convenient to use constant-NPT Monte Carlo to simulate
systems in the vicinity of a first-order phase transition, because, given enough
time, a system at constant pressure is free to transform completely into the state
of lowest (Gibbs) free energy, whereas in a constant-NV T simulation the sys-
tem may be kept at a density where, in a macroscopic system, it would separate
into two bulk phases of different density, but is prevented from doing so due to
finite-size effects.

Monte Carlo simulations at constant pressure were first described by Wood
[167] in the context of a simulation study of two-dimensional hard disks. Al-
though the method introduced by Wood is elegant, it is not readily applicable
to systems with arbitrary continuous potentials. McDonald [168] was the first
to apply constant-NPT simulations to a system with continuous intermolecular
forces (a Lennard-Jones mixture), and the constant-pressure method of McDon-
ald is now widely used. It is McDonald’s method that we discuss next.

6.3.1 Statistical mechanical basis

We will derive the basic equations of constant-pressure Monte Carlo in a way
that may appear unnecessarily complicated. However, this derivation has the
advantage that the same framework can be used to introduce some of the other
non-NV T Monte Carlo methods to be discussed later. For the sake of conve-
nience we shall initially assume that we are dealing with a system of N identical
atoms. The partition function for this system is given by

Q(N,V,T ) = 1
"3NN !

∫ L

0
· · ·

∫ L

0
drN exp[−βU(rN)]. (6.3.1)
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FIGURE 6.2 Ideal gas (m particles, volume V0 − V ) can exchange volume with an N -particle
system (volume V ).

It is convenient to rewrite Eq. (6.3.1) in a slightly different way. For conve-
nience, we assume that the system is contained in a cubic box with diameter
L = V 1/3. We now define scaled coordinates sN by

si ≡ ri

L
for i = 1,2, · · · ,N. (6.3.2)

If we now insert these scaled coordinates in Eq. (6.3.1), we obtain

Q(N,V,T ) = V N

"3NN !

∫ 1

0
· · ·

∫ 1

0
dsN exp[−βU(sN ;L)]. (6.3.3)

In Eq. (6.3.3), we have written U(sN ;L) to indicate that U depends on the real
rather than the scaled distances between the particles. The expression for the
Helmholtz free energy of the system is

F(N,V,T ) = −kBT lnQ

= −kBT ln
(

V N

"3NN !

)
− kBT ln

∫
dsN exp[−βU(sN ;L)]

= F id(N,V,T ) + F ex(N,V,T ). (6.3.4)

In the last line of this equation, we have identified the two contributions to the
Helmholtz free energy as the ideal gas expression plus an excess part. We now
consider the case that the system consists of two non-interacting subsystems
with volume V and V0 − V , with V0 $ V , and V0 fixed. For the sake of visual-
ization, we show the two systems in Fig. 6.2 as two bounded systems separated
by a piston, although in reality the subsystems should be considered as com-
pletely separate and subject to periodic boundary conditions. We will refer to
the system in volume V0 − V as the reservoir. We denote the total number of
particles in the combined system by M . Of these, M −N are in volume V0 −V ,
and N are in volume V . The partition function of the combined system is simply
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the product of the partition functions of the two (non-interacting) subsystems:

Q(N,M,V,V0, T ) = Q(M,V0 − V,T )
V N

"3MN !

∫
dsNe−βU(sN ;L) (6.3.5)

= e−βFR(M,V0−V,T ) V N

"3MN !

∫
dsN e−βU(sN ;L) ,

where FR denotes the Helmholtz free energy of the reservoir. The total free
energy of this combined system is F tot = −kBT lnQ(N,M,V,V0, T ). Now
let us assume that the two subsystems can exchange volume. In that case, the
volume V of the N -particle subsystem can fluctuate. The most probable value
of V will be the one that minimizes the free energy of the combined system.
The probability density N (V ) that the N -particle subsystem has a volume V is
given by1

N (V ) = exp[−βFR(M,V0 − V,T )]V N
∫

dsN exp[−βU(sN ;L)]
∫ V0

0 dV ′ exp[−βFR(M,V0 − V ′, T )]V ′N ∫
dsN exp[−βU(sN ;L′)]

.

(6.3.6)
We now consider the limit that the size of the reservoir tends to infinity (V0 !
∞, M ! ∞, (M − N)/V0 ! ρ). In that limit, a volume change of the small
system does not change the pressure PR of the reservoir. In other words, the
large system works as a barostat for the small system. In that case, we can sim-
plify Eqs. (6.3.5) and (6.3.6). Note that in the limit V/V0 ! 0, we can write

FR(M,V0 − V,T ) = FR(M,V0, T ) + V

(
∂FR(M,V0 − V,T

∂V

)

V =0

= FR(M,V0, T ) + PRV . (6.3.7)

The combined partition function (6.3.5) can then be written as

Q(N,P,T ) ≡ βP

"3NN !

∫
dV V N exp(−βPV )

∫
dsN exp[−βU(sN ;L)],

(6.3.8)
where we have included a factor βP to make Q(N,P,T ) dimensionless (this
choice is not obvious —see footnote 1). This gives, for Eq. (6.3.6),

NN,P,T (V ) = V N exp(−βPV )
∫

dsN exp[−βU(sN ;L)]
∫ V0

0 dV ′ V ′N exp(−βPV ′)
∫

dsN exp[−βU(sN ;L′)]
. (6.3.9)

1 Actually, this step is hard to justify. The reason is that there is no natural “metric” for the vol-
ume integration. Unlike the degeneracy of energy levels or the number of particles in a system, we
cannot count volume. This problem has been addressed by several authors[173,174]. Attard [173]
approaches the problem from an information-theory point of view and concludes that the integration
variable should be lnV , rather than V . In contrast, Koper and Reiss [174] aim to reduce the problem
to one of counting the number of quantum states compatible with a given volume. They end up with
an expression that is almost identical to the one discussed here.
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In the same limit, the difference in free energy of the combined system and that
of the reservoir in the absence of the N -particle subsystem is the well-known
Gibbs free energy G:

G(N,P,T ) = −kBT lnQ(N,P,T ). (6.3.10)

Eq. (6.3.9) is the starting point for constant-NPT Monte Carlo simulations. The
idea is that the probability density to find the small system with volume V in a
particular configuration of the N atoms, as specified by sN , is given by

N (V ; sN) ∝ V N exp(−βPV ) exp[−βU(sN ;L)]
= exp{−β[U(sN,V ) + PV − Nβ−1 lnV ]}. (6.3.11)

We can now carry out Metropolis sampling on the reduced coordinates sN and
the volume V .

In the constant-NPT Monte Carlo method, V is simply treated as an addi-
tional coordinate, and trial moves in V must satisfy the same rules as trial moves
in s; in particular, we should maintain the microscopic reversibility of the under-
lying Markov chain. Let us assume that our trial moves consist of an attempted
change of the volume from V to V ′ = V + %V , where %V is a random number
uniformly distributed over the interval [−%Vmax,+%Vmax]. In the Metropolis
scheme such a random, volume-changing move will be accepted with the prob-
ability

acc(o ! n) = min
(

1, exp{−β[U(sN,V ′) − U(sN,V )

+ P(V ′ − V ) − Nβ−1 ln(V ′/V )]}
)

. (6.3.12)

Instead of attempting random changes in the volume itself, one might construct
trial moves in the box length L [168] or in the logarithm of the volume [133].
Such trial moves are equally legitimate, as long as the microscopic reversibil-
ity of the underlying Markov chain is maintained. However, such alternative
schemes result in a slightly different form for Eq. (6.3.12). The partition func-
tion (6.3.8) can be rewritten as

Q(N,P,T ) = βP

"3NN !

∫
d(lnV )V N+1 exp(−βPV )

∫
dsN exp[−βU(sN ;L)].

(6.3.13)
This equation shows that, if we perform a random walk in lnV , the probability
of finding volume V is given by

N (V ; sN) ∝ V N+1 exp(−βPV ) exp[−βU(sN ;L)]. (6.3.14)

This distribution can be sampled with the following acceptance rule:
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acc(o ! n) = min
(

1, exp{−β[U(sN,V ′) − U(sN,V )

+ P(V ′ − V ) − (N + 1)β−1 ln(V ′/V )]}
)

. (6.3.15)

6.3.2 Monte Carlo simulations

The frequency with which trial moves in the volume should be attempted de-
pends on the efficiency with which volume space is sampled. If, as before, we
use as our criterion of efficiency

sum of squares of accepted volume changes
tCPU

, (6.3.16)

then it is obvious that the frequency with which we attempt moves depends
on their cost. In general, a volume trial move will require that we recompute
all intermolecular interactions. It, therefore, is comparable in cost to carrying
out N trial moves on the molecular positions. In such cases, it is common
practice to perform one volume trial move for every cycle of positional trial
moves. Note that to guarantee detailed balance, rather than just balance, vol-
ume moves should be attempted with a probability 1/N . However, attempting
volume moves every N steps should satisfy balance, and that should also be OK.

The criteria determining the optimal acceptance of volume moves are no
different from those for particle moves.

For one class of potential energy functions, volume trial moves are very
cheap, namely those for which the total interaction energy can be written as a
sum of powers of the interatomic distances,

Un =
∑

i<j

ε(σ/rij )
n

=
∑

i<j

ε[σ/(Lsij )]n, (6.3.17)

or, possibly, a linear combination of such sums (the well-known Lennard-Jones
potential belongs to the latter category). Note that Un in Eq. (6.3.17) changes
in a trivial way if the volume is modified such that the linear dimensions of the
system change for L to L′:

Un(L
′) =

(
L

L′

)n

Un(L). (6.3.18)

Clearly, in this case, computing the probability of acceptance of a volume-
changing trial move is extremely cheap. Hence such trial moves may be at-
tempted with high frequency, for example, as frequently as particle moves. One
should be careful when using the scaling property (6.3.18) if, at the same time,


