Running

10.1 Introduction

10.1.1 About the code

In this tutorial you will find four different types of codes. First, there is python code, possibly in a
jupyter notebook. Python is a easily interpretable code and is both easily accessible to new users
as well as quick to implement. Especially, when combined with linear algebra package ‘numpy’
and plotting package ‘matplotlib’ is a powerful tool for data science. However, since it is not
compiled code, python is relatively slow. The second type of code python with ‘numba’ is a way to
perform "Just-In-Time compilation” - or JIT. numba’ reads python code and compiles it just before
running, recovering a lot of the lost efficiency, often resulting in about 10 times higher efficiency
than plain numpy. In some cases, like when running simulations, even ‘numba’ implementations
can be limiting in its efficiency. That is why, in computational chemistry, we often work with low
level codes as ¢, c++ and fortran. In this course we use c++ and therefore c++ libraries are made
accessible to python as the third type of code you will find. Lastly, you will also find external code
packages, where we don’t expect you to make alterations to the code, but we only require you to
alter input files and create analysis routines in the output files.

10.1.2 Youtube recommended videos

If you are unfamiliar or inexperienced with programming and/or python, we can recommend to
view some of the following youtube video series before the molsim-school.

Harvard CS50’s Introduction to Programming with Python | David J. Malan link
Python tutorial for beginners Corey Schafer link
Intermediate Python Programming Course freeCodeCamp.org | link
Linux/Mac Terminal Tutorial Corey Schafer link
The Shell Missing Semester | link
Absolute BEGINNER Guide to the Mac OS Terminal Percy Grunwald link
Visual Studio Code Crash Course James Q Quick link
Visual Studio Code Tutorial for Beginners Academind link
Visual Studio Code Intro & Setup Traversy Media link

165

Running
e

10.1.3 Jupyter notebooks

Jupyter notebooks are a very convenient way to work with computer ode. If you've used Math-
ematica or similar software, they take the same philosophy. You have “cells” where you can
input code, and you run each of those cells. You can also have special cells to add text, so you
can document what the notebook does. The big difference between Mathematica and Jupyter is
that, whereas Mathematica only works with its own language, Jupyter works with many different
languages. For all exercises in week one, you will use jupyter notebooks to run python, numba or
c++ library code, and in the same notebook analyse and plot your results.

10.1.4 Numba

Numba translates Python functions to optimized machine code at runtime using the industry-
standard LLVM compiler library. Numba-compiled numerical algorithms in Python can approach
the speeds of C or FORTRAN. You do not need to replace the Python interpreter, run a separate
compilation step, or even have a C/C++ compiler installed. In Numba you can just apply one of
the Numba decorators to a Python function, and Numba does the rest. Numba is designed to be
used with NumPy arrays and functions. Numba generates specialized code for different array data
types and layouts to optimize performance.

However, ‘numba’ can sometimes be slightly more difficult to work with as the error messages
are not very descriptive.

10.1.5 Conda

Conda is an open source package and environment manager. Miniconda is a Python distribution
that only includes Python, conda, their dependencies, and a few other useful packages. Mamba is
a re-implementation of the conda package manager in C++. As a package manager, you can use
conda to install, update, and remove packages and their "dependencies" (the packages they depend
upon). Package installation in conda is predictably easy because you're installing pre-compiled
binaries. As an environment manager, you can use conda to manage virtual environments. Virtual
environments allow you to maintain isolated environments with different packages and versions
of those packages.

10.1.6 molsim environment

The molsim virtual environment is a named, isolated, working copy of Python that that maintains
its own files, directories, and paths so that you can work with specific versions of libraries or Python
itself without affecting other Python projects. Virtual environments make it easy to cleanly separate
different projects and avoid problems with different dependencies and version requirements across
components.

The molsim environment is based on:

¢ python=3.12
Python is a widely used high-level, general-purpose, interpreted, dynamic programming
language. Its design philosophy emphasizes code readability, and its syntax allows pro-
grammers to express concepts in fewer lines of code than would be possible in languages

166

10.1 Introduction

such as C++ or Java. The language provides constructs intended to enable clear programs
on both a small and large scale.

¢ ipykernel
A powerful interactive Python shell and a Jupyter kernel to work with Python code in Jupyter
notebooks and other interactive frontends. Each kernel can be associated with a separate
virtual or Conda environment. By associating a Jupyter notebook with a specific kernel, you
can ensure that the code runs in the exact same environment every time.

* ipywidgets >=7.0
ipywidgets, also known as jupyter-widgets or simply widgets, are interactive HTML widgets
for Jupyter notebooks and the IPython kernel.

* jupyterlab
JupyterLab is the next-generation user interface for Project Jupyter. It offers all the familiar
building blocks of the classic Jupyter Notebook (notebook, terminal, text editor, file browser,
rich outputs, etc.) in a flexible and powerful user inteface. Eventually, JupyterLab will replace
the classic Jupyter Notebook.

* notebook >=4.2
The Jupyter notebook is a web-based notebook environment for interactive computing.

¢ matplotlib
matplotlib is a python 2D plotting library which produces publication quality figures in a
variety of hardcopy formats and interactive environments across platforms. matplotlib can
be used in Python scripts, the Python and IPython shell.

* numpy
NumPy is the fundamental package needed for scientific computing with Python.

® scipy
SciPy is a Python-based ecosystem of open-source software for mathematics, science, and

engineering.

¢ pybindll
pybind11 is a lightweight header-only library that exposes C++ types in Python and vice
versa, mainly to create Python bindings of existing C++ code. Its goals and syntax are
similar to the excellent Boost.Python library by David Abrahams: to minimize boilerplate
code in traditional extension modules by inferring type information using compile-time
introspection.

* clang
Development headers and libraries for Clang

* numba
Numba is an Open Source NumPy-aware optimizing compiler for Python sponsored by
Anaconda, Inc. It uses the remarkable LLVM compiler infrastructure to compile Python
syntax to machine code.

167

Running
e

¢ pymatgen
Pymatgen (Python Materials Genomics) is a robust, open-source Python library for materials
analysis. Highly flexible classes for the representation of Element, Site, Molecule, Structure
objects. Extensive input/output support, including support for VASP, ABINIT, CIF, Gaussian,
XYZ, and many other file formats.

* nglview
An IPython widget to interactively view molecular structures and trajectories. Utilizes the
embeddable NGL Viewer for rendering.

* ase
Atomic Simulation Environment (ASE) is a set of tools and Python modules for setting up,
manipulating, running, visualizing and analyzing atomistic simulations.

¢ black
Black is the uncompromising Python code formatter. By using it, you agree to cease control
over minutiae of hand-formatting. In return, Black gives you speed, determinism, and
freedom from pycodestyle nagging about formatting.

¢ mdanalysis
MDAnalysis is a Python library to analyze trajectories from molecular dynamics (MD) sim-
ulations. It can read and write most popular formats, and provides a flexible and fast
framework for writing custom analysis through making the underlying data easily available
as NumPy arrays.

¢ llvm-openmp
The OpenMP API supports multi-platform shared-memory parallel programming in C/C++
and Fortran.

10.1.7 ops_env environment
The ops_env environment (for the OpenPathSampling tutorial day) is based on:

¢ python=3.9
A powerful interactive Python shell and a Jupyter kernel to work with Python code in Jupyter
notebooks and other interactive frontends. Each kernel can be associated with a separate
virtual or Conda environment. By associating a Jupyter notebook with a specific kernel, you
can ensure that the code runs in the exact same environment every time.

¢ openmm=38.0.0
OpenMM is a toolkit for molecular simulation. It can be used either as a stand-alone
application for running simulations, or as a library you call from your own code. It provides
a combination of extreme flexibility (through custom forces and integrators), openness, and
high performance (especially on recent GPUs) that make it truly unique among simulation
codes. OpenMM is MIT licensed with some LGPL portions (CUDA and OpenCL platforms).

¢ openpathsampling=1.5.2
OpenPathSampling is a library for trajectory-based rare events simulations, including transi-
tion path sampling, transition interface sampling, and committor simulations. Note that for

168

10.1 Introduction
.

real-world usage, you must also install one of the powerful molecular dynamics engines that
OPS interfaces with, such as OpenMM or Gromacs. If you install those seprately, OPS will
automatically support your installation of them.

* openmmtools
openmmtools is a Python library layer that sits on top of OpenMM to provide access to a
variety of useful tools for building full-featured molecular simulation packages.

¢ mdtraj
MDTraj is a python library that allows users to manipulate molecular dynamics (MD) trajec-
tories and perform a variety of analyses, including fast RMSD, solvent accessible surface area,
hydrogen bonding, etc. A highlight of MDTraj is the wide variety of molecular dynamics
trajectory file formats which are supported, including RCSB pdb, GROMACS xtc, tng, and
trr, CHARMM / NAMD dcd, AMBER binpos, AMBER NetCDF, AMBER mdcrd, TINKER
arc and MDTraj HDF5.

* nglview
An IPython widget to interactively view molecular structures and trajectories. Utilizes the
embeddable NGL Viewer for rendering.

* jupyter
Jupyter metapackage. Install all the Jupyter components in one go. Includes ipykernel,
ipywidgets, ipython, jupyterlab, and notebook.

¢ tqdm
A Fast, Extensible Progress Bar for Python and CLL

169

Running

10.2 Running locally on macOS

10.2.1 The Homebrew package manager

Homebrew is the easiest and most flexible way to install the UNIX tools Apple didn’t include
with macOS. It can also install software not packaged for your Unix distribution without re-
quiring sudo. The Homebrew website can be found at https://brew.sh. Install homebrew using

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"

Install some packages that we will need

brew install gnuplot gcc wget pybindll

10.2.2 Install Visual Studio Code
1. Download Visual Studio Code for macOS.
2. Open the browser’s download list and locate the downloaded app or archive.

3. If archive, extract the archive contents. Use double-click for some browsers or select the
‘magnifying glass’ icon with Safari.

4. DragVisual Studio Code.app tothe Applications folder, making it available in the macOS
Launchpad.
5. Open VS Code from the Applications folder, by double clicking the icon.

6. Add VS Code to your Dock by right-clicking on the icon, located in the Dock, to bring up the
context menu and choosing Options, Keep in Dock.

If you want to run VS Code from the terminal by simply typing ‘code’, VS Code has a command,
Shell Command: Install ’code’ command in PATH, to add ‘code’ to your $PATH variable list.
After installation, launch VS Code. Now open the Command Palette (+ E@ +) and
type shell command to find the Shell Command: Install ‘code” command in PATH command. After
executing the command, restart the terminal for the new $PATH value to take effect. You'll be able
to simply type ‘code .’ in any folder to start editing files in that folder.

Note: Install the VS Code extensions listed in Table 11.1.

10.2.3 Installing conda

On the mac, install and use the homebrew package manager to install mamba

brew install micromamba
micromamba shell init --shell zsh --root-prefix=~/.micromamba

You should see

Preparing transaction: done
Verifying transaction: done
Executing transaction: done

170

10.2 Running locally on macOS
L

10.2.4 Creating the molsim virtual environment

cd Molsim-source-exercises
micromamba env create --file=env.yml
micromamba activate molsim

The molsim environment sets the python version to 3.12 (3.13 does not work yet).

10.2.5 Install the molsim package

cd Molsim-source-exercises
micromamba activate molsim
pip install

The output should be

Successfully built molsim
Installing collected packages: molsim
Successfully installed molsim-1.0.0

10.2.6 Running the notebooks

Now that we have created the environment we can test this by running it on notebooks. Since
we run the notebooks from the carbon server, we should first make sure that we connect to the
notebook correctly. A jupyter notebook is very similar to an html page and has an address a
browser can reach. There are two ways to connect to this jupyter notebook.

There are two ways of running the notebooks:

1. Using Visual Code

micromamba activate molsim
cd Molsim-source-exercises
code

2. Using Jupyter Lab

micromamba activate molsim
cd Molsim-source-exercises
jupyter 1lab

171

EXPLORER

\ DAY9_EXPANDE
> .ipynb_chec}
8 1_adsorption

new
old

raspalib.cpyt

> OUTLINE
> TIMELINE

EXPLORER

v oave_.. [} B3
> .ipynb_checkpoints
1_adsorption.ipynb

Select a Python Environment

=+ Create Python Environment

base (Python 3.9.5) ~/Research/Codes/cctbx_project/mc3/bin/python
molsim (Python 3.12.8) ~/.mamba/envs/molsim/bin/python

Python 3.12.7 [usr/local/bin/python3.12

Python 3.13.1 fusr/local/bin/python3

Python 3.9.6 fusr/bin/python3

view.add_spacefill()
view

from raspalib import int3, double3,
import sys

import numpy as

import matplotlib.pyplot as
from tqdm.notebook import , tqdm

atomTypes =

[PseudoAtom(= "Cul",

O day9_ExpandedEnsembles

@ 1_adsorption.ipynb @
g #
+ Code

> view

1_adsorption.ipynb

+ Markdown | [» RunAll 'O Restart

raspalib.cpython-31...

> OUTLINE
> TIMELINE
X ®0AO0 %o

239s

frameworkType = True,

Running

i =N
& o -

Conda Env L Select Kernel

Global Env

pecies, coords)
:sentation=False)

Python

random, PseudoAtom, VDWParameters, Al

mass = 63.

Cell‘1 of8 0Q

i =R
& o -

L molsim (Python 3.12.8)

D>r Dy B - @

Python

Spaces: 2 Cell2of8 0 {}

(b) Example of NGLview to view atomic sytructures.

Figure 10.1: Running VC Code in macOS

172

10.3 Running locally on Linux

10.3 Running locally on Linux

Instructions are for Debian-based linux systems like Ubuntu.

10.3.1 Install required and useful linux packages

Install packages that we will need:

sudo apt install bzip2 wget gpg curl git build-essential
sudo apt install gnuplot-qt pybindll-dev

Install micromamba using the following procedure:

wget https://github.com/mamba-org/micromamba-releases/releases/latest/
— download/micromamba-linux-64.tar.bz2

bunzip2 micromamba-linux-64.tar.bz2

tar -xvf micromamba-linux-64.tar

./bin/micromamba shell init -s bash --root-prefix=~/.micromamba

source ~/.bashrc

10.3.2 Install Visual Studio Code

sudo apt-get install wget gpg

wget -gO- https://packages.microsoft.com/keys/microsoft.asc | gpg
— --dearmor > packages.microsoft.gpg

sudo install -D -o root -g root -m 644 packages.microsoft.gpg /etc/apt/
— keyrings/packages.microsoft.gpg

echo "deb [arch=amd64,arm64,armhf signed-by=/etc/apt/keyrings/packages.
— microsoft.gpg] https://packages.microsoft.com/repos/code stable
— main" |sudo tee /etc/apt/sources.list.d/vscode.list > /dev/null

rm -f packages.microsoft.gpg

sudo apt install apt-transport-https

sudo apt update

sudo apt install code

Note: Install the VS Code extensions listed in Table 11.1.

10.3.3 Creating the molsim virtual environment

cd Molsim-source-exercises
micromamba env create --file=env.yml
micromamba activate molsim

The molsim environment sets the python version to 3.12 (3.13 does not work yet), add some
package channels to locate the packages and install de dependencies: ipykernel, jupyterlab,
matplotlib, numpy, scipy, pybindl1l, clang, numba, pymatgen, notebook, ipywidgets, nglview,
and ase.

173

Running

10.3.4 Install the molsim package

cd Molsim-source-exercises
micromamba activate molsim
pip install

The output should be

Successfully built molsim
Installing collected packages: molsim
Successfully installed molsim-1.0.0

10.3.5 Running the notebooks

Now that we have created the environment we can test this by running it on notebooks. Since
we run the notebooks from the carbon server, we should first make sure that we connect to the
notebook correctly. A jupyter notebook is very similar to an html page and has an address a
browser can reach. There are two ways to connect to this jupyter notebook.

There are two ways of running the notebooks:

1. Using Visual Code

micromamba activate molsim
cd Molsim-source-exercises
code

2. Using Jupyter Lab

micromamba activate molsim
cd Molsim-source-exercises
jupyter 1lab

174

10.3 Running locally on Linux

EXeivise 1. niseiuviyucicuun ni uic wiand-Canonical
Ensemble

Introduction

(b) Example of NGLview to view atomic structures.

Figure 10.2: Running VC Code in linux

175

Running

10.4 Running locally on Windows

10.4.1 Requirements

¢ Minimum windows 10 version is the Anniversary Update (Version 1607),

® 64-bit version of Windows 10

10.4.2 Turn on Developer Mode (not needed on recent versions)

Go to “Start menu”

Goto “Settings”

Search for “developer settings”

Turn on “Developer Mode”

10.4.3 Install Windows Subsystem for Linux (WSL)

The procedure of installing WSL depends on whether the computer has a CPU with Hyper-V
Virtualization support or not:

¢ Computers that do not have a CPU with Hyper-V Virtualization support are only capable of
running WSLI.
- Go to “Control Panel”
- Goto “Programs” and “Program and Features”
— Goto “Turn Windows features on or off”
- Select “Windows Subsystem for Linux”

— Reboot if required
Open a powershell and run
wsl --set-default-version 1

¢ Computers that have a CPU with Hyper-V Virtualization support are capable of running

WSL2. WSL 2 is a major overhaul of the underlying architecture and uses virtualization
technology and a Linux kernel to enable new features. WSL 2 is faster, more versatile,
and uses a real Linux kernel. The primary goals of this update are to increase file system
performance and add full system call compatibility. WSL 2 is only available in Windows 10,
Version 1903, Build 18362 or higher.

- Go to “Control Panel”

- Goto “Programs” and “Program and Features”

- Goto “Turn Windows features on or off”

- Select “Windows Subsystem for Linux”

176

10.4 Running locally on Windows

L
- Select “Virtual Machine Platform”
"Enables platform support for virtual machines" and is required for WSL2.

— Select “Hyper-V”
A computer with Hyper-V Virtualization support is required for WSL2.

- Reboot if required

Open a powershell and run

wsl --set-default-version 2

10.4.4 Install Ubuntu 24 in WSL

Install the Ubuntu linux distribution in WSL by entering in a windows console/powershell:
wsl --install -d ubuntu

Once installation is complete, you will be prompted to create a new user account (and its password).
Creating your Linux user is the first step in setting up a new Linux distribution on WSL. The
first user account you create is automatically configured with a few special attributes:

1. Itis your default user —it signs-in automatically on launch.
2. Itis Linux administrator (a member of the sudo group) by default.

Each Linux distribution running on the Windows Subsystem for Linux has its own Linux user
accounts and passwords. You will have to configure a Linux user account any time you add a
distribution, reinstall, or reset. Linux user accounts are not only independent per distribution,
they are also independent from your Windows user account.

The linux account does not have to be the same as your Windows account.

* Enter a username in the required field and press Enter (you can not use the username
“admin”)

¢ Enter a password (twice)

Update the distribution and install some required packages

sudo apt-get update

sudo apt-get upgrade

sudo apt install bzip2 wget gpg curl git build-essential
sudo apt install gnuplot-qt pybindll-dev

wget https://github.com/mamba-org/micromamba-releases/releases/latest/
— download/micromamba-linux-64.tar.bz2

bunzip2 micromamba-linux-64.tar.bz2

tar -xvf micromamba-linux-64.tar

./bin/micromamba shell init -s bash --root-prefix=~/.micromamba

source ~/.bashrc

177

Running
e

10.4.5 Install Visual Studio Code
¢ Download the Visual Studio Code installer for Windows.

* Once it is downloaded, run the installer (VSCodeUserSetup-version.exe). This will only take
a minute.

* By default, VS Code is installed under
C:\Users\{Username}\AppData\Local\Programs\Microsoft VS Code.

Setup will add Visual Studio Code to your %PATH%, so from the console you can type ‘code .’ to
open VS Code on that folder. You will need to restart your console after the installation for the
change to the %PATH% environmental variable to take effect.

Note: Install the VS Code extensions listed in Table 11.1.

10.4.6 Creating the molsim virtual environment

Open the Ubuntu app and execute the following commands in the linux terminal

cd Molsim-source-exercises
micromamba env create --file=env.yml
micromamba activate molsim

The molsim environment sets the python version to 3.12 (3.13 does not work yet), add some
package channels to locate the packages and install de dependencies: ipykernel, jupyterlab,
matplotlib, numpy, scipy, pybindll, clang, numba, pymatgen, notebook, ipywidgets, nglview,
and ase.

10.4.7 Install the molsim package

Open the Ubuntu app and execute the following commands in the linux terminal

cd Molsim-source-exercises
micromamba activate molsim
pip install

The output should be

Successfully built molsim
Installing collected packages: molsim
Successfully installed molsim-1.0.0

10.4.8 How to access your files?
The windows files are accessible from WSL at
/mnt/c/Users/<username>

Any change made from the linux side will immediately show up in windows. Note that from the
terminal you can open a file explorer using the command (note the back-ticks around the wslpath
command):

178

10.4 Running locally on Windows

nterpreter

OPEN EDITORS
n.ipy.
DAYS_ EXPANDEDENSEMS.

amework

t (molsim’: conda)

¥

pymatgen. core Lattice, Structure

TERMINAL

OUTLINE

TIMELINE
> WSL:Ubuntu §2 main* < Python 3.12.8 64-bit (molsim™: conda) ® 0 A 0

- B Osean

1_adsorptionipynb @
OPEN EDITORS 1 UNSAVED
. 1 n.ipy. b
DAYS_EXPANDEDENSEME.
ipynb_checkpoint

raspalib
ield, s:
OUTLINE
TIMELINE

5 WSL: Ubuntu ~ §# main* O Python 3.12.8 64-bit (molsim: conda) ® 0 A0

LY

(b) Example of NGLview to view atomic sytructures.

Figure 10.3: Running VC Code in Windows

179

Running
|
explorer.exe ‘wslpath -w "$PWD"

When you access files on your Windows file-system from within Bash, it will honor the NT
file-system behaviors (e.g. case-insensitivity), permissions, etc. so you can easily access the same
files using both Windows tools and Bash tools without having to copy files back and forth between

file-systems.

180

10.5 Test notebook

10.5 Test notebook

In directory ‘day®_system_test’ you will find a notebook "test.ipynb’ to test the correct installa-
tion of the software. The following commands in the unix terminal

micromamba activate molsim
cd day®_system_test
code

should open Visual Studio Code. Click on Select Kernel and select the molsim kernel.

F moisim (Pythan 312.8) . micromambafensimotembisithe Recommended

Spacezid Colfet21 O i)

Figure 10.4: Testing test.ipynb notebook in Visual Studio Code.

Next, click on Run All. There should not be any errors. The output should look like:

TasLE 0
Spoces:4 LF Celdct21 O i) Spocesi4 LF CelGer21 0O i

(a) Matplotlib (b) NGLView

Figure 10.5: Testing matplotlib and NGLView used in the test.ipynb notebook in Visual Studio
Code.

Any errors on the from molsim import MonteCarlo line, means you forgot the install step

cd Molsim-source-exercises
pip install

181

Running

10.6 FAQ

10.6.1 macOS: brew install micromamba gives ‘do not provide support for this
old version’

Solution: use ‘brew install miniconda’.
Note: instead of ‘micromamba’, use the command 'conda’.

Does VS Code run on Apple silicon machines?

Yes, VS Code supports macOS Arm64 builds that can run on Macs with the Apple silicon chipsets.
You can install the Universal build, which includes both Intel and Apple silicon builds, or one of
the platform specific builds.

WSL Ubuntu stuck on "Installing, this may take a few minutes"

After a few minutes, the ubuntu app can be opened. However, WSL did not create a default user,
and the terminal opens with user root.

adduser <username>
adduser <username> sudo
ubuntu.exe config --default-user <username>

and restart the Ubuntu app.

WSL ‘code .’ command returning error ".../bin/code not found"

* Open VS Code on Windows

* Open Extensions and then search on WSL

It should say the extension needs to be reloaded - go ahead and reload it Close VS code on Windows,
and type code . in the linux terminal and this time it should launch.

Removing the molsim environment

You can remove the molsim conda environment with

micromamba env remove --name molsim

Removing the conda environment

On the mac

brew remove micromamba

"The kernel ‘'molsim (Python 3.12.8)" died"

Can be caused by running out of memory.

182

10.6 FAQ

VSCode does not properly load env vars for environment created with micromamba
executable

¢ In VSCode open your command palette — Ctr1+Shift+P for linux and windows, Ctr1+Option+P
for mac by default

e Look for Python: Select Interpreter In Select Interpreter
choose Enter interpreter path...

¢ Enter the path ~/.micromamba.
¢ In the virtual environment folder choose
molsim (Python 3.12.8) ~/.micromamba/envs/molsim/bin/python
Visual Studio Code: Could not render content for ’application/vnd.jupyter.widget-
view+json’

Update the Jupyter Notebook Renderer extensionto Switch to Pre-Release Version.

Visual Studio Code truncates the output cells

Click at the bottom of the output cell on View as scrollable element.

183

