Optical methods in chemistry
or
Photon tools for chemical sciences

Session 9:



Course layout — contents overview and general structure

e Introduction and ray optics

e \Wave optics

® Beams

e From cavities to lasers

e More lasers and optical tweezers

e From diffraction and Fourier optics
e Microscopy

e Spectroscopy

e Electromagnetic optics

e Absorption, dispersion, and non-linear optics
e Ultrafast lasers

e Introduction to x-rays

e X-ray diffraction and spectroscopy

e Summary

Today: Going back to some basics.

Next week: Non-linear optics




Recap: Ray optics and refraction and reflection me/ s pri e
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So far we have done well: Fourier optics, beam optics, lasers...

The principle of STED microscopy

Regular optical
microscope

&=

Exciting laser
beam

In a regular optical microscope,
the contours of a mitochondrion
can be distinguished, but the
resolution can never get better
than 0.2 micrometres.

Exciting laser
beam

STED microscope

1

Quenching laser
beam

In a STED microscope, an
annular laser beam quenches
all fluorescence except that in
a nanometre-sized volume.

3 The final image gets a
resolution that is much
better than 0.2
micrometre.

The laser beams scan over the
sample. Since scientists know
exactly where the beam hits the
sample, they can use that informa-
tion to render the image at a much
higher resolution.

I (hooc=p—




€ en

'/_-. . . . .
Even trapping of particles with photons (particle character)
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Some boundary conditions:

e Optically thicker sample in optically

thinner medium
/ * Transparent sample, i.e., negligible
scattering and reflection compared
/ to transmission
Process:
—) I dima =8 * Rays are refracted, leading to
ZL«- n,L momentum change_ |
e Action equals reaction, sphere is
L/L pushed ............ wards
e With equal illumination there is......
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But we are missing something: details of interaction with matter! /em hvs L4 D
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Welcome to EM description of light! &
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James Maxwell
1831 -1879

Familiar wave equation:
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Boundary conditions at interfaces

Two dielectric media Dielectric and conducting media
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Electromagnetic in dielectric media

General 1
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This leads to the following Maxwell and wave equations wave equations
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A note on wavefronts
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Back to optical tweezers: Now small particles compared to wavelength

Lorentz force on dipole
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Trapping condition in e-m description

288 OPTICS LETTERS / Vol. 11, No.5 / May 1986

Observation of a single-beam gradient force optical trap for

dielectric particles M % .C /0’2,_ / o
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Optical tweezers in biology (example, Scientific American)
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Laser Scissors and Tweeze

by Michael W. Berns

POLARITY OF T CELLS is borne out in

studies made possible by laser tweezers. B Ref: Scientific American,
cells, which provoke calcium release by T April 1998, page 62 onwards
cells, were carefully positioned alongside ’

T cells using tweezers. Positioning of the

B cell at one end of a quiescent T cell eli-

cited no change; a fluorescent red stain in

the T cell remained red (fop). But when

the B cell touched the other end of the T

cell, calcium was released, signaled by yel-

low fluorescence (bottom).

XUNBIN WEI Beckman Laser Institute
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Optical tweezers on the nanoscale

REVIEW ARTICLE

nature
nanotechnology

PUBLISHED ONLINE: 7 NOVEMBER 2013 | DOI: 10.1038/NNANO.2013.208

Optical trapping and manipulation of nanostructures

Onofrio M. Marago™, Philip H. Jones?, Pietro G. Gucciardi', Giovanni Volpe® and Andrea C. Ferrari**

Optical trapping and manipulation of micrometre-sized particles was first reported in 1970. Since then, it has been successfully
implemented in two size ranges: the subnanometre scale, where light-matter mechanical coupling enables cooling of atoms,
ions and molecules, and the micrometre scale, where the momentum transfer resulting from light scattering allows manipula-
tion of microscopic objects such as cells. But it has been difficult to apply these techniques to the intermediate — nanoscale —
range that includes structures such as quantum dots, nanowires, nanotubes, graphene and two-dimensional crystals, all of
crucial importance for nanomaterials-based applications. Recently, however, several new approaches have been developed and
demonstrated for trapping plasmonic nanoparticles, semiconductor nanowires and carbon nanostructures. Here we review the
state-of-the-art in optical trapping at the nanoscale, with an emphasis on some of the most promising advances, such as con-
trolled manipulation and assembly of individual and multiple nanostructures, force measurement with femtonewton resolution,
and biosensors.

Optical tweezers

Atom trapping Nanotweezers

Fullerenes

Layered
materials

Nanowires and

nanotubes Graphene
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More on chemistry:

S’;wh_emjsﬂ:y: Study of the relative spatial arrangement of atoms that form the structure
of molecules and their manipulation.

Example:

(A) (B) (C)
© + o+ (@ o+ Q)

Need: Control and manipulation of molec

@LUME 75, APRIL 2003
Following pages based on Stapelfeldt group work (Aarhus) as well as Colloquium: Aligning molecules with strong laser pulses
enrik Stapelfeldt
Department of Chemistry, Upiversity of Arhus, DK-8000 Arhus C, Denmark

Tamar Seideman

Steacie Institute for Molecular Sciences, National Research Council of Canada, Ottawa,
Ontario K1A OR6, Canada
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Laser alignment of molecules
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Detection scheme: Coulomb explosion imaging

* Fragment whole molecule through sudden ionization
e Use ionization laser pulse shorter than alignment pulse

* Use “imaging” spectrometers Zau S es 2

) L
) /

y/
/_\ - — j
S ’ [ f’@
< / U ¢
(s l

UMD ety mep bty geckoarh)
Givs Joers s ol Suuw velocck o Llels

21




Some data examples

I, in Helium |, in Argon
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FIG. 9. Ton images of I recorded when iodobenzene is irra-
diated by a circularly polarized, 100-fs, 8 X T0%~W/em?, 800-nm
pulse. (a) No alignment field. (b) In the presence of a linearly
polarized (vertical) alignment field with intensity 1.2
X 10'? W/cm?. The spatial orientation of the molecules is illus-
trated below the two images.
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Final note: There is also impulsive alignment
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The end.
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