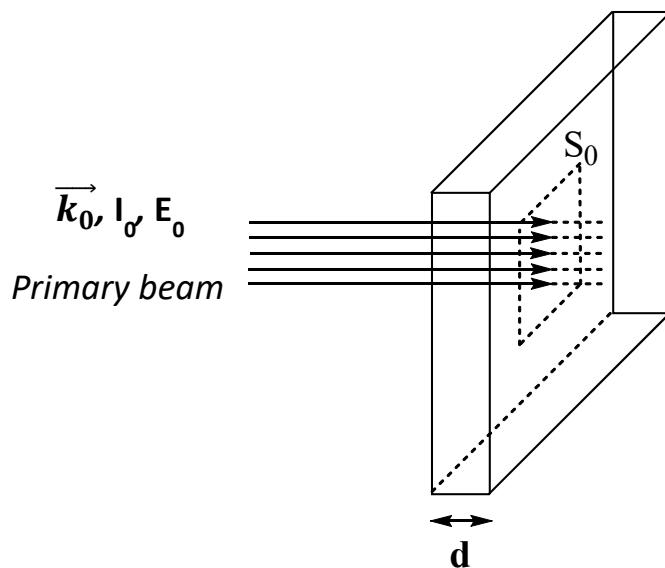


Exam of Physical and Chemical Analyses of Materials


June 2024

Duration: 3 hours

I. Interaction beam-matter

I.1. Interaction beam-matter: matter excitation

During a physical or a chemical analysis of a material, one has to take into account the interaction of a beam with the matter across a surface S_0 . The primary beam is characterized by a wave vector \vec{k}_0 , a beam energy E_0 and a beam intensity I_0 . After interacting with the matter, the primary beam is affected by the different events.

Complete the table by ticking the box(es) which correspond(s) to the parameter(s) mainly affected by the following events:

	\vec{k}_0	$\ \vec{k}_0\ $	E_0	I_0
Absorption				
Elastic scattering				
Inelastic scattering				

Complete the following table related to the use of electrons and X-Rays as primary beams:

Event	Nature of the primary beam	Type of scattering	Target
Rayleigh			
Compton			
Bremsstrahlung			
Diffraction			
Ionisation			

Indicate if the following statements are true or false:

	true	false
▪ The modulus of the wave vector is not linked to the energy of its associated particle.	<input type="checkbox"/>	<input type="checkbox"/>
▪ The cross-section for the Compton effect increases with the energy of the X-Ray photons.	<input type="checkbox"/>	<input type="checkbox"/>
▪ The Bremsstrahlung generates specific X-Rays.	<input type="checkbox"/>	<input type="checkbox"/>
▪ Diffraction occurs when the wavelength of the incoming beam and the diffracting object have almost the same size.	<input type="checkbox"/>	<input type="checkbox"/>
▪ The ionisation of a target atom always takes place at the K level.	<input type="checkbox"/>	<input type="checkbox"/>

I.2. Interaction beam-matter: matter emission

Complete the following table while considering inelastic scatterings leading to the ionisation of the matter. Indicate if the emission is directly caused by the primary beam (direct emission) or consecutive to the matter relaxation (indirect emission) by ticking the correct(s) box(es).

Primary beam	Emission type	Direct emission	Indirect emission
X-Rays			
Electrons			

In material analysis, the emission types listed above are used for either microscopic or analytical purposes.


Among the emission types listed above, highlight the one(s) which possesses/possess an energy related to the energy of the primary beam.

Among the emitted beams listed above, highlight the one(s) which possesses/possess an energy only related to the chemical nature of the emitting element.

Among the emitted beams listed above, highlight the one(s) for which it is not clearly possible to correlate its energy to neither the energy of the primary beam nor the chemical nature of the emitting element.

Indicate if the following statements are true or false:

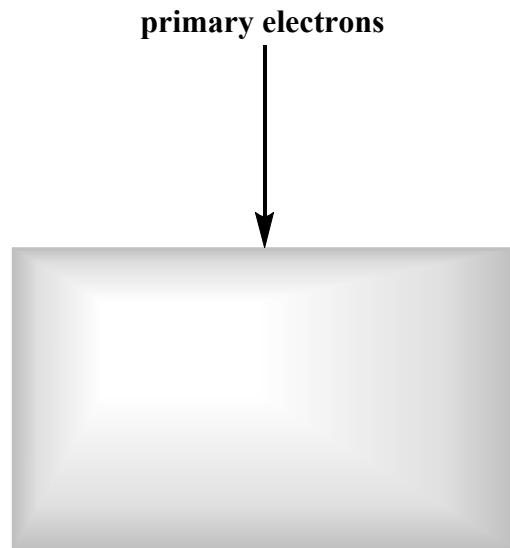
	true	false
▪ The probability of X-Ray emission is greater for light chemical elements than for heavy ones.	<input type="checkbox"/>	<input type="checkbox"/>
▪ The emission of X-Rays follows strict selection rules.	<input type="checkbox"/>	<input type="checkbox"/>
▪ Auger electrons can be produced by either an X-ray or an electron primary beam.	<input type="checkbox"/>	<input type="checkbox"/>
▪ The kinetic energy of Auger electrons is correlated to the energy of the primary beam.	<input type="checkbox"/>	<input type="checkbox"/>
▪ The emission of Auger electrons follows strict selection rules.	<input type="checkbox"/>	<input type="checkbox"/>

I.3. Interaction beam-matter: X-rays production

XRF and XPS instruments share the same primary beam, that is X-Ray photons. Using a drawing, describe how X-Rays are produced. Indicate on the drawing the mechanism(s) that produces/produce X-rays during the interaction beam-matter using a simple Bohr atom model. Draw the resulting X-ray spectrum: the intensity I of the X-Ray photons as a function of the wavelength λ .

II. Physical characterization of materials

II.1. Electron microscopy


SEM (Scheme A) and TEM (Scheme B) are both related to electron microscopy. Complete the following drawings with:

- the trajectory of the electrons in the studied sample and the specific probed sample volume
- the events recorded for each microscopy and the emission zones of these events

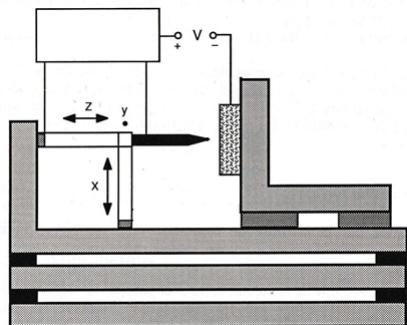
Scheme A: SEM

Scheme B: TEM

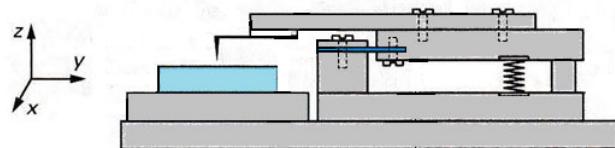
Based on the previous question, complete the following table and thick the correct answer(s).

	TEM	SEM
Typical beam energy range		
Lateral resolution range		
Scanning mode	<input type="checkbox"/> yes <input type="checkbox"/> no	<input type="checkbox"/> yes <input type="checkbox"/> no
Sample features	<input type="checkbox"/> size \leq 3 mm <input type="checkbox"/> thickness < 100 nm <input type="checkbox"/> high surface conductivity <input type="checkbox"/> flat surface <input type="checkbox"/> specific preparation	<input type="checkbox"/> size \leq 3 mm <input type="checkbox"/> thickness < 100 nm <input type="checkbox"/> high surface conductivity <input type="checkbox"/> flat surface <input type="checkbox"/> specific preparation
Sample holder	<input type="checkbox"/> conducting holder <input type="checkbox"/> no requirement	<input type="checkbox"/> conducting holder <input type="checkbox"/> no requirement
Analysed signals		
Type(s) of image		

What is the main effect while reducing the energy of the electron primary beam?


In which type of electron microscopy and for which reason(s) it may sometimes be of interest to decrease the energy of the primary electron beam?

Indicate if the following statements are true or false:


	true	false
▪ With TEM, it is possible to obtain morphological information on nanoparticles deposited on an electron transparent material.	<input type="checkbox"/>	<input type="checkbox"/>
▪ With TEM, it is possible to obtain morphological information on a bulky material.	<input type="checkbox"/>	<input type="checkbox"/>
▪ With TEM, it is possible to obtain structural information on an amorphous material.	<input type="checkbox"/>	<input type="checkbox"/>
▪ With TEM, it is possible to obtain topographical information using the method of replicas.	<input type="checkbox"/>	<input type="checkbox"/>
▪ For SEM studies, the sample must be prepared using the Formvar method.	<input type="checkbox"/>	<input type="checkbox"/>
▪ In SEM, decreasing the beam energy enhance the production of backscattered electrons.	<input type="checkbox"/>	<input type="checkbox"/>
▪ In SEM, a sample coating made of gold enhances the production of secondary electrons.	<input type="checkbox"/>	<input type="checkbox"/>
▪ In SEM, charging effects appear when the electrons at the surface of the material are correctly drained.	<input type="checkbox"/>	<input type="checkbox"/>

II.2. Scanning probe microscopy

Below are depicted the technical schemes of an AFM and a STM microscopes. Appoint each microscope to the corresponding scheme.

A:

B:

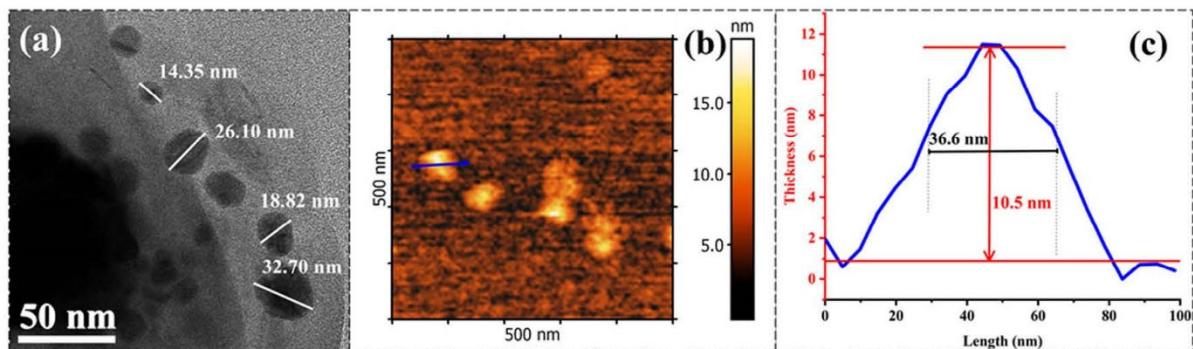
Indicate on the schemes above the location of the sample, the tip, the cantilever and the mobile arm.

Complete the following table by ticking the correct box(es):

	STM	AFM
Tip directly mounted on a mobile arm		
Tip indirectly coupled to a mobile arm		
Tip polarised against the studied material		
Setting up a tunnelling current between the tip and the studied sample		
Setting up a contact between the tip and the studied sample		
Sensitive to the forces involved between the tip and the material		
Sensitive to the electronic states of a material		
Analysis of conductors and semiconductors		
Analysis of insulators		
Lateral resolution at the Angstrom level		
Lateral resolution at the nanometre level		

What is the difference between an STM image obtained from a positive mode (the tip is positively polarised against the sample) and from a negative mode (the tip is negatively polarised against the sample)?

Which scanning probe microscopy would you choose to study a biological membrane?


With which mode are you going to operate? Base your answer on a brief description of the chosen mode while pointing out its highlights regarding the nature of a biological membrane.

Indicate if the following statements are true or false:

	true	false
▪ STM is always performed under vacuum or under inert atmosphere.	<input type="checkbox"/>	<input type="checkbox"/>
▪ The STM tip is still along the x and y axes.	<input type="checkbox"/>	<input type="checkbox"/>
▪ STM can be performed at constant height.	<input type="checkbox"/>	<input type="checkbox"/>
▪ STM can be performed at a constant tip oscillation amplitude.	<input type="checkbox"/>	<input type="checkbox"/>
▪ AFM is mostly used for morphological studies.	<input type="checkbox"/>	<input type="checkbox"/>
▪ The AFM tip is moving along the scanned surface.	<input type="checkbox"/>	<input type="checkbox"/>
▪ AFM performed in contact mode is dedicated to the study of soft surfaces.	<input type="checkbox"/>	<input type="checkbox"/>
▪ The STM tip can oscillate at a given frequency.	<input type="checkbox"/>	<input type="checkbox"/>
▪ When AFM is performed in tapping mode, the tip is in intermittent contact with the scanned surface.	<input type="checkbox"/>	<input type="checkbox"/>

II.3. TEM versus STM

STM and TEM achieve almost the same lateral resolution and then can be compared. Below are displayed the analysis of MgB₂ nanoparticles by TEM and STM:

A) TEM image of the synthetised nanoparticles, **B)** STM image of the synthetised nanoparticles, **C)** resulting topography of a given synthetised nanoparticle.

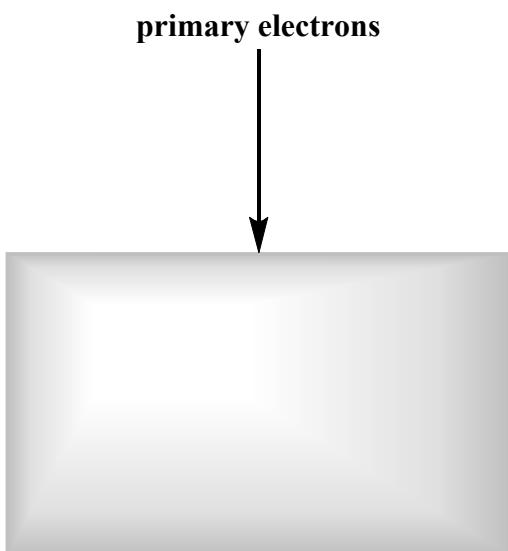
What kind of TEM image is displayed in figure **A**?

The STM image was recorded at a constant tunnelling current of 2 nA. Briefly describe this operating mode.

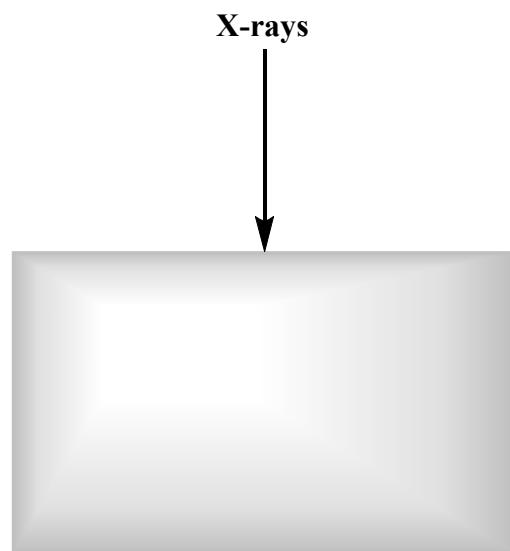
Briefly describe the TEM and STM pictures in terms of morphology and topography.

The topographic profile displayed on figure **c** relies on which technic: TEM or STM?

III. Chemical characterization of materials


III.1. General

Chemical analysis of a material are mainly carried out using electron or X-ray sources.


Complete the following drawings with:

- the trajectory of the primary beam in the studied sample and the specific probed sample volume (in both cases, the primary beam does not emerge from the sample).
- all the events related to analytical purposes and the emission zones of these events.

Scheme A

Scheme B

Indicate if the following statements are true or false:

	true	false
▪ Secondary electrons are considered for chemical analysis.	<input type="checkbox"/>	<input type="checkbox"/>
▪ Backscattered electrons are considered for chemical analysis.	<input type="checkbox"/>	<input type="checkbox"/>
▪ Useful electrons in chemical analysis are emitted from the surface of the material.	<input type="checkbox"/>	<input type="checkbox"/>
▪ For chemical analysis, the brightness of the electron source is of most importance compared to its stability.	<input type="checkbox"/>	<input type="checkbox"/>
▪ For chemical analysis Hard X-Ray sources are required.	<input type="checkbox"/>	<input type="checkbox"/>

In analytical chemistry, the proposed analytical method must meet two different features. What are these two features?

III.2. Bulk and surface analyses

Complete the following table by ticking the correct box for each chemical analysis:

	Semi-Bulk	Bulk	Surface
XRFS			
XPS			
XRMA			
AES			

Complete the following table by ticking the correct box for each chemical analysis:

	X-rays as primary beam	Electrons as primary beam
XRFS		
XPS		
XRMA		
AES		

Complete the following table by filling the boxes:

	Background signal	Recorded signal	Side signal(s)
XRFS			
XPS			
XRMA			
AES			

XRMA can be achieved thanks to an SEM or using a specific apparatus.

Give the name of this specific apparatus.

What are the differences between the electron sources of these two apparatus?

Briefly describe the spectrometer associated to each apparatus?

III.3. XRFS vs XPS

XPS and XRFS share the same exciting beam. Nevertheless, the two X-Ray sources are different.

Briefly explain the main spectral differences that exist between these two sources and why it is necessary to have these different spectral features.

Which of these two methods is the most sensitive to the chemical nature of the neighbours of an analysed element?

Which parameter represents the influence of the neighbourhood of an analysed element?

On a XPS spectrum, one can observe two different types of signals. How one can distinguish both?

One of these two technics must follow a correction process to achieve a good quantitative accuracy. Which technic is concerned by these so-called matrix effects? For the concerned technic, give the set of correction parameters that one must applied to meet a proper quantitative analysis.

TABLEAU PÉRIODIQUE DES ÉLÉMENS

<http://www.periodni.com/fr/>

GROUPE
1 IA
1 H
HYDROGÈNE
2 IA
2 Li
LITHIUM
11 22.990 12 24.305

PERIODE
1
1 1.0079
2
3 6.941 4 9.0122
2 Li
LITHIUM BERYLLIUM
11 22.990 12 24.305

MASSE ATOMIQUE RELATIVE (1)
GROUPE IUPAC
13
NOMBRE ATOMIQUE 13
SYNTHÈSE BORE

NOM DE L'ÉLÉMENT
3 Na MAGNÉSIUM 3
SODIUM MAGNÉSIUM 3
19 39.086 20 40.078
4 K CALCIUM 3
POURASSIUM CALCIUM 3
37 35.468 38 37.62
5 Rb STRONTIUM 4
RUBIDIUM STRONTIUM 4
55 132.91 56 137.33
6 Cs BARYUM 5
CÉSIUM BARYUM 5
87 (223) 88 (226)
7 Fr FRANCUM 6
FRANCUM RADIUM 6

GROUPE CAS
13
5 10.811
SYNTHÈSE BORE

NOM DE L'ÉLÉMENT
4 VB 4
SCANDIUM SCANDIUM 4
39 88.906 40 91.224
5 Rb STRONTIUM 4
RUBIDIUM STRONTIUM 4
55 132.91 56 137.33
6 Cs BARYUM 5
CÉSIUM BARYUM 5
87 (223) 88 (226)
7 Fr FRANCUM 6
FRANCUM RADIUM 6

GROUPE CAS
5 10.811
SYNTHÈSE BORE

NOM DE L'ÉLÉMENT
5 VB 5
TITANIUM TITANIUM 5
41 92.906 42 95.96
5 Rb STRONTIUM 5
RUBIDIUM STRONTIUM 5
55 132.91 56 137.33
6 Cs BARYUM 6
CÉSIUM BARYUM 6
87 (223) 88 (226)
7 Fr FRANCUM 6
FRANCUM RADIUM 6

GROUPE CAS
6 10.811
SYNTHÈSE BORE

NOM DE L'ÉLÉMENT
6 VB 6
VANADIUM VANADIUM 6
41 92.906 42 95.96
5 Rb STRONTIUM 6
RUBIDIUM STRONTIUM 6
55 132.91 56 137.33
6 Cs BARYUM 6
CÉSIUM BARYUM 6
87 (223) 88 (226)
7 Fr FRANCUM 6
FRANCUM RADIUM 6

GROUPE CAS
7 10.811
SYNTHÈSE BORE

NOM DE L'ÉLÉMENT
7 VB 7
CHROMIUM CHROMIUM 7
42 95.96 43 (98)
5 Rb STRONTIUM 7
RUBIDIUM STRONTIUM 7
55 132.91 56 137.33
6 Cs BARYUM 7
CÉSIUM BARYUM 7
87 (223) 88 (226)
7 Fr FRANCUM 7
FRANCUM RADIUM 7

GROUPE CAS
8 10.811
SYNTHÈSE BORE

NOM DE L'ÉLÉMENT
8 VB 8
MOLYBDÈNE MOLYBDÈNE 8
73 180.95 74 183.84
5 Rb STRONTIUM 8
RUBIDIUM STRONTIUM 8
55 132.91 56 137.33
6 Cs BARYUM 8
CÉSIUM BARYUM 8
87 (223) 88 (226)
7 Fr FRANCUM 8
FRANCUM RADIUM 8

GROUPE CAS
9 10.811
SYNTHÈSE BORE

NOM DE L'ÉLÉMENT
9 VB 9
TUNGSTÈNE TUNGSTÈNE 9
76 190.23 75 186.21
5 Rb STRONTIUM 9
RUBIDIUM STRONTIUM 9
55 132.91 56 137.33
6 Cs BARYUM 9
CÉSIUM BARYUM 9
87 (223) 88 (226)
7 Fr FRANCUM 9
FRANCUM RADIUM 9

GROUPE CAS
10 10.811
SYNTHÈSE BORE

NOM DE L'ÉLÉMENT
10 VB 10
RHÉNIUM RHÉNIUM 10
77 192.22 76 190.23
5 Rb STRONTIUM 10
RUBIDIUM STRONTIUM 10
55 132.91 56 137.33
6 Cs BARYUM 10
CÉSIUM BARYUM 10
87 (223) 88 (226)
7 Fr FRANCUM 10
FRANCUM RADIUM 10

GROUPE CAS
11 10.811
SYNTHÈSE BORE

NOM DE L'ÉLÉMENT
11 VB 11
OSMIUM OSMIUM 11
78 195.08 79 196.97
5 Rb STRONTIUM 11
RUBIDIUM STRONTIUM 11
55 132.91 56 137.33
6 Cs BARYUM 11
CÉSIUM BARYUM 11
87 (223) 88 (226)
7 Fr FRANCUM 11
FRANCUM RADIUM 11

GROUPE CAS
12 10.811
SYNTHÈSE BORE

NOM DE L'ÉLÉMENT
12 VB 12
RHODIUM RHODIUM 12
79 196.97 80 200.59
5 Rb STRONTIUM 12
RUBIDIUM STRONTIUM 12
55 132.91 56 137.33
6 Cs BARYUM 12
CÉSIUM BARYUM 12
87 (223) 88 (226)
7 Fr FRANCUM 12
FRANCUM RADIUM 12

GROUPE CAS
13 10.811
SYNTHÈSE BORE

NOM DE L'ÉLÉMENT
13 VB 13
RHÉNIUM RHÉNIUM 13
80 200.59 81 204.38
5 Rb STRONTIUM 13
RUBIDIUM STRONTIUM 13
55 132.91 56 137.33
6 Cs BARYUM 13
CÉSIUM BARYUM 13
87 (223) 88 (226)
7 Fr FRANCUM 13
FRANCUM RADIUM 13

GROUPE CAS
14 10.811
SYNTHÈSE BORE

NOM DE L'ÉLÉMENT
14 VB 14
RHÉNIUM RHÉNIUM 14
81 204.38 82 207.2
5 Rb STRONTIUM 14
RUBIDIUM STRONTIUM 14
55 132.91 56 137.33
6 Cs BARYUM 14
CÉSIUM BARYUM 14
87 (223) 88 (226)
7 Fr FRANCUM 14
FRANCUM RADIUM 14

GROUPE CAS
15 10.811
SYNTHÈSE BORE

NOM DE L'ÉLÉMENT
15 VB 15
RHÉNIUM RHÉNIUM 15
82 207.2 83 208.98
5 Rb STRONTIUM 15
RUBIDIUM STRONTIUM 15
55 132.91 56 137.33
6 Cs BARYUM 15
CÉSIUM BARYUM 15
87 (223) 88 (226)
7 Fr FRANCUM 15
FRANCUM RADIUM 15

GROUPE CAS
16 10.811
SYNTHÈSE BORE

NOM DE L'ÉLÉMENT
16 VB 16
RHÉNIUM RHÉNIUM 16
83 208.98 84 (209)
5 Rb STRONTIUM 16
RUBIDIUM STRONTIUM 16
55 132.91 56 137.33
6 Cs BARYUM 16
CÉSIUM BARYUM 16
87 (223) 88 (226)
7 Fr FRANCUM 16
FRANCUM RADIUM 16

GROUPE CAS
17 10.811
SYNTHÈSE BORE

NOM DE L'ÉLÉMENT
17 VB 17
RHÉNIUM RHÉNIUM 17
84 (209) 85 (210)
5 Rb STRONTIUM 17
RUBIDIUM STRONTIUM 17
55 132.91 56 137.33
6 Cs BARYUM 17
CÉSIUM BARYUM 17
87 (223) 88 (226)
7 Fr FRANCUM 17
FRANCUM RADIUM 17

GROUPE CAS
18 10.811
SYNTHÈSE BORE

NOM DE L'ÉLÉMENT
18 VB 18
RHÉNIUM RHÉNIUM 18
85 (210) 86 (222)
5 Rb STRONTIUM 18
RUBIDIUM STRONTIUM 18
55 132.91 56 137.33
6 Cs BARYUM 18
CÉSIUM BARYUM 18
87 (223) 88 (226)
7 Fr FRANCUM 18
FRANCUM RADIUM 18

GROUPE CAS
19 10.811
SYNTHÈSE BORE

NOM DE L'ÉLÉMENT
19 VB 19
RHÉNIUM RHÉNIUM 19
86 (222) 87 (224)
5 Rb STRONTIUM 19
RUBIDIUM STRONTIUM 19
55 132.91 56 137.33
6 Cs BARYUM 19
CÉSIUM BARYUM 19
87 (223) 88 (226)
7 Fr FRANCUM 19
FRANCUM RADIUM 19

GROUPE CAS
20 10.811
SYNTHÈSE BORE

NOM DE L'ÉLÉMENT
20 VB 20
RHÉNIUM RHÉNIUM 20
87 (224) 88 (225)
5 Rb STRONTIUM 20
RUBIDIUM STRONTIUM 20
55 132.91 56 137.33
6 Cs BARYUM 20
CÉSIUM BARYUM 20
87 (223) 88 (226)
7 Fr FRANCUM 20
FRANCUM RADIUM 20

GROUPE CAS
21 10.811
SYNTHÈSE BORE

NOM DE L'ÉLÉMENT
21 VB 21
RHÉNIUM RHÉNIUM 21
88 (225) 89 (226)
5 Rb STRONTIUM 21
RUBIDIUM STRONTIUM 21
55 132.91 56 137.33
6 Cs BARYUM 21
CÉSIUM BARYUM 21
87 (223) 88 (226)
7 Fr FRANCUM 21
FRANCUM RADIUM 21

GROUPE CAS
22 10.811
SYNTHÈSE BORE

NOM DE L'ÉLÉMENT
22 VB 22
RHÉNIUM RHÉNIUM 22
89 (226) 90 (227)
5 Rb STRONTIUM 22
RUBIDIUM STRONTIUM 22
55 132.91 56 137.33
6 Cs BARYUM 22
CÉSIUM BARYUM 22
87 (223) 88 (226)
7 Fr FRANCUM 22
FRANCUM RADIUM 22

GROUPE CAS
23 10.811
SYNTHÈSE BORE

NOM DE L'ÉLÉMENT
23 VB 23
RHÉNIUM RHÉNIUM 23
90 (227) 91 (231)
5 Rb STRONTIUM 23
RUBIDIUM STRONTIUM 23
55 132.91 56 137.33
6 Cs BARYUM 23
CÉSIUM BARYUM 23
87 (223) 88 (226)
7 Fr FRANCUM 23
FRANCUM RADIUM 23

GROUPE CAS
24 10.811
SYNTHÈSE BORE

NOM DE L'ÉLÉMENT
24 VB 24
RHÉNIUM RHÉNIUM 24
91 (231) 92 (238)
5 Rb STRONTIUM 24
RUBIDIUM STRONTIUM 24
55 132.91 56 137.33
6 Cs BARYUM 24
CÉSIUM BARYUM 24
87 (223) 88 (226)
7 Fr FRANCUM 24
FRANCUM RADIUM 24

GROUPE CAS
25 10.811
SYNTHÈSE BORE

NOM DE L'ÉLÉMENT
25 VB 25
RHÉNIUM RHÉNIUM 25
92 (238) 93 (238)
5 Rb STRONTIUM 25
RUBIDIUM STRONTIUM 25
55 132.91 56 137.33
6 Cs BARYUM 25
CÉSIUM BARYUM 25
87 (223) 88 (226)
7 Fr FRANCUM 25
FRANCUM RADIUM 25

GROUPE CAS
26 10.811
SYNTHÈSE BORE

NOM DE L'ÉLÉMENT
26 VB 26
RHÉNIUM RHÉNIUM 26
93 (238) 94 (237)
5 Rb STRONTIUM 26
RUBIDIUM STRONTIUM 26
55 132.91 56 137.33
6 Cs BARYUM 26
CÉSIUM BARYUM 26
87 (223) 88 (226)
7 Fr FRANCUM 26
FRANCUM RADIUM 26

GROUPE CAS
27 10.811
SYNTHÈSE BORE

NOM DE L'ÉLÉMENT
27 VB 27
RHÉNIUM RHÉNIUM 27
94 (237) 95 (244)
5 Rb STRONTIUM 27
RUBIDIUM STRONTIUM 27
55 132.91 56 137.33
6 Cs BARYUM 27
CÉSIUM BARYUM 27
87 (223) 88 (226)
7 Fr FRANCUM 27
FRANCUM RADIUM 27

GROUPE CAS
28 10.811
SYNTHÈSE BORE

NOM DE L'ÉLÉMENT
28 VB 28
RHÉNIUM RHÉNIUM 28
95 (244) 96 (243)
5 Rb STRONTIUM 28
RUBIDIUM STRONTIUM 28
55 132.91 56 137.33
6 Cs BARYUM 28
CÉSIUM BARYUM 28
87 (223) 88 (226)
7 Fr FRANCUM 28
FRANCUM RADIUM 28

GROUPE CAS
29 10.811
SYNTHÈSE BORE

NOM DE L'ÉLÉMENT
29 VB 29
RHÉNIUM RHÉNIUM 29
96 (243) 97 (247)
5 Rb STRONTIUM 29
RUBIDIUM STRONTIUM 29
55 132.91 56 137.33
6 Cs BARYUM 29
CÉSIUM BARYUM 29
87 (223) 88 (226)
7 Fr FRANCUM 29
FRANCUM RADIUM 29

GROUPE CAS
30 10.811
SYNTHÈSE BORE

NOM DE L'ÉLÉMENT
30 VB 30
RHÉNIUM RHÉNIUM 30
97 (247) 98 (247)
5 Rb STRONTIUM 30
RUBIDIUM STRONTIUM 30
55 132.91 56 137.33
6 Cs BARYUM 30
CÉSIUM BARYUM 30
87 (223) 88 (226)
7 Fr FRANCUM 30
FRANCUM RADIUM 30

GROUPE CAS
31 10.811
SYNTHÈSE BORE

NOM DE L'ÉLÉMENT
31 VB 31
RHÉNIUM RHÉNIUM 31
98 (247) 99 (251)
5 Rb STRONTIUM 31
RUBIDIUM STRONTIUM 31
55 132.91 56 137.33
6 Cs BARYUM 31
CÉSIUM BARYUM 31
87 (223) 88 (226)
7 Fr FRANCUM 31
FRANCUM RADIUM 31

GROUPE CAS
32 10.811
SYNTHÈSE BORE

NOM DE L'ÉLÉMENT
32 VB 32
RHÉNIUM RHÉNIUM 32
99 (251) 100 (257)
5 Rb STRONTIUM 32
RUBIDIUM STRONTIUM 32
55 132.91 56 137.33
6 Cs BARYUM 32
CÉSIUM BARYUM 32
87 (223) 88 (226)
7 Fr FRANCUM 32
FRANCUM RADIUM 32

GROUPE CAS
33 10.811
SYNTHÈSE BORE

NOM DE L'ÉLÉMENT
33 VB 33
RHÉNIUM RHÉNIUM 33
100 (257) 101 (258)
5 Rb STRONTIUM 33
RUBIDIUM STRONTIUM 33
55 132.91 56 137.33
6 Cs BARYUM 33
CÉSIUM BARYUM 33
87 (223) 88 (226)
7 Fr FRANCUM 33
FRANCUM RADIUM 33

GROUPE CAS
34 10.811
SYNTHÈSE BORE

NOM DE L'ÉLÉMENT
34 VB 34
RHÉNIUM RHÉNIUM 34
101 (258) 102 (259)
5 Rb STRONTIUM 34
RUBIDIUM STRONTIUM 34
55 132.91 56 137.33
6 Cs BARYUM 34
CÉSIUM BARYUM 34
87 (223) 88 (226)
7 Fr FRANCUM 34
FRANCUM RADIUM 34

GROUPE CAS
35 10.811
SYNTHÈSE BORE

NOM DE L'ÉLÉMENT
35 VB 35
RHÉNIUM RHÉNIUM 35
102 (259) 103 (262)
5 Rb STRONTIUM 35
RUBIDIUM STRONTIUM 35
55 132.91 56 137.33
6 Cs BARYUM 35
CÉSIUM BARYUM 35
87 (223) 88 (226)
7 Fr FRANCUM 35
FRANCUM RADIUM 35

GROUPE CAS
36 10.811
SYNTHÈSE BORE

NOM DE L'ÉLÉMENT
36 VB 36
RHÉNIUM RHÉNIUM 36
103 (262) 104 (265)
5 Rb STRONTIUM 36
RUBIDIUM STRONTIUM 36
55 132.91 56 137.33
6 Cs BARYUM 36
CÉSIUM BARYUM 36
87 (223) 88 (226)
7 Fr FRANCUM 36
FRANCUM RADIUM 36

GROUPE CAS
37 10.811
SYNTHÈSE BORE

NOM DE L'ÉLÉMENT
37 VB 37
RHÉNIUM RHÉNIUM 37
104 (265) 105 (268)
5 Rb STRONTIUM 37
RUBIDIUM STRONTIUM 37
55 132.91 56 137.33
6 Cs BARYUM 37
CÉSIUM BARYUM 37
87 (223) 88 (226)
7 Fr FRANCUM 37
FRANCUM RADIUM 37

GROUPE CAS
38 10.811
SYNTHÈSE BORE

NOM DE L'ÉLÉMENT
38 VB 38
RHÉNIUM RHÉNIUM 38
105 (268) 106 (271)
5 Rb STRONTIUM 38
RUBIDIUM STRONTIUM 38
55 132.91 56 137.33
6 Cs BARYUM 38
CÉSIUM BARYUM 38
87 (223) 88 (226)
7 Fr FRANCUM 38
FRANCUM RADIUM 38

GROUPE CAS
39 10.811
SYNTHÈSE BORE

NOM DE L'ÉLÉMENT
39 VB 39
RHÉNIUM RHÉNIUM 39
106 (271) 107 (272)
5 Rb STRONTIUM 39
RUBIDIUM STRONTIUM 39
55 132.91 56 137.33
6 Cs BARYUM 39
CÉSIUM BARYUM 39
87 (223) 88 (226)
7 Fr FRANCUM 39
FRANCUM RADIUM 39

GROUPE CAS
40 10.811
SYNTHÈSE BORE

NOM DE L'ÉLÉMENT
40 VB 40
RHÉNIUM RHÉNIUM 40
107 (272) 108 (277)
5 Rb STRONTIUM 40
RUBIDIUM STRONTIUM 40
55 132.91 56 137.33
6 Cs BARYUM 40
CÉSIUM BARYUM 40
87 (223) 88 (226)
7 Fr FRANCUM 40
FRANCUM RADIUM 40

GROUPE CAS
41 10.811
SYNTHÈSE BORE

NOM DE L'ÉLÉMENT
41 VB 41
RHÉNIUM RHÉNIUM 41
108 (277) 109 (276)
5 Rb STRONTIUM 41
RUBIDIUM STRONTIUM 41
55 132.91 56 137.33
6 Cs BARYUM 41
CÉSIUM BARYUM 41
87 (223) 88 (226)
7 Fr FRANCUM 41
FRANCUM RADIUM 41

GROUPE CAS
42 10.811
SYNTHÈSE BORE

NOM DE L'ÉLÉMENT
42 VB 42
RHÉNIUM RHÉNIUM 42
109 (276) 110 (281)
5 Rb STRONTIUM 42
RUBIDIUM STRONTIUM 42
55 132.91 56 137.33
6 Cs BARYUM 42
CÉSIUM BARYUM 42
87 (223) 88 (226)
7 Fr FRANCUM 42
FRANCUM RADIUM 42

GROUPE CAS
43 10.811
SYNTHÈSE BORE

NOM DE L'ÉLÉMENT
43 VB 43
RHÉNIUM RHÉNIUM 43
110 (281) 111 (286)
5 Rb STRONTIUM 43
RUBIDIUM STRONTIUM 43
55 132.91 56 137.33
6 Cs BARYUM 43
CÉSIUM BARYUM 43
87 (223) 88 (226)
7 Fr FRANCUM 43
FRANCUM RADIUM 43

GROUPE CAS
44 10.811
SYNTHÈSE BORE

NOM DE L'ÉLÉMENT
44 VB 44
RHÉNIUM RHÉNIUM 44
111 (286) 112 (285)
5 Rb STRONTIUM 44
RUBIDIUM STRONTIUM 44
55 132.91 56 137.33
6 Cs BARYUM 44
CÉSIUM BARYUM 44
87 (223) 88 (226)
7 Fr FRANCUM 44
FRANCUM RADIUM 44

GROUPE CAS
45 10.811
SYNTHÈSE BORE

NOM DE L'ÉLÉMENT
45 VB 45
RHÉNIUM RHÉNIUM 45
112 (285) 113 (284)
5 Rb STRONTIUM 45
RUBIDIUM STRONTIUM 45
55 132.91 56 137.33
6 Cs BARYUM 45
CÉSIUM BARYUM 45
87 (223) 88 (226)
7 Fr FRANCUM 45
FRANCUM RADIUM 45

GROUPE CAS
46 10.811
SYNTHÈSE BORE

NOM DE L'ÉLÉMENT
46 VB 46
RHÉNIUM RHÉNIUM 46
113 (284) 114 (287)
5