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Introduction

= The principal beam-matter interactions with matter are depicted below:
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= In material analysis, the use of X-Rays and electrons as exciting beams generally causes
the ionisation of the matter.
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= The inelastic interactions between a beam and core electrons can be described at the
atomic level as:

Q@ photo-electron or secondary electron
A

E
—e- e
X-Ray or e L2
“1_]]]]1 L1
X -

% According to the energy of the primary beam, the interactions core electron-beam
generally lead to the ionisation of the target atom.

% For X-Rays primary beams, the ejected electron is called a photo-electron.
% For electrons primary beams, the ejected electron is called a secondary electron (SE).

= The life time of such an ionised state is about 10-1¢ s. Afterwards, the matter relaxes. The
matter relaxation can lead to either X-Rays or to an Auger electrons emission.
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= Secondary electrons are produced with a widespread energy because the energy loss by
the primary electrons is not quantified.

% Before being able to leave the material, they undergo many elastic and inelastic
interactions with the surrounding matter. Secondary electrons reach the surface when
emitted from a superficial layer of thickness lower than their free mean path 1.

% In contrast with photo-electrons, one can not precisely correlate the kinetic energy of
these secondary electrons to the chemical nature of their emitting elements. There are not

used for chemical analysis.

U After several interactions, the

primary electrons loose energy and

so increase their probability to be

L involved in elastic scattering events.
£

(a) E=E0'WX (b) EO

Emission electron spectra (intensity as a function of the energy) for photo-electrons from X-rays excitation (a) and
secondary electrons from primary electrons excitation (b). 1: elastic scattering and plasmons, 2: Auger electrons, 3:
secondary electrons.



Ionised matter relaxation by X-Rays emission
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= The matter relaxation can lead to the emission of an X-Ray photon:
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% Above is gathered the emission lines for copper. W_ relates to the ionisation energies for
a level X. The notation Kal; Kf... relates to the Siegbahn notation. For a transition KL3

the emission line 1s called Ko,

% The excitation of the matter being localised at an atomic deep level, the X-Ray lines are

not affected by the chemical bonds.
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Ionised matter relaxation by Auger electrons emission

= The energy emitted by the relaxation of an ionised atom can be used to eject an Auger

electron:
Auger electron

% The energy associated to the transition L1 — K is

A
communicated to an electron L3. E

L3
% As the ionisation energy of this electron is lower — O |2
than the transition energy KLI1, this electron is L1
ejected with a noticeable kinetic energy.
% The Auger transition is called KL1L3. K
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= For a transition XYY’, the kinetic energy of the Auger electron depends on the energy of
the XY transition and on the ionisation energy of the Auger electron Y’.

% For a XYY’ transition, when the Auger electron does not undergo any interaction with
the surrounding matter, its characteristic energy for an element of atomic number Z is:

Ec,(Z)=W,(Z)- W, (Z)-W,.(Z+1)

% W, (Z+1) is introduced for tacking into account that the Auger electron is ejected from
an 1onised atom.

% As for the photo-electron, to leave the material, the Auger electron must also counteract
the potential barrier @ of the surface corresponding to an extraction energy e®. If no
interaction occurs between the Auger electron and the surrounding matter, its kinetic energy
will be:

Ec=W,(Z)-W,(Z)-W,.(Z+1)-ed

% After ejection, the Auger electron must migrate from the bulk material to its surface.
During this travelling, it can bump other electrons through elastic and inelastic interactions
with the surrounding matter. In this case, the detected Auger electron will have a kinetic
energy lower than Ec.
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= The selection rules for the Auger electron emission are the following:
G A transition XYY is allowed if Wy, < Wy - Wy E¢, > 0.

% Some Auger transition with An = 0 are allowed like L1L2M1 or L1L3M1 for example.
These transitions are named Koster — Kronig transitions.

% For particular atoms, the Ec, > 0 condition can not be satisfied. So some transitions like
L1L3MS are forbidden for atoms with an atomic number Z included in the range: 40 < Z <
73.

% Experimental data showed that Auger transitions caused by the primary ionisation of s
electrons are favoured.

& The number of possible XYY’ transitions increases a lot with the atomic number of an
element that complicates the Auger spectra and so their interpretations. Below is given a
short list of possible Auger transitions: KL1L1, KL1L2, KL1L3, KL2L2, KL2L3,
KL3L3, KL1M1,..., LIMIML1,...

Competition between Auger electrons and X-Rays emission

= The Auger electrons and X-Rays emissions are in competition, depending on the atomic
number of the emitting element.



Chemical analysis: AES

= The intensities of the Auger transitions are complementary to the X-Ray transition ones
and depend on the atomic number of the considered element:

P
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______________________________ i Auger
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X-Rays
% v is the rate of ionisation of the
A primary energy level, Py, and Py
Auger electrons Ray ar¢ related to the probabilities of
} . : , these emissions.
25 50 75 Z

Y The Auger effect disturbs the X-Ray emissions: modification of the relative intensity of
the lines of different series, displacement of the energy levels which causes the appearance
of satellites lines.

% The presence of Auger transitions broadens the X-Ray lines, especially for light
elements.

% The chemical shift for Auger transitions is more important that for X-Ray transitions. It
1s more pronounced for light elements and for transitions in which valence band electrons

are involved.
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Electron source and electron-sample interaction
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Spectrometers
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A schematic diagram of the retarding field analyzer
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A schematic diagram of the cylindrical mirror analyzer
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A schematic diagram of the concentric hemispherical analyzer

= A channetron detector 1s the most common detector in
AES instruments.

Y In this scheme, A stands for the amplification
coefficient.
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AES spectrum
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produced by the interaction of a nearly monochromatic electron beam with a solid

= The Auger transitions of choice for the different elements can be summarized as
follows: 3 < Z < 14 (KLL transitions), 14 < Z < 40 (LMM transitions), 40 < Z < 82
(MNN transitions), and 82 < Z (NOO transitions).
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Effect of chemical environment on the KLL Auger spectra of carbon. The shift in the Auger

peak energy for diamond is due to charging of the insulator.
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AES depth profile analysis of tin plated can:
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