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Broadband proton-decoupled proton spectra†
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We present a new method for recording broadband proton-decoupled proton spectra with absorption
mode lineshapes and substantially correct integrals; in both these respects, the new method has significant
advantages over conventional J-spectroscopy. In our approach, the decoupled spectrum is simply obtained
from the 45° projection of the diagonal-peak multiplets of an anti z-COSY spectrum. This method is
straightforward to apply, and does not require any unusual data processing. However, there is a significant
reduction in sensitivity when compared to a conventional proton spectrum. The method is demonstrated
for typical medium-sized molecules, and it is also shown how such a decoupled spectrum can be used
to advantage in measurements of diffusion constants (DOSY), the measurement of relaxation parameters,
and the analysis of complex mixtures. Copyright  2007 John Wiley & Sons, Ltd.
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INTRODUCTION

In this paper, we describe a new method for generating
proton-decoupled proton spectra – that is, proton spectra
that contain a single line for each chemically distinct
site, not split by the effects of scalar couplings. Our
method is distinguished by the fact that the decoupled
spectra have absorption mode lineshapes and retain the
correct integrals, i.e. the integral is proportional to the
number of equivalent protons. Furthermore, the method
is experimentally straightforward and does not require
any unusual data processing. We therefore believe that it
offers a number of significant advantages over the existing
approaches for obtaining proton-decoupled proton spectra.

The simplification resulting from the elimination of
multiplet structures may be advantageous in a number of
areas, such as in the analysis of complex mixtures, which arise
from studies of metabolism. Any quantitative measurements,
such as the measurement of relaxation rate constants and
diffusion constants, will also benefit from the reduction
in overlap, which is a feature of proton-decoupled proton
spectra.

The new method utilizes a two-dimensional anti z-COSY
spectrum.1 It will be shown that a 45° projection of the
diagonal-peak multiplets of such a spectrum gives the
required absorption mode decoupled spectrum. As the pulse
sequence for z-COSY includes two small flip angle pulses,
there is a loss in sensitivity when compared to a simple proton
spectrum. A further problem is that the presence of strong
coupling gives rise to unwanted peaks in the projection,
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in a way analogous to those found in two-dimensional J-
spectra.2 – 4

OUTLINE OF THE METHOD

The pulse sequences for the z-COSY and anti z-COSY exper-
iments are shown in Fig. 1.1 Both experiments give spectra
that are closely related to the simple COSY spectrum,5,6 with
cross-peak multiplets indicating the presence of scalar cou-
plings, and a set of diagonal-peak multiplets arranged along
the 45° diagonal. In COSY, the mixing period is a simple
90° pulse, but in z-COSY the mixing period is the element
ˇ � tz � ˇ, where ˇ is a small flip angle pulse, and where
only population terms are retained during the short delay tz.
The use of this mixing period gives rise to reduced cross-
and diagonal-peak multiplets. In such multiplets, the only
peaks that are seen are those in which the spin states of any
passive spins remain the same during t1 and t2. This key idea
is illustrated in Fig. 2, which shows a typical diagonal- and
cross-peak multiplet for a three-spin system. Each line has
been labelled with the spin states of the passive spins, and
we note that only those with the same spin states in t1/ω1

and t2/ω2 are present. For the diagonal-peak multiplet, this
means that all the peaks lie along the 45° diagonal.

In the case of anti z-COSY, the mixing sequence is
�ˇ C �� � tz � ˇ. The addition of the 180° pulse at the
beginning means that all the spin states are flipped, so this
time the only peaks that appear in the multiplet are those
with opposite spin states in t1/ω1 and t2/ω2. As a result, as
shown in Fig. 2 (c), the peaks in the diagonal-peak multiplet
lie on a line which is perpendicular to the main diagonal.
If we project this diagonal-peak multiplet onto the main
diagonal, we obtain a single peak at the chemical shift; this
is the basis of our method.

Copyright  2007 John Wiley & Sons, Ltd.



Broadband proton-decoupled proton spectra 297

RF

+1
0

−1

RF
t1 t2tz

tz

tz

t2

t2

t1

t1

(a)

(b)

(c)

RF
G

p

β β

β

β β

180°+β

Figure 1. Pulse sequences for: (a) z-COSY, (b) anti z-COSY,
and (c) anti z-COSY with zero-quantum suppression. All three
sequences follow the same coherence transfer pathway (CTP),
which is shown at the bottom. The mixing period for z-COSY
comprises a z-filter in which both pulses have flip angle ˇ,
where ˇ is small. The two mixing pulses for anti z-COSY have
flip angles of 180° C ˇ and ˇ. The anti z-COSY sequence
shown in (c) incorporates the swept-frequency 180° pulse
(indicated by the open rectangle with the diagonal stroke) and
gradient combination for the suppression of zero-quantum
coherence present during tz. The second gradient is a
homospoil that is used to dephase all coherences with nonzero
order. Note that in this experiment, both mixing pulses have
flip angle ˇ. All pulses are of phase x and, unless otherwise
indicated, the filled rectangles represent 90° pulses.

The beauty of this approach is that the diagonal peaks of
the anti z-COSY spectrum are all in absorption mode, so the
projection is also in the absorption mode. Furthermore, as the
number of individual peaks in the diagonal-peak multiplet is
the same as in the regular multiplet, the integral of the peak in
the projection is the same as for the corresponding multiplet,
apart from a simple scaling factor due to the mixing period,
which is common to all multiplets. As a result, the projection

will give reliable integrals – we can describe the projection
as being quantitative.

In the past, z-COSY spectra have been bedeviled by phase
distortions resulting from the presence of zero-quantum
coherence present during tz. However, it has recently been
shown that these unwanted coherences can be suppressed
effectively and conveniently using the combination of a
swept-frequency 180° pulse and a modest gradient.7,8 Such a
combination dephases the zero-quantum coherence in a way
analogous to the dephasing of other coherences by gradi-
ents. Figure 1 (c) shows the pulse sequence for anti z-COSY
which incorporates this zero-quantum dephasing method.
Note that on account of the swept 180° pulse, the additional
180° pulse used in the mixing sequence of (b) is not needed
in sequence (c).

There are a number of issues that need to be addressed if
the projection method is to be a practical approach. The first is
that, as the projection is at 45°, the linewidth in the projection
is an average of the linewidths in the ω1 and ω2 dimensions.
It is therefore essential to acquire the spectra with high
resolution in the ω1 dimension, implying that t1 must extend
to quite long times. For a typical ω1 spectral width, this need
for a large tmax

1 means that many increments of t1 must be
recorded. In cases where the sensitivity is high, this may lead
to an unnecessarily long minimum experiment time.

It would therefore be advantageous to reduce the number
of t1 increments by reducing the ω1 spectral width. Inevitably,
this will lead to a folding in the ω1 dimension, but it will be
shown that such folding does not cause significant difficulties
in obtaining the required projection.

The second point that needs to be addressed is the
presence of cross-peak multiplets, which are inevitably
generated by the mixing period. These multiplets must
not be included in the projection, as doing so will lead
to unwanted anti-phase multiplets in the projection. If such
cross-peak multiplets lie well away from the main diagonal,
then it is easy to exclude them from the projection. It will be
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Figure 2. Schematic diagonal- and cross-peak multiplets expected in the z-COSY and anti z-COSY spectra of a three-spin system.
Shown in (a) is the cross-peak multiplet between spins one and two in the z-COSY spectrum; the spin states of the passive spins are
indicated in each dimension. The diagonal-peak multiplet of spin one in the z-COSY spectrum is shown in (b). The only peaks that
are present are those in which the spin states of the passive spins are the same in both dimensions. As a result, the peaks lie along
the 45° diagonal. In contrast, the only peaks that are observed in the diagonal-peak multiplet of the anti z-COSY spectrum, which is
shown in (c), are those in which the passive spins have the opposite spin state in each dimension; the peaks therefore lie along a line
that is perpendicular to the diagonal. It is assumed that J12 > J13 D J23. Filled circles represent peaks of positive intensity, and
unfilled circles represent peaks of negative intensity.
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298 A. J. Pell, R. A. E. Edden and J. Keeler

shown that if these peaks have been folded in ω1, as a result
of using a reduced spectral width in that dimension, they
acquire symmetry properties, which means that they can be
eliminated by a simple data processing method. However,
if the cross-peak multiplets lie close to the diagonal, and
are not folded, it may be not possible to exclude them
from the projection. Of course, cross peaks that lie close
to the diagonal are ones in which the difference of the
offsets of the two spins is becoming comparable to the scalar
coupling, which is exactly the condition for strong coupling.
So, the contribution of these cross peaks to the projection
is analogous to the presence of ‘strong coupling artifacts’ in
two-dimensional J-spectra.2 – 4

THEORETICAL ANALYSIS

In this section, we will analyze the various stages used
to generate the required projection. It is sufficient to use
a three-spin system as the example, as this demonstrates
all the relevant properties. Since we are interested in
multiplet structures it is convenient to use single-element
basis operators as they have a one-to-one correspondence
with the lines in the spectrum.

Anti z-COSY
The initial state is chosen to be equilibrium magnetization
on spin one. The 90° pulse generates in-phase magnetization
along the �y-axis, �OI1y, which can be expressed in single-
element operators as

1
2

i�OI1COI2˛
OI3˛ C OI1COI2˛

OI3ˇ C OI1COI2ˇ
OI3˛ C OI1COI2ˇ

OI3ˇ�

� 1
2

i�OI1�OI2˛
OI3˛ C OI1�OI2˛

OI3ˇ C OI1�OI2ˇ
OI3˛ C OI1�OI2ˇ

OI3ˇ�

The terms containing OI1C will produce the echo (N-type)
spectrum, while those containing OI1� will produce the anti-
echo (P-type) spectrum.

Each of these terms evolves at its characteristic frequency
during t1 to give:

1
2

i�OI1šOI2˛
OI3˛

1
2

i�OI1šOI2˛
OI3˛ exp[Ýi��1 C �J12 C �J13�t1]

1
2

i�OI1šOI2˛
OI3ˇ

1
2

i�OI1šOI2˛
OI3ˇ exp[Ýi��1 C �J12 � �J13�t1]

OHfreet1���!
1
2

i�OI1šOI2ˇ
OI3˛

1
2

i�OI1šOI2ˇ
OI3˛ exp[Ýi��1 � �J12 C �J13�t1]

1
2

i�OI1šOI2ˇ
OI3ˇ

1
2

i�OI1šOI2ˇ
OI3ˇ exp[Ýi��1 � �J12 � �J13�t1]

where � is equal to C1 for the echo and �1 for the anti-echo,
and OHfree is the free-precession Hamiltonian.

The first mixing pulse can be treated as two separate
pulses of flip angles � and ˇ that act consecutively. The 180°

pulse changes the sign of the coherence order and converts
OIi˛ to OIiˇ, and vice versa. For example, the operators 1

2 iOI1šOI2˛
OI3˛

are transformed as follows:

1
2

i�OI1šOI2˛
OI3˛ exp[Ýi��1 C �J12 C �J13�t1]

� OFx���!
1
2

i�OI1ÝOI2ˇ
OI3ˇ exp[Ýi��1 C �J12 C �J13�t1]

where OFx D OI1x C OI2x C OI3x.
The rotation of single-element operators by radiofre-

quency pulses is described by the following equations:

OInš
ˇOInx���! OInšc2 C OInÝs2 š 1

2
i�OIn˛ � OInˇ�S �1�

OIn˛

ˇOInx���! OIn˛c2 C OInˇs2 C 1
2

i�OInC � OIn��S �2�

OInˇ

ˇOInx���! OInˇc2 C OIn˛s2 � 1
2

i�OInC � OIn��S �3�

where c D cos ˇ
2 , s D sin ˇ

2 , and S D sin ˇ. If ˇ is small, then
s2, which is of the order O�ˇ2�, tends to zero, and Eqns 1, 2,
and 3 can be approximated as:

OInš
ˇOInx���! OInšc2 š 1

2
i�OIn˛ � OInˇ�S

OIn˛

ˇOInx���! OIn˛c2 C 1
2

i�OInC � OIn��S

OInˇ

ˇOInx���! OInˇc2 � 1
2

i�OInC � OIn��S

Therefore, after the first ˇ pulse a typical term such as
1
2 i�OI1ÝOI2ˇ

OI3ˇ becomes:

1
2

i�
(

OI1Ýc2 Ý 1
2

i�OI1˛ � OI1ˇ�S
) (

OI2ˇc2 � 1
2

i�OI2C � OI2��S
)

ð
(

OI3ˇc2 � 1
2

i�OI3C � OI3��S
)

Of the many terms here, only those representing
populations are retained in the anti z-COSY sequence; these
are

1
4

Sc4�OI1˛
OI2ˇ

OI3ˇ � OI1ˇ
OI2ˇ

OI3ˇ�

There are some other population terms that are of higher
order in sin ˇ; these can be neglected as ˇ is small.

The final ˇ pulse produces the following observable
terms, which all carry a t1 phase factor of exp[Ýi��1 C �J12 C
�J13�t1]:

diagonal peak on spin one:

� 1
4 iS2c8OI1�OI2ˇ

OI3ˇ

cross peaks between spins one and two:

1
8 iS2c8OI1˛

OI2�OI3ˇ � 1
8 iS2c8OI1ˇ

OI2�OI3ˇ

cross peaks between spins one and three:

1
8 iS2c8OI1˛

OI2ˇ
OI3� � 1

8 iS2c8OI1ˇ
OI2ˇ

OI3�

The calculation can be repeated for the other terms to
give the full multiplet structures of the spin-one diagonal
peak, and the associated cross-peaks.

Copyright  2007 John Wiley & Sons, Ltd. Magn. Reson. Chem. 2007; 45: 296–316
DOI: 10.1002/mrc
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Every peak in the N-type spectrum is matched by a peak
in the P-type spectrum with the same intensity, but with
the opposite sense of modulation during t1. Therefore, the
two experiments can be combined to give a spectrum which
has frequency discrimination in ω1 and absorption mode
lineshapes. Furthermore, both the cross peaks and diagonal
peaks have the same phase in both frequency dimensions,
and so it is possible to phase the spectrum so that both
the cross peaks and the diagonal peaks have the double-
absorption lineshape.

Diagonal-peak multiplet
We have seen from our analysis that, for the diagonal-
peak terms, each operator product present prior to t1 gives
only one operator during t2. Therefore, the diagonal-peak
multiplet will have four lines of equal intensities, at unique
frequencies in each dimension. The position of each peak
in ω2 is the same as that in ω1, except that all the coupling
constant terms have opposite sign. This is because the passive
spins have the opposite spin polarization during t2 to the one
they have during t1, since there a high probability that the
first mixing pulse (flip angle ˇ C 180°) will change the spin
states of the passive spins, and the second mixing pulse (flip
angle ˇ) leaves their polarization unaffected. These peaks all
lie on the counter-diagonal, giving the multiplet structure
shown in Fig. 2 (c).

This multiplet has a complete separation of the offset
and the coupling: the frequency dimension that is parallel
to the diagonal contains only the offset information, and
the counter-diagonal dimension contains only coupling
information. Therefore, the projection of the multiplet onto
the diagonal is a decoupled spectrum.

A more detailed calculation, which does not discard any
population terms, gives the set of intensities for the diagonal
peaks shown in Table 1. There are three types of peak, which
are illustrated in Fig. 3.

Type 1 peaks lie on the counter-diagonal, and are the ones
we require. The peaks of type 3 lie on the diagonal and are
due to magnetization terms in which the passive spins do not
experience a net change of polarization during the mixing
period. Their intensity varies as sin2 ˇ cos4�ˇ/2� sin4�ˇ/2�,
which is negligible for small ˇ, and so they do not need to be
considered further. The peaks of type 2 are more intense, as
the leading term in the expression for their intensity varies
as sin2 ˇ cos6�ˇ/2� sin2�ˇ/2�. Considering only the leading
terms, the ratio of the intensity of these unwanted peaks to

Table 1. The positions and intensities of the three types of
peak in the diagonal-peak multiplet of spin one from the anti
z-COSY spectrum of a three-spin system. S D sin ˇ and
c D cos�ˇ/2�

Type Description Intensity

1 Counter-diagonal peak � 1
4 iS2�c8 C 2c4s4 C s8�

2 Off-diagonal peak � 1
2 iS2�c6s2 C c2s6�

3 On-diagonal peak �iS2c4s4

Figure 3. Schematic of the spin-one diagonal-peak multiplet of
a three-spin system showing the three types of peaks. The
black circles represent the counter-diagonal peaks (type 1), the
grey circles represent the off-diagonal peaks (type 2), and the
on-diagonal peaks (type 3) are represented by the unfilled
circles. The position of the main diagonal is given by the
dashed line.

the intensity of the wanted counter-diagonal peaks (type 1) is

type 2
type 1

D 2 sin2�ˇ/2�

cos2�ˇ/2�

D 2 tan2�ˇ/2�

For a flip angle of ˇ D 20°, the off-diagonal peaks have
a relative intensity of 0.062, or 16 : 1. If ˇ D 10°, the relative
intensity is 0.015, or 67 : 1. The peaks that do not lie on
the counter-diagonal will give rise to unwanted peaks in the
projection. These unwanted components must be minimized,
which is done by reducing the value of ˇ. However, the
intensity of the wanted peaks, which includes a factor of
sin2 ˇ, will also be reduced. Therefore, a compromise must
be made in which ˇ is small enough to suppress the unwanted
diagonal peaks, but large enough to retain sufficient intensity
in the counter-diagonal peaks. Typically, we use a flip angle
between 10° and 20°.

This analysis assumes that each population term that is
present immediately after the first ˇ pulse will be unchanged
at the end of tz. However, any longitudinal relaxation that
occurs during this delay may cause the polarization of the
spins to change. This leads to transformations such as

OI1˛
OI2ˇ

OI3ˇ ���! OI1˛
OI2ˇ

OI3˛

Spin three has therefore not experienced a net change
in its spin state during the mixing period, and so these
relaxation processes lead to an increase in the intensity of the
undesirable peaks (here type 2). This effect can be minimized
by keeping the delay tz as short as possible. In practice, this
means that tz is made just long enough for the required
zero-quantum suppression.

PROJECTING THE SPECTRUM

As has been explained, the required decoupled spectrum
is the projection of the anti z-COSY spectrum onto the 45°

diagonal. In this section we consider the details of how this
projection is calculated and what its properties are. There

Copyright  2007 John Wiley & Sons, Ltd. Magn. Reson. Chem. 2007; 45: 296–316
DOI: 10.1002/mrc
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300 A. J. Pell, R. A. E. Edden and J. Keeler

are two ways in which we could imagine calculating this
projection. The first is to rotate the two-dimensional spectrum
such that the 45° diagonal is horizontal. Projecting onto this
axis gives the required spectrum. The second approach is to
shear the spectrum so as to align the multiplets in the correct
way, and then compute the projection.

In practice, the two methods are equivalent; however,
it is conceptually easier to start with the rotation, but
computationally simpler to use the shear. We will therefore
describe both methods.

The projection of a two-dimensional spectrum QS�ω1, ω2�
onto an axis u2 is calculated by integrating over the
perpendicular dimension u1. According to the projection
cross-section theorem,9 this is equivalent to extracting and
Fourier transforming the relevant cross-section from the
time-domain, as shown in Fig. 4(a). In the case we are
interested in, u2 is the axis that passes through the origin
and is tilted at an angle � to the ω1 axis, as is illustrated in
Fig. 4(b).

Mathematically, the projection of a two-dimensional
spectrum onto u2 is most easily calculated by first rotating
the spectrum through �/2 � �, so that u2 coincides with
the ω2 axis. This rotation is described by the following

t1

t2 u2

u1

(a) (b)t

φ φ

ω2

ω1

Figure 4. Illustration of the projection cross-section theorem.
The time domain is shown in (a), and the frequency domain in
(b). According to the theorem, the Fourier transform of a
cross-section that passes through the origin and is inclined at
an angle � to the t1 axis is the same as the frequency-domain
projection onto the axis u2, which is inclined at the same angle
to the ω1 axis.

frequency-coordinate transformation:

u1 D ω1 sin � � ω2 cos � �4�

u2 D ω1 cos � C ω2 sin � �5�

The projection onto the u2 axis is then given by:

P�u2� D
∫ 1

�1
QS�u1 sin � C u2 cos �, �u1 cos � C u2 sin ��du1

A projection onto the main diagonal is achieved with
� D �/4:

u1 D 1p
2

ω1 � 1p
2

ω2 �6�

u2 D 1p
2

ω1 C 1p
2

ω2 �7�

Rather than rotating the spectrum, in practice it is usually
easier to use the standard software to shear the spectrum,
so that the diagonal and counter-diagonal coincide with the
ω2 and ω1 axes; we then project onto ω2. A shear operation
applied parallel to the ω1 axis is illustrated in Fig. 5 for the
case of a unit square data matrix.

Each point is translated in the ω1-direction by an amount
ω1 that is proportional to its ω2-coordinate. This can be
expressed mathematically as

ω1 D ˛ω2

where the constant of proportionality ˛ is referred to as
the shear rate. The ω1 axis, which is invariant under this
transformation, is called the shear axis. It is also possible to
define a shear angle 	 as

tan 	 D ˛

which is the angle through which a line that is perpendicular
to the shear axis is tilted.

The shear transforms the square frequency space into
a rhombus. One of the consequences of this is that there
are two regions of the spectrum (shaded grey in Fig. 5 (b))
that are shifted outside of the original square window. It
is usual to translate (wrap) these regions back inside the

0

+1/2 +1/2 +1/2

+1/2 +1/2

+1/2α

+1/2−1/2 −1/2 −1/20

0

0

0

0

(a) (b) (c)ω2

ω1

ω2 ω2

ω1 ω1

θ

Figure 5. Illustration of a shear on a unit square. The unit square shown in (a) is sheared parallel to ω1 to give the rhombus in (b). The
grey regions have been shifted outside the boundary of the square. They are translated back inside, as indicated by the arrows, to
give the square data matrix shown in (c).

Copyright  2007 John Wiley & Sons, Ltd. Magn. Reson. Chem. 2007; 45: 296–316
DOI: 10.1002/mrc
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Figure 6. The effect of the required two shears on a simulated anti z-COSY spectrum of a three-spin system. The main diagonal is
indicated by a dashed line. Positive contours are colored blue, and negative contours are red. See text for details of the shear
operations relating (b) to (a), and (c) to (b).

original window, as shown in Fig. 5 (c). As a result, data
points lying on a line parallel to the shear axis undergo a
cyclic rearrangement.

In order to transform the anti z-COSY spectrum in such
a way that the projection onto one axis gives the required
proton-decoupled spectrum, two shears are needed. The
process is shown for a simulated spectrum of a three-spin
system in Fig. 6.

The original spectrum (a) is first sheared parallel to ω1,
with a shear rate of ˛1 D �1; this gives spectrum (b). Such
a shear transforms the frequency space (ω1, ω2) into a new
coordinate system (ω0

1, ω0
2) as follows:

ω0
1 D ω1 C ˛1ω2

D ω1 � ω2

ω0
2 D ω2

In such a spectrum, what was the diagonal is now parallel
to ω0

2, but the diagonal-peak multiplets are still tilted with
respect to ω0

1. The second shear is parallel to ω0
2, with a shear

rate of ˛2 D C 1
2 , which gives a spectrum with the coordinate

system (v1, v2):

v1 D ω0
1

D ω1 � ω2 �8�

v2 D ω0
2 C ˛2ω0

1

D 1
2

ω1 C 1
2

ω2 �9�

This gives the spectrum shown in (c), in which the
multiplets are parallel to v1, as required.

On comparing Eqns (6) and (7) with Eqns (8) and (9), it is
seen that

v1 D
p

2u1 �10�

v2 D u2p
2

�11�

Therefore, the two shears are equivalent to a 45° rotation of
the spectrum followed by a scaling operation, parallel to each
of the two rotated axes, as indicated by Eqns (10) and (11).

The scaling is entirely trivial as both the linewidth and the
frequency axes are scaled in the same way. The resolution is
therefore the same.

The sheared spectrum has a complete separation of
the offset and coupling information. The projection of
the diagonal peaks onto the v2 axis is a one-dimensional
spectrum in which there is just one line per chemical
environment. This projection is calculated by selecting the
region of the spectrum which contains only the diagonal-
peak multiplets, as shown by the grey box in Fig. 6 (c), and
summing over the data points in the v1 dimension. The
projected region is shown in Fig. 7 along with the decoupled
spectrum.

In addition, a cross-section that is taken parallel to v1

at the position of the offset in v2 gives the structure of the
associated multiplet. These cross-sections at the offsets of the
three spins are shown in Fig. 8(a)–(c).

4.6 4.4 4.2 4.0 3.8 3.6 ppm

1.0 1.0 1.0

Hz

−50

0

50

(a) (b) (c)

ν2

ν1

Figure 7. The region of the spectrum of Fig. 6 (c) that is
projected. The projection itself is shown below, with the
integrals of the three peaks. The values of T2 that were used
are in the ratio 2 : 1.33 : 1. The three arrows labelled
(a) – (c) indicate the positions at which the vertical
cross-sections shown in Fig. 8 are taken.
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Hz−50050 −50050 −50050

(a) (b) (c)

Figure 8. The cross-sections of the doubly sheared anti
z-COSY spectrum of the three-spin system, taken at positions
(a), (b), and (c) as shown in Fig. 7. As the cross-sections are
taken parallel to v1, they give the structure of each multiplet.

LINESHAPES AND SIGNAL-TO-NOISE RATIO

Linewidths
In this section, we will show that a peak in the projection has
an absorption mode lineshape, with a linewidth that is the
average of the linewidths in the ω1 and ω2 dimensions.

A two-dimensional double-absorption Lorentzian that
is centered on �ω1, ω2� D ��1, �2� is represented by the
following function

A�ω1, ω2� D R1R2

�R2
1 C �ω1 � �1�

2��R2
2 C �ω2 � �2�

2�

where R1 D 1/T�1�
2 and R2 D 1/T�2�

2 ; T�1�
2 and T�2�

2 are
the transverse relaxation time constants during t1 and t2

respectively. The linewidth, conventionally taken to be the
full width at half-maximum (FWHM) in the ωi dimension is
2Ri rad s�1.

After the rotation described by Eqns 4 and 5, the line-
shape function takes the form

A�u1, u2� D R1R2�R2
1 C �u1 sin � C u2 cos � � �1�2��1

ð �R2
2 C ��u1 cos � C u2 sin � � �2�

2��1

The lineshape in the projection is given by integrating
this lineshape function over u1. The required projection can,
however, be calculated more easily by using the projection
cross-section theorem,9 and is

P�u2� D �R0

R02 C �u2 � �0�2

where R0 D R1j cos �j C R2j sin �j, and �0 D �1 cos � C
�2 sin �. The peak therefore has a linewidth of 2R0 rad s�1,
which is a weighted average of the ω1 and ω2 linewidths,
and appears at a position that is a weighted average of the
offsets in the two dimensions. If � D �/4, the linewidth and
position of the peak in the projection become:

2R0 D 2p
2

�R1 C R2�

�0 D 1p
2

��1 C �2�

In practice, instead of rotating the spectrum we shear
it; this process results in a spectrum with the following
double-absorption Lorentzian lineshape:

A�v1, v2� D R1R2

(
R2

1 C
(

1
2

v1 C v2 � �1

)2
)�1

ð
(

R2
2 C

(
� 1

2
v1 C v2 � �2

)2
)�1

Integrating this with respect to v1 (i.e. projecting onto v2)
gives the following lineshape:

P�v2� D �Rp

R2
p C �v2 � �p�2

where

Rp D 1
2

�R1 C R2� �12�

�p D 1
2

��1 C �2� �13�

This offset and linewidth are the same as the correspond-
ing values in the projection of the spectrum that has been
rotated by 45°, except for a scaling factor of 1/

p
2. As we

noted above, the frequency axes are scaled in the same way,
so the resolution is the same.

In the presence of significant inhomogeneous broaden-
ing, the lineshape becomes elongated along the principal
diagonal.10 However, the linewidth in the projection of the
sheared spectrum is still the average of the linewidths in the
two dimensions, although the lineshape will reflect the exact
form of the inhomogeneity.

The data may be processed with weighting functions in
either or both dimensions, although, if the correct integrals
are to be retained, these weighting functions must always
decay from the value at t1 D 0 or t2 D 0. Given that sampling
may be limited in t1, it may be necessary to apodize the data
in this dimension in order to avoid truncation artifacts.
However, the resulting extra line broadening in the ω1

dimension is undesirable as it is transferred to the projection.
In this paper all of the experimental spectra have been
processed without weighting functions unless otherwise
indicated.

Sensitivity
We will now compare the sensitivities of the proton-
decoupled spectrum and a conventional one-dimensional
spectrum. This comparison is done by calculating the signal-
to-noise ratio (SNR) of a singlet in each spectrum. Without
loss of generality, we assume that the singlet is on resonance.

In a conventional proton spectrum that is acquired with
a single scan, the height of the peak is S, and the rms noise
amplitude is 
, giving an SNR of S/
.

The anti z-COSY spectrum is recorded with N1 t1-
increments. It is assumed that the linewidths are the same
in both ω1 and ω2, so that the shearing does not affect the
SNR in the projection. We will therefore simply calculate
the signal-to-noise ratio of the singlet in the ω2 projection of
the unsheared spectrum. The integral of a one-dimensional
spectrum over all frequencies is equal to the value of the first
point in the time-domain. In an entirely analogous way, the
projection of a two-dimensional spectrum onto the ω2 axis is
the same as the Fourier transform of the first t1 increment.
The SNR in the projection is therefore equal to the SNR of the
first t1 increment (this has been verified experimentally). This
is slightly counter-intuitive as it implies that the remaining
t1 increments are not important. However, they are needed
in order to map out the t1 evolution even though they do not
contribute to the intensity in the projection.

Copyright  2007 John Wiley & Sons, Ltd. Magn. Reson. Chem. 2007; 45: 296–316
DOI: 10.1002/mrc
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Figure 9. An illustration of the effect of shearing on the diagonal peaks of a folded spectrum. The positions of the diagonal-peak
multiplets in a folded spectrum are shown in the schematic spectrum in (a). The boundaries of the spectral window are indicated by
the widely-spaced dashed lines. The true diagonal, represented by the closely-spaced dashed line, is folded into a series of discrete
sections, which are represented by solid lines. This spectrum is sheared parallel to ω1, with a shear rate of �1, to give (b),
transforming the rectangular spectrum into a parallelogram. Any sections of the sheared spectrum that were shifted outside the
original spectral window are shaded grey. They wrap back inside, to give (c). The second shear is parallel to ω2 with a shear rate of
1
2 , which gives the spectrum in (d).

The SNR in the projection is therefore given by:

SNR(projection) D p
n

fS



where n is the number of scans per increment, and
f D 1

2 sin2 ˇ is the intensity factor that arises from the two
small flip angle pulses.

A conventional proton experiment that has the same
experiment time is acquired with nN1 scans, and so has the
following SNR:

SNR(1D) D
√

nN1
S



The ratio of the two SNRs is therefore:

SNR(projection)
SNR(1D)

D sin2 ˇ

2
√

N1

�14�

For example, if an anti z-COSY spectrum is recorded with
700 t1 increments, and ˇ D 10°, the ratio in Eqn. 14 is equal to
5.7 ð 10�4. Generating the proton-decoupled spectrum thus
incurs a heavy penalty in terms of the SNR. The use of the
two small flip angle pulses is in large part responsible for
this, along with a further reduction due to the large number
of t1 increments which have to be recorded.

To give a concrete example of what this implies, imagine
a typical experiment in which we use 10° mixing pulses and
record four transients, each taking 10 s, for each of 700 t1

increments; this gives a total experiment time of just under
8 h. For the projection of this spectrum to have a SNR of
50 would require the SNR of a simple four transient proton
spectrum to be 3000. We will see in the next section that the ω1

spectral width can be reduced significantly, and this reduces
the number of t1 increments which are required, easily by
a factor of 10. In the example above, the two-dimensional

Copyright  2007 John Wiley & Sons, Ltd. Magn. Reson. Chem. 2007; 45: 296–316
DOI: 10.1002/mrc
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304 A. J. Pell, R. A. E. Edden and J. Keeler

spectrum needed to give a projection with an SNR of 50
could then be recorded in just under an hour. Clearly, it is
very advantageous to reduce the spectral width in this way.

Where sensitivity is at a premium, the flip angle of the
mixing pulses can be increased. For example, increasing
them from 10° to 20° increases the signal-to-noise ratio by a
factor of almost 4.

SPECTRA WITH REDUCED !1 SPECTRAL
WIDTH

It was shown in the previous section that the linewidth
in the projection is the average of the linewidths in the
ω1 and ω2 dimensions. This means that we must acquire a
sufficient number of t1 increments so that the linewidth is
determined by relaxation and not by insufficient sampling. If
the ω1 spectral width is large, say 5000 Hz, then very many t1

increments must be recorded in order to make sure that the ω1

linewidth is not limited by sampling. It is possible to reduce
the number of required increments simply by reducing the
spectral width in ω1, but this will also result in the peaks
folding in this dimension. However, it will be shown in this
section that, in the sheared spectrum, the diagonal peaks
will always be present in the same positions whether or not
they have folded. Thus, reducing the spectral width does not
affect the calculation of the projection. The cross peaks prove
to be more problematic, and may fold into the region of the
spectrum we wish to project. However, it will be shown that
on folding they acquire different symmetry properties which
allow them to be removed in a straightforward way.

As we noted above, reducing the number of increments
has the effect of improving the sensitivity of the projection
relative to the conventional proton spectrum, according to
Eqn. 14. It is thus very desirable to reduce the ω1 spectral
width.

Diagonal peaks
When the ω1 spectral width is reduced, the diagonal folds
into discrete sections, each of which is tilted at 45° to both the
ω1 and ω2 axes; the counter-diagonal peaks still lie on a line
that is perpendicular to each section of the diagonal. This is
illustrated in Fig. 9 (a). In this diagram, the central section of
the diagonal has not folded, and is in its normal position. The
two sections immediately to the right and left have folded
once, and the two outer sections have folded twice.

The first shear (parallel to ω1) gives the spectrum shown
in (b). The central section of the diagonal shears on to ω1 D 0
as usual, while the two sections that have folded once are
sheared onto the horizontal lines ω1 D šωSW,1, where ωSW,1

is the spectral width in ω1. The two sections that have folded
twice are sheared onto ω1 D š2ωSW,1. In general, there will be
two sections that have folded n times (where n is an integer).
One will be sheared onto ω1 D CnωSW,1, the other will be
sheared onto ω1 D �nωSW,1. In all cases, the counter-diagonal
peaks are orientated at 26.7° (tan�1 1

2 ) to the vertical.
The rectangular spectrum has been transformed into

a parallelogram. As described above, any sections of the
sheared spectrum that lie outside the original spectral win-
dow are translated back inside, to reproduce a rectangular

spectrum. This process is referred to as wrapping, to dis-
tinguish it from folding. A section of the diagonal that has
been sheared onto ω1 D CnωSW,1 is translated by �nωSW,1

to ω1 D 0. Thus, after wrapping, the sheared spectrum is
exactly the same as the one we would obtain if the diagonal
had not folded, as shown in (c). Therefore, it does not matter
whether or not the diagonal peaks fold, as they will always
shear to the same places. Finally, the second shear aligns the
multiplets so that they are parallel to ω1, as shown in (d).

Cross peaks
It can be seen from Fig. 6 and Eqn 13 that, for a spectrum
that has been acquired with the full spectral width in ω1, the
ω2 frequency upon which the cross-peak multiplet between
spins i and j is centered in the sheared spectrum is given
by the average of �i and �j. Furthermore, cross peaks that
are mirror images of each other about the diagonal in the
original spectrum are symmetrically related about ω1 D 0 in
the sheared spectrum. This is demonstrated for the simulated
anti z-COSY spectrum of a two-spin system in Fig. 10 (a); the
original spectrum and the spectra after the first and second
shears are shown.

However, if as a result of reducing the spectral width the
cross peaks wrap during the first shear, they will no longer
have the symmetry properties mentioned above. Figure 10
(b) shows the original spectrum and the spectra after each
shear, which are obtained when the ω1 spectral width is set
to 88% of the full spectral width; the cross peaks have not
folded during acquisition, and are properly represented in
the unsheared spectrum. The first shear shifts them outside
of the spectral window, and so they are wrapped back inside
(compare Fig. 5). As a result, the second shear shifts them to
positions that are not symmetrically related about ω1 D 0.

A similar situation arises for a spectral width which is
set to 53% of the full spectral width (Fig. 10 (c)). The cross
peaks are shifted further outside the spectral window by the
first shear, and are wrapped to positions that are closer to
the diagonal peaks.

In Fig. 10 (d), the spectral width in ω1 is 47% of the value
in (a), which is sufficient for the cross and diagonal peaks at
the top of the spectrum to have folded to the bottom; they
now lie directly on top of the other peaks.

Setting the spectral width to 36% of the maximum value,
as illustrated in Fig. 10 (e), causes all the peaks to fold once
in the original spectrum. The diagonal peaks still shear to
their same positions, as we expect. The cross peaks are not
shifted outside the window by the first shear, but they still
occupy unsymmetrical positions as they folded during the
acquisition of the original spectrum.

In general, a cross-peak that is located at �ω1, ω2� D
��1, �2� will be unsymmetrically related to its partner if
the two peaks fold differently, either during acquisition or
during the first shear. The condition for this is:

j�1 � �2j >
1
2

ωSW,1

Symmetrization
Reducing the spectral width in the ω1 dimension has no
effect on the diagonal-peak multiplets in the sheared spec-
trum; they are still symmetrically distributed about ω1 D 0.

Copyright  2007 John Wiley & Sons, Ltd. Magn. Reson. Chem. 2007; 45: 296–316
DOI: 10.1002/mrc
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Figure 10. Simulated anti z-COSY spectra of a two-spin system, for different values of the spectral width in ω1. The spectral width in
the ω2 dimension is 850 Hz in all cases. The ω1 spectral width takes the following values: (a) 850 Hz, (b) 750 Hz, (c) 450 Hz,
(d) 400 Hz, and (e) 300 Hz. The diagonal is shown as a dashed line. Where they are clearly separated from the diagonal peaks, the
cross peaks have been colored red.
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Figure 11. Illustration of the shearing and symmetrizing processes on the simulated spectrum of a three-spin system with reduced
ω1 spectral width. The folded spectrum in (a) is sheared to give the spectrum shown in (b). Symmetrization removes the cross peaks
to give the spectrum in (c), which is then projected onto ω2 to give (d). The integrals are given with the projection.
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306 A. J. Pell, R. A. E. Edden and J. Keeler

The cross-peak multiplets, if they have wrapped or folded
as described above, are no longer symmetrically related to
their partners. Therefore, they can be removed by applying
the following symmetrization procedure to the sheared spec-
trum. The intensity at �ω1, ω2� is compared with the intensity
at ��ω1, ω2�; the highest absolute value is replaced by the
lowest absolute value, while retaining the original sign.

If there is no accidental overlap between the individual
cross- and diagonal-peak multiplets, this simple symmetriza-
tion procedure removes all of the cross peaks that have
wrapped or folded differently from their partners, and leaves
the diagonal peaks unaffected. The procedure is remarkably
effective at cleaning up the spectrum, as is shown in Fig. 11.

Cross peaks which have not wrapped differently from
their partners are symmetrically placed about ω1 D 0, and so
are not suppressed. Such cross peaks necessarily lie close to
the diagonal of the original anti z-COSY spectrum, and, as
has been commented on before, are analogous to the strong
coupling artifacts seen in two-dimensional J-spectra.

If, as a result of the folding in ω1, an individual compo-
nent of a cross-peak multiplet falls on top of an individual
component of a diagonal-peak multiplet, then the intensity of
the latter will be perturbed in a way which is not necessar-
ily removed by the symmetrization process. If the diagonal
peak is reduced in intensity by the overlapping cross-peak,
the symmetrization will transfer the perturbation in one
component of the diagonal-peak multiplet to its symmetry-
related counterpart. If, on the other hand, the diagonal peak
component is increased in intensity, the symmetrization will
restore its correct intensity.

The result of all this is that, even after symmetrization,
the folding of the cross peaks into the region occupied by the
diagonal peaks can lead to intensity perturbations which will
affect both the projection and the multiplets. The former is
seen in Fig. 11, in the form of the perturbation of the integrals
of the projection.

If the linewidths in the two dimensions are the same, the
symmetrization process affects neither the lineshape nor the
linewidth in the projection. However, if the ω1 linewidth is
greater than the ω2 linewidth, which may be the case due to
restricted sampling in t1, the symmetrization process results
in changes in the lineshape of the spectrum and its projection.
Generally speaking, the peaks in the projected spectrum have
a linewidth at half-height which is close to the ω2 linewidth.
However, the base of the lineshape is characteristic of the
broader line in the ω1 dimension. Therefore, in practice there
is little real improvement in resolution.

A useful side effect of the symmetrization process is an
improvement of the SNR of the projection by approximatelyp

2 when compared to the SNR of the projection of the
unsymmetrized spectrum.

EXPERIMENTAL VERIFICATION

In this section, the method for obtaining a proton-decoupled
proton spectrum is illustrated experimentally with the
spectra of camphor, whose structure is shown in Fig. 12.

All of the spectra in this section were recorded at 500 MHz
for protons on a Bruker Avance DRX500 spectrometer. (The

O
Figure 12. The structure of camphor.

(a)

(b)
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Figure 13. The anti z-COSY spectrum of camphor is shown in
(a). The spectrum is sheared, and the central region, which is
shown in (b), is the part projected to give the decoupled
spectrum. The region between 1.35 and 1.42 ppm contains a
pair of cross-peak multiplets that lie very close to the diagonal,
so they are included in the projected region. There is also
some t1 noise visible at the chemical shifts of the three methyl
groups (0.8 to 1.0 ppm). The spectral width in ω1 is 1085 Hz;
760 t1 increments were recorded giving a maximum value of t1
of 0.7 s.

pulse sequences that were used to acquire the spectra,
and the AU programs that were used for the shearing
and symmetrization operations are available on the WWW
at http://www-keeler.ch.cam.ac.uk.) Both mixing pulses
had the same flip angle of 10°. Selection of the CTP was
achieved by a homospoil gradient during the z-filter (50%
of the maximum intensity of 59.5 G cm�1, 5 ms, half-sine
shape). The swept pulse that was used to suppress the
zero-quantum artifacts was an adiabatic CHIRP 180° pulse
with a radiofrequency field strength of 1.7 kHz, which
was swept through an offset range of 24 kHz in 24 ms.
The accompanying gradient had a strength of 4% of the
maximum. A two-step phase cycle in which the phases of
the first pulse and receiver were simultaneously changed by
180° was used to suppress the axial peaks. The spectral width
in ω2 is 1085 Hz, and the spectra were processed using the

Copyright  2007 John Wiley & Sons, Ltd. Magn. Reson. Chem. 2007; 45: 296–316
DOI: 10.1002/mrc
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Broadband proton-decoupled proton spectra 307
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Figure 14. The conventional proton spectrum of camphor is
shown in (a). The projection of the anti z-COSY spectrum from
Fig. 13 is shown in (b). For both spectra, the integrals of the
peaks are given relative to the resonance from the proton at
2.36 ppm. The peak at 1.66 ppm is due to an impurity, and is
marked with a star. The two peaks at 1.35 ppm and 1.42 ppm
are due to spins that are strongly coupled to each other. The
result is that the cross peaks lie very close to the diagonal (see
Fig. 13) and project to give the set of anti-phase peaks
between the two singlet peaks at 1.35 ppm and 1.42 ppm.

States–Haberkorn–Ruben method.11 The acquisition time in
t2 was 1.89 s.

The anti z-COSY spectrum of camphor with the full
spectral width of 1085 Hz in ω1 is shown in Fig. 13(a), and
the region of the doubly sheared spectrum that is projected to
give the decoupled spectrum is shown in (b). The projection is
shown in Fig. 14 (b), with the conventional proton spectrum
in (a) for comparison. The multiplet structures of the first
seven camphor multiplets (starting at the largest chemical
shift) obtained from the vertical cross-sections taken at the
offsets of the spins are shown in Fig. 15(a)–(g).

The multiplets shown in (f) and (g) are of particular
interest as they overlap in the conventional proton spectrum,

making it impossible to distinguish their form. This overlap
is completely removed in the sheared anti z-COSY spectrum
due to the separation of offset and coupling information,
giving a clear view of the multiplets.

The cross-peak multiplets between the diagonal-peak
multiplets that are centered at 1.42 ppm and 1.35 ppm lie
very close to the diagonal, and so have to be included in
the region that is projected. These cross peaks project to
the anti-phase peaks between the two singlets visible in
Fig. 14(b). These extra peaks can be left out of the projection
by summing over a smaller range of frequencies in ω1. A
series of ‘limited projections’ of the sheared camphor anti
z-COSY spectrum are shown in Fig. 16(a)–(c).

Such an approach will, of course, produce decoupled
spectra in which the integrals are distorted as not all the
diagonal peaks are included in the projection. Nevertheless,
these limited projections may be of interest as they avoid any
contributions from the cross peaks.

An anti z-COSY spectrum of camphor in which the ω1

spectral width has been reduced to 100 Hz is shown in
Fig. 17(a), and the sheared spectrum is shown in (b). It can
be seen that the diagonal-peak multiplets have sheared to
the same positions as in Fig. 13(b). However, the cross peaks
have folded and so lie all over the spectrum. As was discussed
above, the majority of the cross peaks are not symmetrically
displaced about ω1 D 0, and so can be removed by applying
a symmetrization procedure; this gives the spectrum shown
in (c). The cross peaks between 1.35 and 1.42 ppm lie close
to the diagonal and so have not wrapped differently to their
partners in this spectrum. As a result, they are not removed
by the symmetrization procedure.

DIRECT SUPPRESSION OF THE CROSS PEAKS

Rather than relying solely on the symmetrization procedure
for the elimination of the cross peaks, it would be useful to
have a pulse-sequence based method for suppressing them.
We term this ‘direct’ suppression of the cross peaks.

Suppressing the cross peaks in an anti z-COSY experi-
ment is essentially the same problem as the suppression of
zero-quantum coherence during a z-filter,7,8,12 or the removal
of strong coupling artifacts from a J-spectrum.13 In both cases,
the wanted and the unwanted magnetization terms follow

40 0 −40 40 0 − 40 40 0 −40 40 0 −40 40 0 −40 40 0 −40 40 0 −40 Hz

(a) (b) (c) (d) (e) (f) (g)

Figure 15. Cross-sections taken from Fig. 13(b) giving the structures of the seven camphor multiplets with the largest chemical
shifts. The cross-sections are taken at the following shifts: (a) 2.36 ppm, (b) 2.10 ppm, (c) 1.96 ppm, (d) 1.85 ppm, (e) 1.69 ppm,
(f) 1.42 ppm, and (g) 1.35 ppm.

Copyright  2007 John Wiley & Sons, Ltd. Magn. Reson. Chem. 2007; 45: 296–316
DOI: 10.1002/mrc
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308 A. J. Pell, R. A. E. Edden and J. Keeler
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Figure 16. Successive limited projections of the region containing the diagonal-peak multiplets in the sheared spectrum of camphor.
Spectrum (a) is the single row at ω1 D 0 (dashed line). The close-lying cross peaks do not contribute any intensity to this spectrum.
However, some of the diagonal peaks are not included either, as they also have zero intensity in this row. Widening the range of the
limited projection to 11 Hz (range indicated by the smaller square bracket on the right hand side of the two-dimensional spectrum)
includes more of the diagonal-peak intensity, giving the spectrum in (b). Increasing the range to 33 Hz (range indicated by the larger
square bracket) gives a spectrum in which all the diagonal-peak multiplets contribute some intensity, as shown in (c). However, part
of the close-lying cross-peak multiplet is also included. The peak labelled with the star is an impurity.
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Figure 17. The anti z-COSY spectrum of camphor with reduced ω1 spectral width. The spectrum is sheared to give (b), and after
symmetrization gives spectrum (c). This spectrum is then projected to give the decoupled spectrum in (d). The integrals are still in
very good agreement with those from the conventional spectrum, but there is some deviation for the integrals labelled (i)–(iii); the
peak labelled with the star is an impurity. The close-lying cross peaks between 1.35 and 1.42 ppm are still present in (c), as they are
symmetrically distributed in the sheared spectrum, and so they contribute to the projection. The spectral width in ω1 is 100 Hz, and
70 t1 increments were recorded, giving a maximum value of t1 of 0.7 s.

Copyright  2007 John Wiley & Sons, Ltd. Magn. Reson. Chem. 2007; 45: 296–316
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Broadband proton-decoupled proton spectra 309

the same CTP, and so cannot be separated by conventional
phase-cycling or gradient selection methods. However, there
is a crucial difference between cross-peak and diagonal-peak
terms that allows the former to be suppressed. This is that
the cross peaks are produced by coherence that is transferred
from one spin to another during the mixing period: the mag-
netization therefore evolves at a different offset either side of
the z-filter. In contrast, the diagonal peak terms evolve at the
same offset throughout the pulse sequence.

Figure 18 shows modified anti z-COSY pulse sequences
that exploit this difference between the fate of magnetization
leading to cross and diagonal peaks in order to suppress
the former. A delay υ is inserted either side of the mixing
period, and a CTP is selected such that the coherence order
is of opposite sign during the two delays. As a result, for a
diagonal peak the phase acquired during the first delay υ is
equal and opposite to that acquired during the second delay
υ. Thus, diagonal peaks acquire no phase due to the two
delays. In contrast, magnetization giving rise to a cross-peak
between spins i and j will acquire a phase ��iυ during the
first delay, and �jυ during the second delay. Thus, cross
peaks acquire an overall phase of ��j � �i�υ, and so can
be suppressed by the co-addition of spectra recorded with
different values of υ.

In order that the magnetization that gives rise to the
diagonal peaks acquires no phase as a function of υ, the
coherence must be š1 during the first delay, and Ý1
during the second delay. Thus, the resulting spectrum will
have phase-twist lineshapes. In order to recover absorption
mode spectra, P- and N-type spectra must be recorded and
combined in the usual way. The two variants of the pulse

p
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Figure 18. Anti z-COSY pulse sequences incorporating the
multiple-scan cross-peak suppression scheme. The required
CTPs are also included. The sequence shown in (a) gives the
N-type spectrum, and the sequence shown in (b) gives the
P-type spectrum. The open rectangle in (b) represents a hard
180° pulse. Sequence (c) also gives the P-type spectrum, but
has been modified to include a pair of composite pulses (the
two open rectangles with diagonal strokes flanking the second
delay υ).

sequence needed to record the N- and P-type spectra are
shown in Fig. 18(a) and (b), respectively. Note the inclusion
of an extra 180° pulse in (b) just prior to acquisition.

Analysis of the pulse sequences
In this section we will analyze the modified pulse sequences
of Fig. 18; it is sufficient to confine the discussion to a
two-spin system, as this illustrates all the relevant features
of this method for suppressing the cross peaks. Starting
with equilibrium magnetization on spin one, the 90° pulse
generates �OI1y D 1

2 i�OI1C � OI1���OI2˛ C OI2ˇ�, which represents
equal amounts of coherence of order C1 and �1. The operator
OI1C ultimately produces the N-type spectrum, whereas OI1�
gives the P-type spectrum. For simplicity, we will calculate
the evolution of the single operator OI1COI2˛ during the N-
type pulse sequence (a), and then do the same for the
complementary operator �OI1�OI2˛ during the P-type pulse
sequence (b).

If we assume that the delay υ is short enough for
J-modulation to be insignificant (υ − 1/jJ12j), the operator
OI1COI2˛ evolves to give the following term just prior to the
mixing period:

OI1COI2˛ exp[�i��1 C �J12�t1] exp[�i�1υ]

The population terms generated by the first ˇ pulse are:

1
2

i sin ˇ cos2 1
2

ˇ�OI1˛
OI2˛ � OI1ˇ

OI2˛� exp[�i��1 C �J12�t1]

ð exp[�i�1υ]

where, as before, it has been assumed that ˇ is small. The
swept 180° pulse interconverts OIi˛ and OIiˇ to give:

1
2

i sin ˇ cos2 1
2

ˇ�OI1ˇ
OI2ˇ � OI1˛

OI2ˇ� exp[�i��1 C �J12�t1]

ð exp[�i�1υ]

The second ˇ pulse then produces the following observ-
able terms of coherence order �1:

� 1
4

sin2 ˇ cos4 1
2

ˇ�2OI1�OI2ˇ C OI1ˇ
OI2� � OI1˛

OI2��

ð exp[�i��1 C �J12�t1] exp[�i�1υ]

this term comprises one diagonal peak and two cross peaks.
Finally, evolution during the second υ delay gives:

diagonal peak

� 1
2

sin2 ˇ cos4 1
2

ˇ exp[�i��1 C �J12�t1]OI1�OI2ˇ

cross-peak

� 1
4

sin2 ˇ cos4 1
2

ˇ exp[i��2 � �1�υ] exp[�i��1 C �J12�t1]OI1ˇ
OI2�

cross-peak

C 1
4

sin2 ˇ cos4 1
2

ˇ exp[i��2 � �1�υ] exp[�i��1 C �J12�t1]OI1˛
OI2�

Note that the cross peaks acquire a phase that is
dependent on υ, whereas the diagonal peak does not.

Copyright  2007 John Wiley & Sons, Ltd. Magn. Reson. Chem. 2007; 45: 296–316
DOI: 10.1002/mrc
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310 A. J. Pell, R. A. E. Edden and J. Keeler

In the P-type experiment, the operator �OI1�OI2˛ produces
the following observable terms:

diagonal peak

� 1
2

sin2 ˇ cos4 1
2

ˇ exp[i��1 C �J12�t1]OI1�OI2ˇ

cross-peak

� 1
4

sin2 ˇ cos4 1
2

ˇ exp[�i��2 � �1�υ] exp[i��1 C �J12�t1]OI1ˇ
OI2�

cross-peak

C 1
4

sin2 ˇ cos4 1
2

ˇ exp[�i��2 � �1�υ] exp[i��1 C �J12�t1]OI1˛
OI2�

Again, it is only the cross-peak terms which have acquired
a phase which depends on υ.

If two experiments are acquired, the first with υ D 0 and
the second with υ D �/j�1 � �2j, the cross peaks will have
different signs in each experiment, whereas the diagonal
peaks will be unaltered. Adding the two experiments will
therefore eliminate the cross peaks. If there are several cross-
peak multiplets that need to be suppressed, the experiment is
repeated a number of times (typically eight) with a systematic
variation of υ.12 The sum of the resulting data will produce a
spectrum with a net attenuation of the intensities of the cross
peaks.

The above analysis is valid only if the evolution of
coupling during υ can be ignored, i.e. υ is small. Such small
values can be used to suppress cross peaks that lie far from
the diagonal in the unfolded spectrum. However, cross peaks
that lie closer to the diagonal, and are therefore associated
with smaller values of j�1 � �2j, can be suppressed only
with larger values of the delay. In most practical cases, υ is
likely to extend to values such that we must take into account
the evolution of the coupling. The effect of this evolution on
the diagonal peaks will now be calculated.

In the N-type experiment, the operator OI1COI2˛ evolves
during the first delay υ to give:

OI1COI2˛

OHfreeυ���! OI1COI2˛ exp[�i��1 C �J12�υ].

The z-filter comprises two small flip angle pulses and
a swept 180° pulse, so its overall effect is to change the
polarization of the passive spin; appropriate coherence
selection is also used to ensure that the coherence order is
changed to �1. The resulting diagonal-peak term is therefore

� 1
2

sin2 ˇ cos4 1
2

ˇ exp[�i��1 C �J12�υ]OI1�OI2ˇ

This term evolves during the second delay υ to give:

� 1
2

sin2 ˇ cos4 1
2

ˇ exp[�i��1 C �J12�υ]

ð exp[i��1 � �J12�υ]OI1�OI2ˇ

D � 1
2

sin2 ˇ cos4 1
2

ˇ exp[�2i�J12υ]OI1�OI2ˇ

We see that the combination of the delays and the z-filter
results in a refocusing of the offset, but the coupling evolves
for 2υ. Therefore, in the N-type spectrum, the diagonal peaks

acquire a phase error due to the J-modulation during the two
delays υ.

The complementary operator in the P-type experiment,
�OI1�OI2˛, evolves during the first delay υ to give:

�OI1�OI2˛ exp[i��1 C �J12�υ]

The z-filter now comprises two small flip angle pulses and
two 180° pulses (the first mixing pulse has flip angle 180° C ˇ).
Each 180° pulse changes the polarization of the passive
spin, and so together they have no net effect. Therefore, the
z-filter does not change the polarization of the passive spin.
The coherence order does change sign, however, giving the
following diagonal-peak term just after the mixing period:

� 1
2

sin2 ˇ cos4 1
2

ˇ exp[i��1 C �J12�υ]OI1COI2˛

This term evolves during the final delay υ to give:

� 1
2

sin2 ˇ cos4 1
2

ˇ exp[i��1 C �J12�υ]

ð exp[�i��1 C �J12�υ]OI1COI2˛ D � 1
2

sin2 ˇ cos4 1
2

ˇOI1COI2˛

The sequence of the delays and the z-filter refocuses
both the offset and the scalar coupling; as a result, the
diagonal peak terms in the P-type experiment are completely
unaffected by the value of the delay υ.14

This J-modulation of the N-type, but not of the P-type,
spectrum is a problem as it results in a phase distortion
when the two spectra are combined, i.e. the spectrum, and
hence the projection, will not be in the absorption mode.
We conclude, therefore, that the method cannot be used to
suppress cross peaks that lie close to the diagonal, as the
values of υ that would be required would result in significant
phase distortions.

A further problem will arise when υ is long enough that
transverse relaxation is significant. There will be reductions
in intensity by a factor of exp[�2υ/T2], which is dependent
upon the transverse relaxation time constant T2. The peak
heights will therefore gain a relaxation weighting, which will
distort the integrals of the projection.

Experimental results
The method for the direct suppression of the cross peaks is
illustrated with the spectra of camphor. Eight equally spaced
values of the delay υ between 0 and 10 ms were used to
suppress the cross peaks: the minimum offset difference that
can be suppressed with this choice of delays is 87.5 Hz. A
four-step phase cycle was used in which the phase of the
first mixing pulse took the values [x, y, �x, �y] in the N-type
experiment, and [x, �y, �x, y] in the P-type experiment: the
receiver phase was [x, y, �x, �y] in both experiments, thus
selecting p D �1 in the former, and C1 in the latter.

Rather than using a single hard 180° pulse at the end of the
P-type sequence, it is recommended that a pair of composite
pulses, which have a greater tolerance of radiofrequency field
inhomogeneity, are used, as shown in Fig. 18(c). The spectra
presented in this section were recorded using this sequence
in which the composite broadband inversion pulses (BIPs)

Copyright  2007 John Wiley & Sons, Ltd. Magn. Reson. Chem. 2007; 45: 296–316
DOI: 10.1002/mrc
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Broadband proton-decoupled proton spectra 311

were those described by Smith et al.15 It is necessary to use
two such pulses so that the phase errors produced by the first
are cancelled by the second. Both BIPs had a pulse length
of 100 µs, and a B1 field of 20 kHz. All other acquisition
parameters are the same as those given for the spectra in
Figs 13 and 17.

Figure 19 shows the anti z-COSY spectrum that was
acquired with the full spectral width in ω1. There is a
significant reduction in the intensity of the cross peaks,
although those lying close to the diagonal between 1.35 and
1.42 ppm are only partially suppressed on account of the
small difference in the offsets of the coupled spins.

Since the suppression requires recording spectra with
multiple values of υ, a large minimum experiment time is
needed, limiting the resolution that can be obtained in ω1.

As before, this problem can be solved by reducing the
spectral width in this dimension. The resulting spectrum is
shown in Fig 20(a), which also shows an excellent degree of
cross-peak suppression. The sheared spectrum is shown in
(b), and this is projected to give the decoupled spectrum in (c).
There is some deviation in the values of the integrals, which
is attributed to transverse relaxation during the delays υ. It
can also be seen that the residual cross-peak intensity leads
to some small distortions visible near the bases of the peaks.
This unwanted intensity can be removed by symmetrizing
the spectrum in (b), and then projecting to give the cleaner
spectrum in (d).

2.6 2.2 1.8 1.4 ppm1.0

0

−100

−200

−300

−400

Hz

100

200

300

400

500

Figure 19. The anti z-COSY spectrum of camphor recorded
using the pulse sequences of Fig. 18 which are modified for
the suppression of the cross peaks using variable delays. The
delay υ took eight equally spaced values between 0 and 10 ms.
All the cross peaks that lie well away from the diagonal have
been suppressed significantly. The close-lying cross peaks
between 1.35 and 1.42 ppm are, however, still present. The
spectral width in ω1 is 1085 Hz, and 70 t1 increments were
recorded giving a maximum value of t1 of 64 ms. Gaussian
multiplication was used in the indirect dimension. The total
experiment time was 16 h.

It was pointed out before that if there is any overlap
between a component of a cross-peak multiplet and a
component of a diagonal-peak multiplet, there may be a
distortion in the intensity of the latter on symmetrizing the
spectrum. This effect is, of course, reduced when the cross
peaks have been suppressed directly.

APPLICATIONS

There are a number of experiments in which it would be
advantageous to have access to a proton-decoupled proton
spectrum. Three such applications are presented in this
section.

Diffusion measurements
Diffusion-ordered spectroscopy (DOSY) is used to separate
the components of a mixture which have different diffusion
constants.16 A basic pulse sequence for a diffusion-weighted
anti z-COSY experiment is shown in Fig. 21(a).

A stimulated echo is inserted before t1, which includes
two diffusion gradients of duration υ and strength G, and
which are separated by a delay . The diffusion-dependent
signal attenuation is given by the well-known formula:17

S D S0 exp[�D�2s2G2υ2r] �15�

where S is the intensity of the attenuated signal, S0 is the
signal intensity in the absence of diffusion, D is the diffusion
constant, � is the gyromagnetic ratio of the nucleus, s is a
shape factor which compensates for nonrectangular gradient
shapes, and r is a reduced delay time.

A series of anti z-COSY spectra are recorded for a range
of values of G. Each spectrum is then sheared, symmetrized,
and projected in the usual way to give a set of decoupled
spectra that are diffusion-weighted. The intensities of the
peaks are measured and fitted to Eqn 15 to determine the
diffusion constant D.

This method is illustrated with a mixture of 15 mg of
quinine, 11 mg of geraniol, and 13 mg of camphene in 1 ml
of MeOD. The structures of the three molecules are shown in
Fig. 22. The sample temperature was 300 K, and the heating
gas flow rate was 400 l h�1. Eight diffusion-weighted spectra
were acquired, with equally spaced gradient strengths
between 10% and 50% of the maximum. The diffusion
gradient duration υ and inter-gradient delay  were 2 and
150 ms, respectively. Coherence order zero was selected
during the first z-filter with a homospoil (37%, 2 ms). All
gradient pulses were shaped to a half-sine bell. The phase
cycle comprised two steps in which the phases of the third
90° pulse and receiver were simultaneously changed by
180°. The spectral widths in ω1 and ω2 are 100 and 4496 Hz,
respectively. The acquisition time in t2 was 1.82 s; 70 t1

increments were recorded, giving a maximum value of t1 of
0.7 s. The effects of convection were reduced by spinning the
sample about the z-axis.18

The conventional proton spectrum is shown in Fig. 23(a),
with the projection of the sheared anti z-COSY spectrum
in (b). There is a good separation of the peaks above about
2 ppm in the former, but in the range 1 to 2 ppm, the spectrum
is more crowded.

Copyright  2007 John Wiley & Sons, Ltd. Magn. Reson. Chem. 2007; 45: 296–316
DOI: 10.1002/mrc
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312 A. J. Pell, R. A. E. Edden and J. Keeler
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Figure 20. The anti z-COSY spectrum of camphor recorded with reduced ω1 spectral width and the variable delay cross-peak
suppression scheme of Fig. 18. The folded spectrum is shown in (a). This is sheared to give the spectrum in (b), which is then
projected to give the decoupled spectrum in (c). The integrals are given relative to the peak on the far left. There is some deviation
from the values in the conventional spectrum due to differential transverse relaxation during the variable delays. Some residual
cross-peak intensity is present, which is removed by symmetrization of the sheared spectrum in (b). The projection of this
symmetrized spectrum is shown in (d). The impurity peak in each decoupled spectrum is labelled with a star: it is in a different
position to that in Fig. 14. The spectral width in ω1 is 100 Hz, and 70 t1 increments were recorded, giving a maximum value of t1 of
0.7 s. The values of the delay υ and the total experiment time are the same as for the spectrum in Fig. 19.

It is in this region that we expect to see significant
advantages from analyzing the decoupled, rather than the
regular, spectra.

Figure 24 shows expansions of this crowded region
of the spectra; the improved separation offered by the
decoupled spectrum is evident. Shown in (c) is the DOSY
spectrum computed from a series of diffusion-weighted
decoupled spectra. The diffusion coefficient for each peak
in the spectrum was determined, and then this value was
represented in the two-dimensional DOSY spectrum by a
Gaussian line whose width is proportional to the standard
error of the fit.

From other well-resolved peaks in the spectrum it is
possible to determine the average diffusion coefficients of
the three components. These values are indicated by the
dashed lines. We see that even in this crowded region, there
is a clear separation of the majority of the peaks according to
their diffusion coefficient.

Longitudinal relaxation measurements
Figure 21(b) shows an anti z-COSY pulse sequence that has
been modified to give a T1 relaxation weighting to the
intensities of the peaks in the two-dimensional spectrum.
The equilibrium magnetization is inverted by a BIP, and is
allowed to relax during the subsequent delay 
. The signal
intensity is given by:

S D S0�1 � 2 exp[�
/T1]� �16�

where S0 is the intensity arising from a simple 90° pulse.
The procedure for determining the values of T1 using the

pulse sequence in (b) is analogous to determining a diffusion
constant: a series of spectra is recorded with a systematic
variation of 
; these are then sheared, symmetrized, and
projected, and the peak intensities are fitted to Eqn 16.

The experimental data that were collected confirm that
the relaxation-weighted decoupled spectra that are thus
generated can be used to accurately determine the values
of T1 for each proton.

Copyright  2007 John Wiley & Sons, Ltd. Magn. Reson. Chem. 2007; 45: 296–316
DOI: 10.1002/mrc
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Figure 21. Anti z-COSY pulse sequences and CTPs that have
been modified for diffusion and T1 relaxation measurements.
The sequence shown in (a) produces an anti z-COSY spectrum
in which the peaks have diffusion-weighted intensities. The two
CTPs give the N-type and P-type spectra respectively. The
sequence in (b) produces a spectrum in which the intensities
are weighted by the degree of T1 relaxation during the delay 
.
The first pulse with the diagonal stroke in (b) is a BIP.15 In both
experiments, all the pulses are of phase x, and the axial peaks
are suppressed by phase-cycling the pulses labelled � and the
receiver according to [x, �x].

HO
N

H

N

O
HO

(a) (b) (c)

Figure 22. The structures of the three components of the
mixture. Camphene is shown in (a), geraniol is shown in (b),
and quinine is shown in (c).

Analysis of a complex mixture
A further application of this method of recording a decou-
pled spectrum is in the analysis of complex mixtures, such
as those which arise from the study of metabolism.19 We
demonstrate this with the spectra of a sample of a KG1a
(AML cancer model) cell extract kindly supplied by Dr
Ulrich Günther at the University of Birmingham. The anti
z-COSY spectrum with reduced ω1 spectral width of this
sample (in D2O) was recorded, with presaturation of the
residual water signal. As sensitivity was at a premium, the
flip angle of the mixing pulses was set to 20°; the data were
acquired with 80 scans per increment using a cryo probe. The
spectral widths in ω1 and ω2 are 100 Hz and 5000 Hz respec-
tively; the acquisition time in t2 was 0.8 s, and the number of
increments in the indirect dimension was 40, giving a maxi-
mum value of t1 of 0.4 s. The spectrum was processed with
a decaying exponential weighting function with 1.3 Hz of
line broadening in both dimensions.

The conventional proton spectrum of the sample is
shown in Fig. 25 (a), and the projection of the sheared and
symmetrized anti z-COSY spectrum is shown in (b).

9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 ppm

(a)

(b)

* * * * *

Figure 23. The decoupled spectrum of the mixture of quinine, geraniol, and camphene in MeOD. The conventional proton spectrum
is shown in (a), and the projection of the sheared anti z-COSY spectrum is shown in (b). Any multiplet structures in the latter that are
due to close-lying cross-peak multiplets are labelled with a star.

Copyright  2007 John Wiley & Sons, Ltd. Magn. Reson. Chem. 2007; 45: 296–316
DOI: 10.1002/mrc
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Figure 24. Illustration of the use of decoupled proton spectra
to generate a two-dimensional DOSY spectrum of a crowded
region from the spectrum of a mixture of quinine, geraniol, and
camphene in MeOD. The conventional proton spectrum is
shown in (a), and shows several overlapping multiplets. The
decoupled spectrum, which shows considerable simplification,
is shown in (b). There are three sets of peaks which correspond
to the projection of close-lying cross peaks; these are
indicated by a star. The two-dimensional decoupled DOSY
spectrum is shown in (c). The average values of the diffusion
coefficient for the three components, determined from
well-resolved resonances, are indicated by the dashed lines.
The values for quinine, geraniol, and camphene are 8.1, 11.6,
and 15.6 ð 10�6 cm2 s�1, respectively.

The region between 0.5 and 4.4 ppm is very crowded, and
so the analysis of this region benefits significantly from the
simplification obtained by decoupling. Expanded regions of
both the conventional and decoupled spectra are shown in
Fig. 26 (a) and (b).

DISCUSSION

The new method described in this paper is capable of
yielding proton-decoupled proton spectra with absorption
mode lineshapes and substantially correct integrals. The
price that has to be paid for this decoupled spectrum is
a considerable reduction in sensitivity when compared to
a conventional proton spectrum, the need to record and
process a complete two-dimensional spectrum, and certain
difficulties associated with the need to suppress the cross
peaks in the underlying two-dimensional spectrum. In
addition, the presence of strong coupling leads to additional
peaks in the decoupled spectrum – a feature that is not
unique to our method.

There are a number of other ways of recording proton-
decoupled proton spectra, and so it is useful at this point to
compare these with the proposed new method.

9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 ppm

(a)

(b)

*

*

Figure 25. Broadband proton-decoupled proton spectrum of a
sample of the cancer model cell extract in D2O. The
conventional proton spectrum, recorded with presaturation of
the water signal, is shown in (a). The decoupled spectrum is
shown in (b). In both spectra, the residual water signal can be
seen on-resonance, and is labelled with a star.

Historically, the first method for recording such decou-
pled spectra was the use of a 45° projection of a two-
dimensional J-spectrum.20 The problem with this approach
is that the two-dimensional spectrum has a phase-twist line-
shape, the 45° projection of which is identically zero.9 It
is therefore necessary to project the absolute value spec-
trum, but unfortunately this gives an exceptionally broad
lineshape, due to the dispersion mode contributions. These
contributions can be eliminated by using strong weighting
functions (in t1 and t2) to create symmetrical time-domain
envelopes: this is the pseudo-echo method.21 However, the
drawback with such an approach is that the integrals of the
peaks in the projection are very distorted, with broad peaks
losing a great deal of intensity, to the point at which they
may well disappear. In addition, even for sharp lines, there
is a significant loss in intensity, as shaping the time-domain
signals to a symmetric envelope eliminates that part of the
signal where the intensity is greatest. Use of pseudo-echo
weighting is certainly a practical way of obtaining a usable
proton-decoupled proton spectrum, although it must be
recognized that the intensity distortions are very significant.

Considerable effort has been put into finding alternative
ways of processing two-dimensional J-spectra in such
a way that the phase-twist lineshape is avoided. Such
approaches typically involve replacing the phase-twists in
the spectrum with a more favorable lineshape that has the
same frequency and linewidth parameters, or nonlinear
processing of the time-domain data.22,23 Examples of the
latter include linear prediction,24 maximum entropy,25 or
filter diagonalization method (FDM).26 At their best, these
methods show promise, but they still suffer from distortions
in the intensities of the projection – in particular, broad
signals tend to be discriminated against quite strongly. These

Copyright  2007 John Wiley & Sons, Ltd. Magn. Reson. Chem. 2007; 45: 296–316
DOI: 10.1002/mrc
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Broadband proton-decoupled proton spectra 315

(a)

(b)

4.0 3.0 2.0 1.0 ppm3.5 2.5 1.5

Figure 26. The crowded region of the spectra shown in Fig. 25.
The conventional spectrum is shown in (a), and the decoupled
spectrum is shown in (b).

nonlinear methods have failed to gain wide acceptance,
probably reflecting more the difficulties of implementing
‘non-standard’ data processing than on any inherent defects
with the approach.

There are three related methods that produce J-spectra in
which the multiplets, rather than being aligned along the 45°

diagonal, have structures with rotational symmetry patterns.
For the first method, the J-spectrum is superimposed on its
refection in the ω1 D 0 axis, creating a multiplet pattern
in the form of a St. Andrew’s cross.27 For the other two
techniques, the pulse sequence is modified to purge the
anti-phase product operator terms present at the end of
t1. This is done by using either the inhomogeneity of
the radiofrequency magnetic field orientated at the magic
angle,28,29 or a z-filter.30 In all three cases, the resulting
spectrum is processed with software which recognizes
the symmetry patterns, thus constructing the decoupled
spectrum.

Another approach to obtaining proton-decoupled proton
spectra is to use the constant time method.31,32 Here, a two-
dimensional experiment is arranged so that scalar couplings
evolve for a fixed time, whereas offsets evolve for the
incrementable time t1. As a result, the ω1 dimension contains
the required proton-decoupled proton spectrum, which can
be in the absorption mode. The difficulty with this approach
is that the intensities are modulated by the evolution of the
scalar coupling during the fixed time, and are also weighted
by relaxation during this time. Overall, therefore, in a system
of any complexity the intensities are highly variable. A
significant drawback of the constant time approach is that
the decoupled spectrum appears in the ω1 dimension, so
obtaining high resolution can be time-consuming. It should
be noted, however, that in biomolecular NMR the constant
time approach is used to great effect, but the difference in
such experiments is that the spin systems are well defined,
and do not vary greatly from sample to sample, so that
the constant time can be optimized in a straightforward
way.

The method recently described by Zangger and Sterk33

is of considerable interest. They use a selective refocusing
pulse in the presence of a weak gradient that results, in
effect, in all of the passive spins being flipped during
a spin echo. As a result only the shift evolves during
the echo, leading to a proton-decoupled proton spectrum.
The required spectrum is not recorded in real time, but
appears in the indirect dimension of a two-dimensional
spectrum. However, it is possible to record the spectrum
as an interferogram, sidestepping the need for recording
or computing the complete two-dimensional matrix. The
Zangger–Sterk method gives absorption mode lineshapes
and substantially correct integrals. Like our method, there is
a considerable reduction in sensitivity on account of the use
of the selective pulse (we estimate that the two methods have
comparable sensitivities). Recently, Nilsson and Morris have
shown that the Zangger–Sterk method can be combined with
diffusion weighting to give proton-decoupled DOSY spectra
similar to those in Fig. 24.34

As has been pointed out, (Morris GA 2006, personal com-
munication) our method and the Zangger–Sterk approach
have an interesting similarity in that both achieve decou-
pling by manipulating the passive spins. The Zangger–Sterk
method does this by using a selective pulse, whereas our
method uses small flip angle pulses. However, the advan-
tage of the Zangger–Sterk approach is that cross peaks are
not generated. On the other hand, the Zangger–Sterk method
requires one to choose the selectivity of the refocusing pulse
which is a compromise between sensitivity and the ability to
decouple nearby multiplets.

All of these methods fail in the presence of strong
coupling, which usually results in the generation of extra
unwanted signals (‘artifacts’) and perturbation of inten-
sities. Such signals are genuine responses from the spin
system – they are not really artifacts, but they are certainly
unwanted. Recently, it has been shown that such signals can
be removed from two-dimensional J-spectra, although at the
expense of considerable time and effort.13

In conclusion, we believe that our method is a useful
addition to the armory of NMR techniques for spectral
simplification. It is straightforward to apply, does not
require any special hardware, and it does not use any
unusual data processing. We expect that the method will
be particularly useful in the analysis of mixtures and in
quantitative experiments such as DOSY.
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