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Selective excitation and detection in multilevel spin systems: 
Application of single transition operators 

A. Wokaun and R. R. Ernst 

Laboratorium fur Physikalische Chemie. Eidgenossiche Technische Hochschule. CH-B092 
Zurich. Switzerland 
(Received II April 1977) 

An alternative definition of single transition operators is given for the description of selective excitation 
and detection experiments in multilevel spin systems. This definition has the virtues of a simple physical 
interpretation and easy application to arbitrarily complicated systems. Some applications to the excitation 
and detection of mUltiple quantum transitions in spin I and spin 3/2 systems as well as in coupled spin 
systems are described. 

I. INTRODUCTION 

In the past years a multitude of selective excitation 
and detection techniques has been developed in various 
kinds of coherent spectroscopies, ranging from radio­
frequency spectroscopy to optical spectroscopy. Out­
standing examples are the selective excitation of single 
quantum transitions1 and multiple quantum transitions2 

in continuous wave magnetic resonance, selective double 
resonance in magnetic resonance,3 selective pulse ex­
periments in high resolution NMR, 4 laser spectroscopy, 5 

and selective optical pulse experiments. 6 

In all these examples one or at maximum a few well 
chosen transitions are excited selectively, and the same 
or another set of transitions is being observed subse­
quently. The appropriate tools to theoretically describe 
such experiments appear to be single transition opera­
tors, which permit a convenient formulation of selective 
excitation and detection processes. 

The scope of this paper will be limited to magnetic 
resonance although there are many important applica­
tions particularly in coherent optical spectroscopy. 
Several proposals to describe selective magnetic reso­
nance experiments by single transition operators have 
been made in the past. An important early example is 
the description of the behavior of a "simple" line by 
Bloch-type equations by Abragam. 1 This concept of 
classical description of a quantum mechanical subsys­
tem has recently been extended by Hahn and co-workers7 

to three-level systems. 

The most recent contribution, which also initiated the 
work to be described in the present paper, has been 
made by Vega and Pines, 8 who applied fictitious spin t 
operators for the description of double quantum NMR 
for spin 1 systems. In a basic study8(c) they presented 
a thorough discussion of the most relevant aspects of 
double quantum NMR in terms of single transition opera­
tors. 

The aim of the present paper is to present an alterna­
tive possibility for the definition of single transition 
operators, which appear to us to possess several ad­
vantages over the definition given by Vega and Pines. 
Particularly, there is a more natural connection to the 
concepts of macroscopic magnetization vectors. The 
definition is also of great generality and can easily be 
applied to arbitrary systems containing an arbitrary 

number of spins with arbitrary spin quantum numbers. 

The definition and description of the proposed single 
transition operators are given in Sec. II. Applications 
to double quantum NMR of spin 1 systems are described 
in Sec. III, In Sec. TV some results for spin % are pre­
sented and, finally, Sec. V is devoted to a simple ap­
plication of single transition operators to coupled sys­
tems of spins t. A more extensive discussion of multi­
ple quantum transitions in coupled spin systems will 
be presented in another place. 

II. DEFINITION OF SINGLE TRANSITION OPERATORS 

Let if!r and if!s be two eigenstates of the considered spin 
system. The single transition operators associated with 
the transition r - s, which may represent a zero-, 
single- or multiple-quantum transition, are defined in 
the following way: 

(if!1 I[~rs) I if!j) = 1/2(0Ir 0js + 0ls 0jr) , 

(iJ!III~rs)liJ!i)=i/2(- oiroJs+o/soir) ' 

(if!/II!rs)liJ!j)=1/2(oirojr-o/sOjs) • 

(1) 

From these definitions it follows that for the transition 
s-r 

I(sr) = [Irs) 
x x' 

I(ST) = _ lrs) . .' (2) 

The three operators belonging to one particular transi­
tion r - s obey standard commutation relationships 

[I(rs) I(ro)]_ 'i rs ) 
Q' ,8 -1,. , (3) 

where (G', (3, y) is a cyclic permutation of (x, y, z). 

For the operators describing two connected transi­
tions r - t and s - t (with the states <P

T
, if!s, and <P t all 

distinct) the following commutation rules hold: 

[I(rt) lIst)] =[lrt) I(st)] = '/2 f rs ) 
X'x Y'Y 2 31 , 

[I(rt) lst)] = 0 
Z , Z , 

[lrt) I(st)]= '/2 I(rs) 
x 'y Z x , 

[I~rt>, I!so] = _ i/2 I!rt) , 

[I~rt>, I~st)]=i/2 r!rt) • 

It is important to note the order of the states in the 

(4) 
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A. Wokaun and R. R. Ernst: Selective excitation and detection 1753 

labels of the operators; changing this order results in 
sign changes according to Eq. (2), e.g., 

(I;Tt), I~tS)] = _ i/21!TS) • 

Operators belonging to nonconnected transitions do al­
ways commute, 

[I(rs) I(tu) 1 = 0 Cl } 
" , B 'f3 =x, y, z . (5) 

It should be noted that there are linear dependences 
among the z components, 

l (rs) l(st) l(tr) = 0 
11 + z + z • (6) 

The observable operators lx, Iy , Iz , Fy;, F y , Fi!' re­
spectively for multispin systems, can easily be ex­
pressed by the defined single transition operators. For 
a one-spin system with spin I and a Hamiltonian com­
muting with I., one obtains 

l,,= L c(rs)I!r.) 

(rs)l 

with 

c(rs )=I(I+1)-mr m. , 

(7) 

(8) 

(9) 

where mr and m. are the magnetic quantum numbers of 
the involved states. The summation runs over all or­
dered9 pairs of single quantum transitions. For a 
weakly coupled multi-spin 1/2 system one obtains simply 

F = 
" 

Cl=X, y, z . 

III. APPLICATION OF SINGLE TRANSITION 
OPERATORS TO AN ISOLATED SPIN /==1 WITH 
aUADRUPOLARINTERACTION 

(10) 

The utility of single transition operators will be il­
lustrated by applications to selective pulse experiments 
on noninteracting spins I = 1 subject to a strong static 
magnetic field Bo and to quadrupolar interaction. These 
applications are relevant in view of the newly developed 
techniques of double quantum spectroscopy by Vega and 
Pines8 and by Hashi. 10 

A. Free precession without rf irradiation 

The Hamiltonian in the laboratory frame is chosen as 

(11) 

where wQ is the quadrupolar splitting parameter of the 
single quantum spectrum. Transformation into a co­
ordinate system rotating at the detection frequency wr 
leads to the rotating frame Hamiltonian 

(12) 

with 

~Wo=Wo- wr • (13) 

For the operator base, the nine operators {1,.12) , 
(23) .(13)} " Ia ,L;' ; C\!=x, y, z supplemented by the umty matrIx 

1 are chosen. The three z operators are linearly de-

pendent by the relation 

1(12) /.23) /.31)=0 (14) 
t + of +.t • 

The single transition operators are in this case re­
lated to the fictitious spin 1/2 operators 1"",,, Cl =x, y, z, 
k= 1,2,3, defined by Vega and Pines,8 in the following 
manner: 

/ = 2,1/2(/(12) 1(23» 
);',1 x + x , 

I = 2.1 / 2(/ 12 ) _ 123 » 
);,2 y :y , 

I 
= 2,1(/(13) I(12) _ 123 ») 

x,3 x + II Z , 

I =2·1/2(f12) 1(23») 
y,l Y + "J ' 

I =2-1 / 2(/12)_123 ») 
y,2 x X' , 

(15) 

I = [(13) 
.,1 II , 

From these equations it is seen that Iy;, ~ and Iy , k are lin­
ear combinations of operators belonging to different 
transitions. Consequently, the matrix representations 
l~,~ and l~.~ in the eigenbase of I~, {,/it, I/Jo, ifJ.1}, con­
tain more than two matrix elements different from zero. 

However, the unitary transformation 

where T describes the base transformation into the 
eigenbase of I;, 

o 

1 

o 

(16) 

(17) 

generates matrices I~.k' each of which contains only two 
nonvanishing matrix elements. Thus, there exists a 
formal similarity between the set of matrix representa-

. {(12)~ (23)~ (13)~ } . . tlOns I" ,I" ,I" ,C\!=x, y, z m the elgenbase of 
[e, and the set of matrix representations {I~,~, C\! = x, .:v, 
z, k -= 1, 2, 3} in the eigenbase of I! (listed in Table II of 
Ref. 8(c)]. However, the operators themselves are 
physically different, and related by Eqs. (15). In the 
case of high field NMR the set {I';S)} is more appropriate 
as operator base and leads to an easier visualization, 
whereas for pure quadrupole resonance the set {l".k} is 
better adapted. 

The density matrix in the rotating frame p(t) and the 
Hamiltonian Jer are now expanded in the base {I~rs)}: 

(t) 1 "(c",(12)(t) '<",12) p =CO + W L 
ctC%,y,e 

+ C~23)(t)I~23) + C~13)(t)I~13» , (18) 

Je =~ (1(12) [(23) [(13» 2w Q ([(12) I(23» 
r WO. + z +. + 3 z -. • (19) 

Insertion of the expansion (18) into the density operator 
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1754 A. Wokaun and R. R. Ernst: Selective excitation and detection 

equation 

(20) 

and use of the commutation relations (3) and (4) then 
leads to the following closed solution for the coefficients 
C~I/)(t): 

(I})( ) (In() (lil( ) . 
Cx t = Cx 0 cosw/J t - cy 0 smw l } t , 

(/1)( ) (In). II})( ) cy t =cx (0 smwlJl+cy 0 cosw/it , 

C!IJ)(t) = C!iJ)(O) , (21) 

with 

(22) 

Equations (21) can be interpreted as a precession of the 
transverse magnetization components of transition (ij) 
about the z axis. In connection with double quantum 
spectroscopy8.11 it is to be noted that the double quantum 
expectation values U ;13)(t) and U !13»(t) precess at W13 

= 2awo and are not influenced by the quadrupolar inter­
action. 

The general result of Eqs. (21) constitutes a con­
siderable simplification as compared to the corresponding 
solution in the operator base {I",.k}' given by Vega and 
Pines [Ref. 8(c), Eq. (69)]. where an assumption on the 
vanishing of three coefficients at time t = 0 had to be 
made to obtain Simple expressions, and where the mag­
netization components of the "x frame" and "y frame"a 
are mixed during time evolution. 

B. Irradiation near a single quantum transition 

To excite the single quantum transition 1 - 2 at fre­
quency Wo+ we. wr is chosen as 

such that 

The Hamiltonian in the rotating frame then becomes 

_ ( " )(/(12) 1(23) I (3 ) 3Cr - -WQ+uw • +. +. 

£ (I (12) 1(23) .f'[(1 (12) 1 (23 » + 3 We • -. + W1 x + x • 

For wl = 0 the eigenvalues are given by 

(JCr)u=- twe + i'Jw, 

(3Cr b = -1 W Q , 

(3Cr)33=+twe- ow. 

(23) 

(24) 

(25) 

(26) 

If the condition W1 « w Q is satisfied, the operator 
W1 .f'[ I!23) can be omitted, as its off-diagonal elements 
connect the levels iJl2 and 1/13 separated by an energy dif­
ference of 2wQ • Rearranging the remaining terms one 
arrives at the following representation of Jer : 

3Cr =3C 1 +3C 2 , 

'CP = ~ W 1 (12) f7r 1 (12) 
""1 u • + W1 V'" x , 

(
4 )( (23) (13) Je 2 =- aWe-OW I. +1. , (27) 

[3C 1 , Je 2J=O. 

3C 1 is the familiar Hamiltonian of a two-level system 
irradiated with a rotating rf field with amplitude W1 .f'[ 

and with resonance offset 5w. The factor .f'[ originates 
from the matrix element of Ix, which, for 1= 1, is a 
factor of.f'[ larger than that for 1=1/2. 

To calculate the time development of the density ma­
trix during a selective single quantum pulse acting on 
transition (12) alone, Je 1 is diagonalized by a rotation 
about the y(12) axis through an angle g, with 

tane = W1 .f'[15w • (28) 

One obtains 
-1 (12) 

3C lT oo T 3C l T= WeffI z , (29) 

where 

T = exp(- iB I ~12» (30) 

and 

( 2 2 2)1/2 
Weft = 5w + w1 . (31) 

Je 2 remains invariant under the rotation T of the (12) 
coordinate system. 

The effect of the single quantum pulse on a spin system 
in thermodynamic equilibrium can now easily be cal­
culated. The equilibrium density matrix is written 

(32) 

omitting the term proportional to the unity matrix and 
defining b as - wo/kT. Performing the rotation about 
the y (12) axis leads to 

PT(O) = b{(1 ~12) COse _ I;12) sinB) + (1
2
(23) + I !l3J)} . (33) 

The time development is calculated with the Hamiltonian 
(29), and the resulting density matrix PT(t) transformed 
back into the original frame, yielding 

p(t) = b{I !12) (cos2e + sin2e coswgff t) + 1;12) t sin2e 

) 
(12).. ( (23) (13)} 

x (1- coswefft - I y SlUe smweff t+ I. +I. . 
(34) 

The pulse has generated only transverse (12) magnetiza­
tion, while the (23) and (13) magnetization components 
have remained parallel to the z axis. 

C. Irradiation near the double quantum transition 

At first the irradiation frequency is chosen exactly 
in the center of the spectrum, 1. e., awo" O. The Hamil­
tonian is then given by 

3C = £ (I (12) _ I (23 ) W rn (I (12) I (23» 
r 3 W Q z • + 1 V'" x + x • (35) 

Jer is diagonalized by the orthogonal transformation 

3CrT oo T-1 Je
r 

T , (36) 

with 

1 - n sinel2 

Too cosB/2 (37) 

1 
{2 sine/2 

tane = 2Wl I we' (38) 

The eigenvalues are given by 
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(JCrT )l1 '" -two+~ we , 

(JC ... T )22'O- two-~we, 

(JCrT )33 = + i Wo , 

with 

(39) 

(40) 

Because of the linear dependence, Eq. (14), the opera­
tor representation of JCrT is not uniquely determined. 
Two forms will prove useful in the following: 

(41) 

(42) 

To calculate the effect of a double quantum pulse on 
a spin system in thermodynamic equilibrium the density 
matrix 

(43) 

is first subject to the transformation T, Eq. (37), yield­
ing 

PT(O) = - 2 b{I !13) cose/2 _ I !23) sine/2} . (44) 

Recognizing that I ~13) commutes with (I ~12) _ I ~23» [in the 
first form of JC,.T' Eq. (41»), while I!23) commutes with 
( (12) (l3)) [. )] ) Ie + I" m the second form of JCrT , Eq. (42 , PT(t 
is found to be 

PT(f) = - 2b{cose /2 [I !13) cos~(we - wo) f + I ~13) sini(we - wo)f] - sine /2 (I !23) cos~(we + wo)f - I ~23) sin~(we + wo)f]} • (45) 

Transformation back into the original frame yields 

pet) = 2b{I ~13)[cos2e /2 COS~(We - wo)f + sin2e /2 cos~(we + wo)f] - I ~13) [cos2e /2 sin~(we - wO)t - sin2e /2 sini(we + wo)f] 

1 . (12) (23 »[ . 1 ( ). 1 ( ) ] 1 . Il (I (12) (23 »[ 1 ( ) 1 ( ) ]} (46) -212 sm£l(I y +Iy SlllzWe-wot+smzWe+Wot -212 sm" x -Ix -coszwe-wot+COSZWe+Wot . 

For a selective double quantum pulse WI « Wo the gen­
eral solution can be considerably simplified using e '" 0 
and expanding the square root to give 

t(We - wo)'" wUwo • 

The result is 

p(t):::::2b{I!13)COS w~ l_I!13)sin wi t} . 
Wo Wo 

(47) 

(48) 

Before the implications of Eqs. (46) and (48) are dis­
cussed the influence of a small resonance offset A.wo is 
considered. Transforming the Hamiltonian 

with the matrix T defined in Eq. (37) yields 

JC .. T = - 2A.woU!13) cosO /2 -I !2S) sinO /2) 

.!.(w W )1<13) (.!.W I W )(1(12) 1(23» +2 e- 0 " + 2 e+if 0 11 -. • 

(49) 

(50) 

It is illustrative to rotate the (13) axis system through 
an angle - 7T/2 about the y{l3J axis. With 

U=exp (+i i 1;13J 

one obtains 

JC
rTU 

= U -1 JC
rT 

U 

(51) 

= + 2A. woU !13) co~O/2 _ (1/ 12)(1 ~12) _ I !23» sine/2] 

+ t(we - wo)1 ~1S) + (twe +t WQ)(I!12) -I !2S» . 

Simplifying this Hamiltonian for WI « wQ yields 

JCrTU '" 2A.woI !13) + (wU wo}I ~13) 

(52) 

( 1 I )(1 (12) I (2S» (53) + zWe+ifw O 11 - 11 • 

The offset field along the Z(13) axis is 2A.wo, a charac­
teristic feature of the double quantum transition. The 

I 
effective rf field wf /wo points along the positive X(13) 
axis. For A.wo=O this field simply rotates the (13) 
magnetization about the x<tS} axis. This is the physical 
interpretation of Eq. (48), which will now be rederived 
in a much shorter manner. 

Since, for e z 0, T· U is approximately equal to the 
unity matrix, the initial condition is given by 

( ) - 2 (13) PTU O -Po= bIll . (54) 

Since the last term of the Hamiltonian (53) commutes 
both with the rest of JC,.TU and with I !l3) , the density ma­
trix evolves as 

p(t)::::: PTU(t) 

_ (. w~ tI(13»)2bl(13) (. w~ tI(13») - exp - 1 - x ~ exp + 1 - x , 
Wo wQ 

(55) 

which can be easily shown to be identical with Eq. (48). 

A comparison with the results obtained by Vega and 
Pines is now in order. The diagonalizing matrix T in 
Eq. (37) can be represented as 

Too exp [- i ~ (I ~12) -I ~2S»J exp (- iiI !1SJ ' (56) 

and, with the definition of U, Eq. (51), one finds 

T.u=exp[~i ~ (1~12)_1!23»] . (57) 

Noting that the sign of the rf field has been chosen in 
the opposite manner by Vega and Pines, 8 and that, con­
sequently, the sign of the angle 0 must be changed when 
translating results of this work into the formalism of 
Ref. 8(c), the operator T. U turns out to be identical 
with U,..2 used in Eq. (32) of Ref. 8(e). The Hamiltonian 

JCrTu , Eq. (52), is equivalent to Eq. (42) of Ref. 8(e), 
and the density matrix after the double quantum pulse 
(46) corresponds to Eq. (89) of Ref. 8(c). 
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1756 A. Wokaun and R. R. Ernst: Selective excitation and detection 

As shown by the Hamiltonian JeTTU , Eq. (53), and the 
solution for the density matrix, Eq. (48), the double 
quantum pulse can be treated as a two-level problem if 
Wi «wQ • This is an example for the "simple line" con­
cept introduced by Abragam, 1 who shows that Bloch­
type equations result for the relevant density matrix 
elements whenever the rf irradiation influences ex­
clusively one transition in a spin system of arbitrary 
complexity. 

This conclusion has recently also been reached by 
Gold and Hahn12 in a different manner. Setting up dif­
ferential equations for aU density matrix elements in the 
three-level system of a spin I", 1, and noting that the 
time derivatives of transverse single quantum magnetiza­
tion components are small for selective irradiation in 
the center of the spectrum, they arrive at generalized 
Bloch equations for the three magnetization components 
of the double quantum transition. 

IV. ISOLATED SPIN 1=3/2 SUBJECT TO 
QUADRUPOLAR AND ZEEMAN INTERACTIONS 

This section is intended to show that the single transi­
tion operators are equally useful for spin systems with 
I> 1. This is an advantage over the definitions given by 
Vega and Pines, 8 which are designed specifically for 
I", 1 and cannot easily be generalized. Suitable nuclei 
with 1=3/2 for high field spectroscopy and for the ob­
servation of multiple quantum transitions are 7Li , gBe, 
and llB. 

The rotating frame Hamiltonian for a system of non­
interacting I", 3/2 nuclei is again given by 

(58) 

The eigenstates for Wi = 0 are numbered in the order of 
decreasing magnetic quantum number, with the eigen­
values 

E 1",i a wo+wQ , 

Ez=,~awo- wQ ' 

E3 =' - t awo - wQ , 

E 4=,-i awo+wQ' 

(59) 

The single quantum spectrum consists of three lines 
at frequencies Wo - 2wQ, wo , and Wo + 2wQ. The double 
quantum transitions occur at frequencies Wo - wQ and 
Wo + wQ , which, in contrast to the 1= 1 case discussed in 
Sec. III, depend on the quadrupolar splitting w Q • There­
fore, selective excitation of a double quantum transition 

For the double quantum expectation value U;l3l)(t) one 
obtains 

will only be possible for a Single crystal sample with 
one or several discrete values of wQ • The wQ-indepen­
dent triple quantum transition, at frequency wo, coincides 
with the center line of the single quantum spectrum. 

A. Selective excitation of a double quantum transition 
With the choice awo =' - wQ the energy eigenvalues be­

come 

El = E3 = - t wQ , 

Ez=-iwQ , 

E4=+~WQ • 

(60) 

Ix in Eq. (58) is now decomposed into single transition 
operators 

[ = ,[3([ <1Z) [(34») 2 1(23) 
x x +x +:r. (61) 

Because (E4 - E3) = 3 (El - E 2) = 3 (E3 - E 2), the influence of 
the operators 1;12> and I~23) is considerably stronger than 
that of 1;34>, such that the latter can be neglected for 
Wi « WQ. JeT is then diagonalized by the matrix 

if· 2 
- 7 slllO/2 -,[7 

sinO/2 cosO/2 0 
T=' 2 2 If -J7 cosO/2 - -J7 sinO/2 

0 0 0 

(62) 
with 

tanO = -J7 Wi /WQ • (63) 

The similarity with Eq. (37) for 1=1 is obvious, but the 
transforming matrix is less symmetric for 1=3/2 be­
cause the matrix elements (Ix )12 and (1%)23 are different. 

The diagonalized Hamiltonian can be represented as 

1 ( ) 113) (' 1 ) JerT '" 2 We-WQ I z + 2 We +a WQ 

X (1 (12) _ 1(23») _~ (1 114 ) 1(24) 1(34») 
z z 3 WQ z + z + z , 

We= (W~+ 7 W~)1/2 , 

with eigenvalues 

(JCrT)U'" - W Q + t we , 

(tCrT )33 = - t W Q , (JerT)H = + ~ W Q • 

(64) 

(65) 

(66) 

After evolution for a time t under the influence of the 
Hamiltonian JerT the system, originally in thermodynamic 
equilibrium, is described by the density operator 

'" - b(4,[3/7)[coszO/2 sint(we - wQ)t 

-sin20/2sini(we +wQ)tj. (68) 

In the case of a selective double quantum pulse with Wi 
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« Wo and B:::: 0 one can again expand 1(w. - wo) with the 
result 

4v'3 7 w2 

(I ~13»(t):::: - b -7- sin 4" w~ t . (69) 

The close analogy with Eq. (48), where 
2 

(I~13»(t):::: _ b sin W1 t , 
Wo 

for 1=1 , (70) 

is obvious. For the double quantum transitions in the 
1=3/2 spin system the effective rf field along the x (13) 
(or x (24)) axis is given by 7wi /4wo . 

B. Excitation of the triple quantum transition 

The triple quantum transition (14) coincides, as men­
tioned before, with the single quantum transition (23). 
They are simultaneously excited when the irradiation is 
applied in the center of the spectrum with ~wo=O. 

The Hamiltonian JC., Eq. (58), can be diagonalized for 
~wo = 0 by means of the orthogonal transformation 

cosO. - sinO. cosB+ 

1 sinO. cosO. sinO+ 
T= 12 

sinB. cosB. - sinO+ 

cosB. - sinB. - cosO+ 

where 

tan20.=(v'3/2)W1/(WO-W1/2) , 

tan2B+ = (v'3/2) W1 /(wo + w1 /2) . 

cosO+ 

sinO+ 

The four eigenvalues of JC .. are given by 

% W1 + D., 1 W1 - D., -1 W1 + D., -1 W1 - D. , 

(71) 

(72) 

(73) 

(74) 

The time development is then calculated in the eigen­
base, and expectation values for the observable mag­
netization components are computed. Using 8.:::: 0 and 
B.;::: 0 for selective irradiation in the center, and ex­
panding the square roots D. and D. in powers of W1 /WO, 
one obtains for the single quantum transitions the sim­
ple result 

(v'3I~12»(t);:::0 , 

(2I~23»(t);::: _ bsin2w1t , 

(,f3i ~34»(t);::: 0 . 

(75) 

The effective rf field along the X(23) axis is thus 2W1 
(correct up to second order in W1/WO)' where the factor 
2 stems from the corresponding matrix element of Ix. 

For the triple quantum expectation value one finds 

(76) 

ciency reduction factor i (w~ / w~) with the corresponding 
factor for the double quantum transitions t(W1/WQ)' 
This is in qualitative agreement with the findings of 
Yatsiv,2 who showed that the triple quantum absorption 
Signal is proportional to the third power of the rf field 
strength. 

V. DOUBLE QUANTUM TRANSITION IN THE AB 
SPIN 1/2 SYSTEM 

Single transition operators are also well suited for 
the description of multiple quantum processes in systems 
composed of several coupled spins 1/2. These applica­
tions to high resolution NMR in liquids will be discussed 
more thoroughly at another place. The excitation of the 
double quantum transition in the strongly coupled AB 
spin system, where A and B are 1= 1/2 nuclei, is shown 
here as a simple illustrative example. 

For irradiation in the center of the spectrum w.= (WA 
-I- wB)/2 the Hamiltonian is given by 

JC .. = JCo + V , 

JCo=1~W(IA.-IB.)+27TJIA 'I B , 

V = W1 (lAx + I BX) , 

~W=WA-WB . 

(77) 

W A and wB are the Larmor frequencies of the two nuclei 
and J is the scalar coupling constant. An analytical 
diagonalization of JC. is not feasible in this case. There­
fore, an expansion of the time evolution operator is 
used13,14: 

with 

V(t')=exp(-iJCot')Vexp(+iJCot') . (79) 

T is here the time ordering operator. 14 

For a selective double quantum pulse which does not 
perturb the inner lines of the AB spectrum, i. e. , 

W1 «(¥ -7TJ) , (~ -7TJ)t»l, (80) 

where 

(81) 

a calculation in the eigenbase of JC 0 (with eigenstates 
ordered according to decreasing magnetiC quantum num­
ber) leads to the result 

Vet) = 0 , 

1'(1) (t) = - (wi / ~W2){81TJ(I!14) 

+ 1;12) -I ;24» _ 2 [0 + (21TJ)2 /0]/;23)} . 

The action of this pulse on a spin system in thermo­
dynamic equilibrium 

(82) 

(83) 

correct up to third order in W1/WO' The rf field strength p(O) = bl.= 2bl!W 
for exciting the triple quantum transition is thus given 

(84) 

by t (w~ / W~)W1' It is interesting to compare the effi~ is described by the Simple result 
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p(t) = 2b{I!l4) cos~ t + [~H) sin~ t} , 

where 

2/ 2 2rrJ W1 
~ = (W1 6.w) 8rrJ = 6.w/2 6.w/2 w1 

(85) 

(86) 

The effective rf field t points along the negative x(14) 

axis. Compared to the field wi> which would determine 
the flip angle for single quantum transitions, t is smaller 
by a factor of w1 /(6.w/2), in complete analogy with the 
factor w1 /w Q for a single spin [= 1, Eq. (48). The sec­
ond factor 21TJ/(6.w/2), multiplying W1 in Eq. (86), is 
an expression of the fact that, without internuclear 
coupling, no double quantum transition can be induced 
for spins [= 1/2. 

At first sight it seems that the larger the chemical 
shift difference 6.w the easier it becomes to selectively 
excite the double quantum transition since, in Eq. (80), 
(0 (n/2 - 1TJ) increases and (ii) a longer pulse duration 
t is required to rotate the (14) magnetization through a 
given flip angle a, due to the smaller effective rf field 
strength t, Eq. (86). However, relaxation has not been 
taken into account in these considerations, which will 
set an upper limit to useful pulse lengths t. 

VI. CONCLUSIONS 

A limited number of particularly simple applications 
of single transition operators has been described in this 
paper. They served the purpose to demonstrate the 
"natural" choice of the operators defined in Sec. II. 
Applications to more complicated situations can easily 
be conceived, particularly in connection with selective 
double resonance experiments and also in two-dimen­
sional spectroscopy. 15 Some examples will be treated 
in another place. 

It is also possible to generalize the concept of a single 
transition operator to the notion of a multiple transition 
operator designed for situations where a number of 
selected transitions, e. g., degenerate transitions, is 
simultaneously excited and/or observed. 
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