Chemical Physics

T
o
©
| -
| -
-
@)
ﬁ
Q
i =
=

Publishing

RESEARCH ARTICLE | AUGUST 15 1977
Selective excitation and detection in multilevel spin

systems: Application of single transition operators ©
A. Wokaun; R. R. Ernst

’ '.) Check for updates ‘

J. Chem. Phys. 67, 1752-1758 (1977)
https://doi.org/10.1063/1.435038

@ B

View Export
Online  Citation

Boost Your Optics and
Photonics Measurements

Lock-in Amplifier
Pt SRS IRTLL
Z\ Instruments {NG oLt More WWJ

Boxcar Averager

LYiLYiEL ¥20T udy G2


https://pubs.aip.org/aip/jcp/article/67/4/1752/529803/Selective-excitation-and-detection-in-multilevel
https://pubs.aip.org/aip/jcp/article/67/4/1752/529803/Selective-excitation-and-detection-in-multilevel?pdfCoverIconEvent=cite
javascript:;
javascript:;
https://crossmark.crossref.org/dialog/?doi=10.1063/1.435038&domain=pdf&date_stamp=1977-08-15
https://doi.org/10.1063/1.435038
https://servedbyadbutler.com/redirect.spark?MID=176720&plid=2372063&setID=592934&channelID=0&CID=872267&banID=521836446&PID=0&textadID=0&tc=1&scheduleID=2290748&adSize=1640x440&data_keys=%7B%22%22%3A%22%22%7D&matches=%5B%22inurl%3A%5C%2Fjcp%22%5D&mt=1714052507689991&spr=1&referrer=http%3A%2F%2Fpubs.aip.org%2Faip%2Fjcp%2Farticle-pdf%2F67%2F4%2F1752%2F18907727%2F1752_1_online.pdf&hc=f24d1af328d567e0879847ff42b8688ebd675d3a&location=

Selective excitation and detection in muiltilevel spin systems:
Application of single transition operators

A. Wokaun and R. R. Ernst

Laboratorium fiir Physikalische Chemie, Eidgenossiche Technische Hochschule, CH-8092

Ziirich, Switzerland
(Received 11 April 1977)

An alternative definition of single transition operators is given for the description of selective excitation
and detection experiments in multilevel spin systems. This definition has the virtues of a simple physical
interpretation and easy application to arbitrarily complicated systems. Some applications to the excitation
and detection of multiple quantum transitions in spin ! and spin 3/2 systems as well as in coupled spin

systems are described.

I. INTRODUCTION

In the past years a multitude of selective excitation
and detection techniques has been developed in various
kinds of coherent spectroscopies, ranging from radio-
frequency spectroscopy to optical spectroscopy. Out-
standing examples are the selective excitation of single
quantum transitions® and multiple quantum transitions®
in continuous wave magnetic resonance, selective double
resonance in magnetic resonance,® selective pulse ex-
periments in high resolution NMR, * laser spectroscopy,
and selective optical pulse experiments.®

5

In all these examples one or at maximum a few well
chosen transitions are excited selectively, and the same
or another set of transitions is being observed subse-
quently. The appropriate tools to theoretically describe
such experiments appear to be single transition opera-
tors, which permit a convenient formulation of selective
excitation and detection processes.

The scope of this paper will be limited to magnetic
resonance although there are many important applica-
tions particularly in coherent optical spectroscopy.
Several proposals to describe selective magnetic reso-
nance experiments by single transition operators have
been made in the past. An important early example is
the description of the behavior of a “simple” line by
Bloch-type equations by Abragam, ! This concept of
classical description of a quantum mechanical subsys-
tem has recently been extended by Hahn and co-workers’
to three-level systems.

The most recent contribution, which also initiated the
work to be described in the present paper, has been
made by Vega and Pines, ® who applied fictitious spin 3
operators for the description of double quantum NMR
for spin 1 systems. In a basic study®® they presented
a thorough discussion of the most relevant aspects of
double quantum NMR in terms of single transition opera-
tors.

The aim of the present paper is to present an alterna-
tive possibility for the definition of single transition
operators, which appear to us to possess several ad-
vantages over the definition given by Vega and Pines.
Particularly, there is a more natural connection to the
concepts of macroscopic magnetization vectors. The
definition is also of great generality and can easily be
applied to arbitrary systems containing an arbitrary
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number of spins with arbitrary spin quantum numbers.

The definition and description of the proposed single
transition operators are given in Sec. II. Applications
to double quantum NMR of spin 1 systems are described
in Sec. III. In Sec. JV some results for spin 3 are pre-
sented and, finally, Sec. V is devoted to a simple ap-
plication of single transition operators to coupled sys-
tems of spins 3. A more extensive discussion of multi-
ple gquantum transitions in coupled spin systems will
be presented in another place,

{I. DEFINITION OF SINGLE TRANSITION OPERATORS

Let ¢, and ¢, be two eigenstates of the considered spin
system. The single transition operators associated with
the transition » - s, which may represent a zero-,
single- or multiple-quantum transition, are defined in
the following way:

W, |I:m ld)]) = 1/2(61r Oy5+ 04 517) ’
@I o) =i/2(= 6, 8,5+ 64,8, (1)
t

W |1, |9,)=1/2(5;,6,,~ 6,5, .
From these definitions it follows that for the transition
sS—7r

L=L,

A et @)

1(37‘) I I("S)

F4 g .

The three operators belonging to one particular transi-
tion » - s obey standard commutation relationships

(17, 1) =™ ®3)

2

where (o, 8, ¥) is a cyclic permutation of (x, y, 2).

For the operators describing two connected transi-
tions » ~ ¢ and s ~¢ (with the states ¢, ¢, and §, all
distinct) the following commutation rules hold:

[I:.rt), I;st)]:[I;rt)’ I;st)]:i/z [;rs) ,

™, %) =0,

[, p=i/2 @
[I;rt), I(s”]=-—i/2 I;rt) ,

z

[I;rt)’ I:St)]=i/z Ifr") .

It is important to note the order of the states in the
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A.Wokaun and R. R. Ernst: Selective excitation and detection 1753

labels of the operators; changing this order results in
sign changes according to Eq. (2), e.g.,

[I;rt), I;“)]————i/?a[:n) R

Operators belonging to nonconnected transitions do al-
ways commute ,

[l(rs) [(tu)] 0 , Z}:x’ Y, 2 . (5)

It should be noted that there are linear dependences
among the z components,

I;rs) . I(st) +I‘(,_") =0 . (6)

z

The observable operators I, [,,I,, F,, F,, F,,
spectively for multispin systems can easﬂy be ex-
pressed by the defined single transition operators, For
a one-spin system with spin 7 and 2 Hamiltonian com-

muting with 7,, one obtains

L= 2 I, (1)

(rs)?
2 C(rs)I‘(r'rs) (8)
sl
with
™ =10+ 1)~ mym, , 9

where m, and m, are the magnetic quantum numbers of
the involved states. The summation runs over all or-
dered® pairs of single quantum transitions. For a
weakly coupled multi-spin 1/2 system one obtains simply

sz Z I‘(;'S) ’ A=X, Y, 2 . (10)
(rs)1

itl. APPLICATION OF SINGLE TRANSITION
OPERATORS TO AN ISOLATED SPIN /=1WITH
QUADRUPOLAR INTERACTION

The utility of single transition operators will be il-
lustrated by applications to selective pulse experiments
on noninteracting spins /=1 subject to a strong static
magnetic field By and to quadrupolar interaction. These
applications are relevant in view of the newly developed
techniques of double quantum spectroscopy by Vega and
Pines® and by Hashi.°

A. Free precession without rf irradiation

The Hamiltonian in the laboratory frame is chosen as
se=wol,+ 2 (31514 1)}, (11)

where wg is the quadrupolar splitting parameter of the
single quantum spectrum. Transformation into a co-
ordinate system rotating at the detection frequency w,
leads to the rotating frame Hamiltonian

30, = Awg I, + %ﬂ [38r2-rr+1), (12)
with
Awg=wo~w, . (13)

zFor the operator base, the nine operators {I‘m’
I( 3) I‘m, a=x, 9, 2} supplemented by the unity matrix
1 are chosen. The three z operators are linearly de-

pendent by the relation
1?10 =0, (14)

The single transition operators are in this case re-
lated to the fictitious spin 1/2 operators I, ,, o=x, v, 2,
k=1, 2, 3, defined by Vega and Pines,® in the following
manner:

La=2 20 1)

- 12 23
L,=2V32 - 1),

3_2-1(1(13) (12) 1(23>)
y,1=2-1/2(I;‘2’+1;2’”) ,
I ,=2120 _ [*) (15)
At
I,’1 =I:13J ,
Iz,Z:I;IS) ’
[z 3:‘_ [(13) .

From these equations it is seen that 7, , and [, , are lin-
ear combinations of operators belongmg to dlfferent
transitions. Consequently, the matrix representations
I¢ ,and I  in the eigenbase of I, {41, ¥, 4}, con-
tain more than two matrix elements different from zero.

However, the unitary transformation
=7, T, (16)

where T describes the base transformation into the
eigenbase of 12,

R
-z °
DXz xst =100 b1 T={1 ¥} 0 0 1 ,
i1
vz vz °

amn

generates matrices I ,, each of which contains only two
nonvanishing matrix elements. Thus, there exists a
formal similarit y between the set of matrix representa-
tions {18, 1% U9 ooy 4y 2} in the eigenbase of
I,, and the set of matrix representations {7% Mrr X=X, Y,
z, k=1, 2, 3} in the eigenbase of /2 listed in Table II of
Ref. 8(c)]. However, the operators themselves are
physically different, and related by Eqs. (15). In the
case of high field NMR the set {I‘7*’} is more appropriate
as operator base and leads to an easier visualization,
whereas for pure quadrupole resonance the set {Ia, ,} is
better adapted.

The density matrix in the rotating frame p(f} and the
Hamiltonian ¥, are now expanded in the base {7}

p@)=cols I (e I8P

Y=L Yy &

(28)(t)I(23) (18)(t)[us) , (18)

%, = Awoa(la) I(ZS) [(13)) 3 (Iua) :23)). (19)

Insertion of the expansion (18) into the density operator
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1754 A. Wokaun and R. R. Ernst: Selective excitation and detection

equation
p(t)==1i5,, p(t)] (20)

and use of the commutation relations (3) and (4) then

li?gs to the following closed solution for the coefficients
T (AF

e () = e (0) coswy - ¢ (0) sinwy, 2,

15 .
c; () = c,‘,“’(o) sinw,;, ¢ + c;”)(O) coswy,t ,

ety =c0) 1)
with
W= ) - (38,)y; (22)

Equations (21) can be interpreted as a precession of the
transverse magnetization components of transition (if)
about the z axis. In connection with double quantum
spectroscopy®!! it is to be noted that the double quantum
expectation values (7 &%)() and (I ¥)(¢) precess at wy,
=2Aw, and are not influenced by the quadrupolar inter-
action.

The general result of Eqs. (21) constitutes a con-
siderable simplification as compared tothe corresponding
solution in the operator base {/, ,}, given by Vega and
Pines [Ref. 8(c), Eq. (69)], where an assumption on the
vanishing of three coefficients at time /=0 had to be
made to obtain simple expressions, and where the mag-
netization components of the “x frame” and “y frame”®
are mixed during time evolution.

B. Irradiation near a single quantum transition

To excite the single quantum transition 1 -2 at fre-
quency wg+wg, w, is chosen as

w,=wy+wg— 0w, (23)
such that
Awﬂswﬂ_wr:—wa+6w . (24)

The Hamiltonian in the rotating frame then becomes
%, = (- wo+ 5(1))(1:12) + [:z:n +I:13’)
2R 1) VB L) . (@25)
For wy=0 the eigenvalues are given by
(ZKZ..)u = - %‘wo+ bw,
(3(3,)22 = - % Wag (26)
()35 =+5 wo— 0w .

If the condition w; << wy is satisfied, the operator

w; V2 I# can be omitted, as its off-diagonal elements
connect the levels s, and 5 separated by an energy dif-
ference of 2w,. Rearranging the remaining terms one
arrives at the following representation of iC, :

7,230, +3Cs ,
y=8wI 4w, VP,

3p=— G wg—6)I 18y 2m
(3¢, 52} =0.

¥, is the familiar Hamiltonian of a two-level system
irradiated with a rotating rf field with amplitude w, vz

and with resonance offset 6w. The factor v2 originates
from the matrix element of I, which, for I=1, is a
factor of V2 larger than that for 7=1/2,

To calculate the time development of the density ma-
trix during a selective single quantum pulse acting on
transition (12) alone, 3¢, is diagonalized by a rotation

about the y*® axis through an angle 4, with

tand = w, vV2/0w . (28)
One obtains

Kyp=T 50, T=we I 92, (29)
where

T=exp(-i01%) (30)
and

we,f=(6w2+2wf)1/z . 31)

3¢, remains invariant under the rotation 7T of the {12)
coordinate system.

The effect of the single quantum pulse on a spin system
in thermodynamic equilibrium can now easily be cal-
culated. The equilibrium density matrix is written

Po= 6{1212) +I:23) +Ii13)} , (32)

omitting the term proportional to the unity matrix and
defining b as — wy/BT. Performing the rotation about
the y“® axis leads to

p7(0) = {8 coso — 112 sing) + (12 L 119} . (33)

The time development is calculated with the Hamiltonian
(29), and the resulting density matrix p,(#) transformed
back into the original frame, yielding

o(t) = b{I ¥ (cos®0 + sin6 cosw,,, ) + I 12 £ sin26

(12)

. . (23) (13)
U2 sing sinweg £+ (15 18}

(34)
The pulse has generated only transverse (12) magnetiza~
tion, while the (23) and (13) magnetization components
have remained parallel to the z axis.

X (1 -coswygt)~1

C. Irradiation near the double quantum transition

At first the irradiation frequency is chosen exactly
in the center of the spectrum, i.e., Awy=0. The Hamil-
tonian is then given by

1,23 0o — 1PN s 0, VIR L1 3y, (35)

¥, is diagonalized by the orthogonal transformation

Kp=T 30, T, (36)
with
1 1 1
NCH cosb/2 - 75 sing /2 -7z
T= sin6/2 cos6/2 o §, @7
1 1 1
7 cos8/2 - NCH sind /2 7T
tand = 2u4 /wq . (38)

The eigenvalues are given by
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A. Wokaun and R. R. Ernst: Selective excitation and detection 1755

(3€, 1)1 = —%—w0+§ W,
(€, 7)o =— Fwo-3 W, , (39)
(mrr)33=+% Wq »
with
w, = (w%+4wf)“z . (40)

Because of the linear dependence, Eq. (14), the opera-
tor representation of 3¢ r is not uniquely determined.
Two forms will prove useful in the following:

To calculate the effect of a double quantum pulse on
a spin system in thermodynamic equilibrium the density
matrix

00=b{li12)+l:23)+l:13)}=2()1‘(,13) (43)

is first subject to the transformation 7, Eq. (37), yield-
ing

pr(0)==20{18 cos0/2 - 1 sing/2} . (44)

Recognizing that I* commutes with (I ~ 1) [in the

. . (23) O
o= tw —w o+ to )(1(12)_1:23>) (a1) first form of 3¢, Eq. (41)], while I,**’ commutes with
o2 12 e ) 2 19 5 IQ £ s (8 5 1 [in the second form of 3¢,,, Eq. (42)], pp()
=—glwy+wd I, + G, —gwdI, 7+ 1.7 (42) is found to be
|
pr(t) =~ 2b4cos8/2 1 cost(w, — wg) £+ 1 sinz(w, - welt] - sin0/2 [ cosi(w, + wolt - I ¥ sink(w, + wok]} . (45)

Transformation back into the original frame yields

o(t) =261 [cos®0/2 cosi(w, — w)t + 5in®/2 cost(w, + wo)t] - I

-3 3.2_ sing(

For a selective double quantum pulse w; << wg the gen-
eral solution can be considerably simplified using 6 =0
and expanding the square root to give

3w, - we)= 0l fwg . 47)
The result is

wf

2
p(t)zzb{zgl”cos t-1sin Sl—t} . (48)
Wq w

Q

Before the implications of Eqs. (46) and (48) are dis-
cussed the influence of 2 small resonance offset Aw, is
considered. Transforming the Hamiltonian

2w

30 (1212) - 1:23))+w1 ‘/‘2"(1;12)+I;23)) (49)

3(3': AwOIz+

with the matrix T defined in Eq. (37) yields
3,5 = — 28001 ¥ c0s6/2 - I ¥ sing /2)
+3(w, - 0T+ G, + Fw @ P - 1) (50)
It is illustrative to rotate the (13) axis system through
an angle — /2 about the % axis. With
U=exp (+i%1;’3’) (51)
one obtains
Kyry = Ut Kr U
=+ 280, [11® cosﬂ/Z — (/NI _ 1) sine/2)
+ 3w, — 0T P+ Bw, + 5 0@ 8P -1y . (52)
Simplifying this Hamiltonian for w; « wg yields
HCypry™ 20w I8 4 (0} /0w IS
s, rhwd P -1) (53)

The offset field along the z**? axis is 2Aw,, a charac-
teristic feature of the double quantum transition. The

(13)

o [c0s?0/2 sin3(w, ~ wg)t — 5in9 /2 sinz(w, + wg)t]

1
18 L 13 sing(w, - w)t + sin(w, + wot] - T sing(I 7 - 1 ") - cosz(w, — wot + cost(w, + wot]} . (46)

r
effective rf field w?/ wq points along the positive x
axis. For Aw,=0 this field simply rotates the (13)
magnetization about the £ axis. This is the physical
interpretation of Eq. (48), which will now be rederived
in a much shorter manner.

(13)

Since, for 9=~0, T-U is approximately equal to the
unity matrix, the initial condition is given by

pry(0)=po=261."" . (54)

Since the last term of the Hamiltonian (53) commutes
both with the rest of 3¢,p, and with 7', the density ma-
trix evolves as

p)= ppy(d) . 2
zexp(.i ‘”—‘tlim)zbzﬁm’exp (+z’ —“’—‘tl,ﬁ”’), (55)
CIJQ wQ

which can be easily shown to be identical with Eq. (48).

A comparison with the results obtained by Vega and
Pines is now in order. The diagonalizing matrix 7 in
Eq. (37) can be represented as

[}
T=exp [~i 75 (1;‘2’_1;”’)]exx>(-i 5 I;"D, (56)
and, with the definition of U, Eq. (51), one finds
. 8
T- U:exp[__i ‘/___2___ (1512) _1223))] . (57)

Noting that the sign of the rf field has been chosen in
the opposite manner by Vega and Pines, ® and that, con-
sequently, the sign of the angle # must be changed when
translating results of this work into the formalism of
Ref. 8(c), the operator T .U turns out to be identical
with U, , used in Eq. (32) of Ref. 8(c). The Hamiltonian

¥,.rys Eq. (52), is equivalent to Eq. (42) of Ref. 8(c),
and the density matrix after the double quantum pulse
(46) corresponds to Eq. (89) of Ref. 8(c).

J. Chem. Phys., Vol. 67, No. 4, 15 August 1977
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1756 A. Wokaun and R. R. Ernst: Selective excitation and detection

As shown by the Hamiltonian 3C,,,,, Eq. (53), and the
solution for the density matrix, Eq. (48), the double
quantum pulse can be treated as a two-level problem if
wy < wg. This is an example for the “simple line” con-
cept introduced by Abragam,! who shows that Bloch-
type equations result for the relevant density matrix
elements whenever the rf irradiation influences ex -
clusively one transition in a spin system of arbitrary
complexity.

This conclusion has recently also been reached by
Gold and Hahn'? in a different manner. Setting up dif-
ferential equations for all density matrix elements in the
three-level system of a spin /=1, and noting that the
time derivatives of transverse single quantum magnetiza-
tion components are small for selective irradiation in
the center of the spectrum, they arrive at generalized
Bloch equations for the three magnetization components
of the double quantum transition.

IV. ISOLATED SPIN /=3/2 SUBJECT TO
QUADRUPOLAR AND ZEEMAN INTERACTIONS

This section is intended to show that the single transi-
tion operators are equally useful for spin systems with
I>1, This is an advantage over the definitions given by
Vega and Pines, ® which are designed specifically for
I'=1 and cannot easily be generalized. Suitable nuclei
with I=3/2 for high field spectroscopy and for the ob-
servation of multiple quantum transitions are "Li, °Be,
and B,

The rotating frame Hamiltonian for a system of non-
interacting I'=3/2 nuclei is again given by

3, =Awg I+ swo[3 12~ II+1)] + w, I, . (58)
The eigenstates for w, =0 are numbered in the order of
decreasing magnetic quantum number, with the eigen-
values

E1=%Aw0+wo ,

1
EZ:EA(L)O— Weo (59)
Ea:"%Awo—‘*’o ’

E,=-3Awg+wq .

The single quantum spectrum consists of three lines
at frequencies wy— 2wq, wg, and wy+2wq. The double
quantum transitions occur at frequencies wy - wg and
wg+ wgq, Which, in contrast to the I=1 case discussed in
Sec. 111, depend on the quadrupolar splitting wg. There-
fore, selective excitation of a double quantum transition

|

will only be possible for a single crystal sample with
one or several discrete values of w,. The wg-indepen-
dent triple quantum transition, at frequency w,, coincides
with the center line of the single quantum spectrum,

A. Selective excitation of a double quantum transition

With the choice Awy= - wg the energy eigenvalues be-
come

Ey=-3wg, (60)

I, in Eq. (58) is now decomposed into single transition
operators

L=VBUMP 1321 (61)

Because (E, - E;)=3(E, - E,)=3(E; - E,), the influence of
the operators 7.** and I*® is considerably stronger than
that of 1:3“, such that the latter can be neglected for

w; << wq. I, is then diagonalized by the matrix

/3 /3 .
70059/2 - 5sm9/2 -

e

sing/2 cosf/2 0 0
- 72—7-cos9/2 - 7% sing/2 \/_%’ 0 ’
0 0 0 1
(62)
with
tand = V7w, /wgq . (63)

The similarity with Eq. (37) for =1 is obvious, but the
transforming matrix is less symmetric for I=3/2 be-
cause the matrix elements (1), and (I, );; are different.

The diagonalized Hamiltonian can be represented as
13)

%,Tzé(we—wq)lz +(3 we+%wo)
X (142 _I;zs))_%wo(1:14)+1224)+1234)) ’ (64)
w, = (W5 + TWi) /2, (65)

with eigenvalues

1 1
(3C¢T)11 FeWot2W,, (3(3-,-1')22= —Wg—2W, ,

(66)
(#Cpr)ss = — 3 We (Cprdas=+3 wg .

After evolution for a time # under the influence of the
Hamiltonian 3C,, the system, originally in thermodynamic

equilibrium, is described by the density operator

pr®)=b{-% cos®0/21® _ & sin®0/2 1% - (8 V3/7) cost/2[I ™ cost(w, - wolt + [;m sinz(w, ~ wo)t] + (8V3/7) sing /2

(23)

x[I2¥ cost(w, + wokt ~ I

x

For the double quantum expectation value {I ;13’)0‘) one
obtains

A =Tr I M o)} = Tr{ZPpr (1)}

sind(w, + wo)f] +# sind [1* cosw, ¢t + I M sinw, 1]+ [T} + 130 + 134} . 67

x

—
= - 5(4V3/7)cos?9/2 sinz(w, — wolt
- 5in%0/2 sinz (w, + wo)t] . (68)

In the case of a selective double quantum pulse with w,

J. Chem. Phys., Vol. 67, No. 4, 15 August 1977
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A.Wokaun and R. R. Ernst: Selective excitation and detection 1757

< wg and §~0 one can again expand 3(w, - wg) with the
result

4
TSl L R T (69)
The close analogy with Eq. (48), where
3) wf
{a, )(t):-bsinw—t, for I=1, (70)
Q

is obvious. For the double quantum transitions in the
I=3/2 spin system the effective rf field along the x®
(or x**) axis is given by 7w’ /dwg.

B. Excitation of the triple quantum transition

The triple quantum transition (14) coincides, as men-
tioned before, with the single quantum transition (23),
They are simultaneously excited when the irradiation is
applied in the center of the spectrum with Aw,=0.

The Hamiltonian 3¢,, Eq. (58), can be diagonalized for
Awg=0 by means of the orthogonal transformation

cosf, -—sind_ cosé@, —sind,
1 . .
r= ﬁ sing cosf_ sind, cosf, ’ 1)
sind _ cosf_ ~sinf, —cos8,
cosf. -—sinf. -~cosf, sind,
where
tan20_= (V3/2) w, /(wqg~ w, /2) , (712)
tan26, = (V3/2) w; /{wg+w, /2) .
The four eigenvalues of 3C, are given by
%wl*‘D-’ %wl_D-, "%wl'*'Do: "%wl‘Do, (73)
with '
a2 23172
D= (wg~wqwy+wy) ', (74)

D, = (wh+ wouwy+w))/?

The time development is then calculated in the eigen-
base, and expectation values for the observable mag-
netization components are computed. Using §_=0 and
8,=0 for selective irradiation in the center, and ex-
panding the square roots D_ and D, in powers of w, /wo ,
one obtains for the single quantum transitions the sim-
ple result

V31M@W)~0,
QI (e)~ - bsin2wyt |, (75)
(I =0 .

The effective rf field along the x® axis is thus 2w,

(correct up to second order in w, /wo), where the factor
2 stems from the corresponding matrix element of I, .

For the triple quantum expectation value one finds
I = - 3 bsing (Wi /0d)t (76)

correct up to third order in w, /wq. The rf field strength
for exciting the triple quantum transition is thus given
by 3 (w? /wy)w; . It is interesting to compare the effi-

ciency reduction factor 2w /wzo) with the corresponding
factor for the double quantum transitions §(w; /wg).
This is in gqualitative agreement with the findings of
Yatsiv,? who showed that the triple quantum absorption
signal is proportional to the third power of the rf field
strength.

V. DOUBLE QUANTUM TRANSITION IN THE AB
SPIN 1/2 SYSTEM

Single transition operators are also well suited for
the description of multiple quantum processes in systems
composed of several coupled spins 1/2. These applica-
tions to high resolution NMR in liquids will be discussed
more thoroughly at another place, The excitation of the
double quantum transition in the strongly coupled AB
spin system, where A and B are [=1/2 nuclei, is shown
here as a simple illustrative example.

For irradiation in the center of the spectrum w,=(w,
+wg)/2 the Hamiltonian is given by

v}Cr:JC()*- 14 3
C}CO:%A(‘U(IA:‘IB:)*'ZnJIA 'IB ’
V= wl(IAx+[Bx) ’

(77

Aw=w, - wg .

w, and wy are the Larmor frequencies of the two nuclei
and J is the scalar coupling constant. An analytical
diagonalization of 3¢, is not feasible in this case. There-
fore, an expansion of the time evolution operator is
used!® 14

exp(-—iﬁc,t)={TeXp[——i J'Ot V(t')dt']} exp(— 3¢y t)

=exp{-i [VE) + V(@) + ... |t exp(~ i3eet) ,
(78)
with
V(t') =exp(-i3Ct") Vexpl(+iicy’) . (79)
T is here the time ordering operator. !

For a selective double quantum pulse which does not
perturb the inner lines of the AB spectrum, i.e.,

Q Q
Wy << (2— - nJ) , (*2— - 7TJ>L‘>> 1, (80)
where
Q=[au’+ 2197} /2, (81)

a calculation in the eigenbase of 3¢, (with eigenstates
ordered according to decreasing magnetic quantum num-
ber) leads to the result

V=0, (82)
T/(l) (t) - ((.L’f /sz){SwJ(I:“)
LI 1B _2(Q. @) /RIIP) . (83)

The action of this pulse on a spin system in thermo-
dynamic equilibrium

p(0)=bI =261 (84)

is described by the simple result
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p(t)=20{1* cost ¢ + I sing ), (85)
where

2nd wy

2 A2 _ Wy
L={(wi/Aw®)8nJ 50/ Bo/r Yt

(86)

The effective rf field ¢ points along the negative x ¥
axis. Compared to the field w,, which would determine
the flip angle for single quantum transitions, {is smaller
by a factor of w, /(Aw/2), in complete analogy with the
factor wy /wq for a single spin /=1, Eq. (48). The sec-
ond factor 27J/(Aw/2), multiplying w, in Eq. (86), is
an expression of the fact that, without internuclear
coupling, no double quantum transition can be induced
for spins I=1/2,

At first sight it seems that the larger the chemical
shift difference Aw the easier it becomes to selectively
excite the double quantum transition since, in Eq. (80),
(i) (/2 - 7J) increases and (ii) a longer pulse duration
¢t is required to rotate the (14) magnetization through a
given flip angle a, due to the smaller effective rf field
strength £, Eq. (86). However, relaxation has not been
taken into account in these considerations, which will
set an upper limit to useful pulse lengths f£.

VI. CONCLUSIONS

A limited number of particularly simple applications
of single transition operators has been described in this
paper. They served the purpose to demonstrate the
“natural” choice of the operators defined in Sec. II.
Applications to more complicated situations can easily
be conceived, particularly in connection with selective
double resonance experiments and also in two-dimen-
sional spectroscopy.'® Some examples will be treated
in another place.

It is also possible to generalize the concept of a single
transition operator to the notion of a multiple transition
operator designed for situations where a number of
selected transitions, e.g., degenerate transitions, is
simultaneously excited and/or observed.
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