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NMR pulse experiments are described in terms of pathways through various orders of
coherence. A general procedure is indicated for the systematic design of phase cycles that
select desirable coherence-transfer pathways.

INTRODUCTION

Some of the most successful new pulse techniques in high-resolution nuclear mag-
netic resonance rely on coherence-transfer processes. To name a few, we mention
homonuclear and heteronuclear two-dimensional (2D) correlation spectroscopy
(1-7), multiple-quantum spectroscopy (8-12), multiple-quantum filtering (/3-16),
spin pattern recognition (/7), and various methods for the enhancement and sim-
plification of 1D carbon-13 spectra (18-21). The development of these experiments
has been accompanied by a proliferation of recipes for the elimination of unwanted
signals and artifacts by phase-cycling techniques. Because many different, often rather
intuitive approaches have been used, the common basis of these techniques is not
always transparent.

In an effort to provide a unified picture, we describe pulse experiments in terms
of pathways through various orders of coherence. This “coherence-transfer pathway”
approach turns out to be useful to design novel experiments for specific purposes.
The selection of the desired pathway is accomplished experimentally by means of
phase-cycling procedures.

There are parallels between this work and a paper recently submitted by A. D.
Bain (22), who also applied the concept of coherence-transfer pathways. In the present
paper, we demonstrate its utility in homonuclear experiments involving several co-
herence-transfer steps, while Bain is concerned with the systematic description of
phase cycles in connection with quadrature detection and heteronuclear coherence
transfer (22).

COHERENCE AND COHERENCE-TRANSFER PATHWAYS

The concept of “coherence” is a generalization of the notion of transverse mag-
netization. Coherence can be associated with a transition between a pair of eigenstates

* Present address: Institut fiir Organische Chemie, Universitiit Frankfurt, D-6000 Frankfurt, West Germany.
0022-2364/84 $3.00 370

Copyright © 1984 by Academic Press, Inc.

All rights of reproduction in any form reserved.



COHERENCE-TRANSFER PATHWAYS IN PULSED NMR 371

|ry and |s) with an arbitrary difference in magnetic quantum numbers p,, = M,
— M,. Transverse magnetization corresponds to a particular class of coherence as-
sociated with a change in quantum number p = 1.
Formally, coherence can be conceived as a coherent superposition of two eigenstates
(23)
¥is = alr)y + afs). [1]

Such a non-equilibrium state develops in time under the time-independent free
precession Hamiltonian. In terms of the density operator o, coherence between the
states |ry and ls) is expressed by the existence of nonzero density matrix elements
o, = |ry(sl and o, = |s){r]. These elements indicate a “‘transition in progress” between
the two connected states.

In high-field NMR, each eigenstate |r) is characterized by a magnetic quantum
number M, and each coherence ¢, by a magnetic quantum number difference
Prs = M, — M, which we call “coherence order.” Note that each transition is associated
with two coherences o,, and o, with coherence orders of opposite sign. The quantities
M, and p,, are “good” quantum numbers,' and each coherence o, conserves its
quantum number p,; in the course of free precession. Radiofrequency (rf) pulses,
however, may induce a transfer between coherences o,, and ¢, a process that may
change the coherence order.

It is often sufficient to classify the various terms of the density operator according
to the coherence order p:

o(f) = X o”(1). (2]
F4

For a system of K spins 1/2, p extends from —K to K. This classification can be
carried out explicitly if the density operator is expressed in matrix elements, or al-
ternatively in a suitable set of base operators, such as irreducible tensor operators T},
(24), products of shift operators (e.g., 71]) (25), or single-transition shift operators
(e.g., 1™ = I¢" + iI{). On the other hand, products of Cartesian operators (e.g.,
Ii.dy) (25) or Cartesian single-transition operators 1Y (26, 27) are not particularly
suitable for a classification according to p.

The characteristic properties of coherence of order p (or simply “p-quantum co-
herence”) are demonstrated by the transformation under rotations about the z axis:

exp{—iPF.}¢” exp{iPF.} = o exp{—ip¥} [3]
where

N
Fz: zlkz-

k=1

We found it convenient to represent the sequence of events in various experiments
in a “coherence transfer map” such as shown in Fig. 1. Free precession proceeds
within the levels of this map, while pulses may induce “transitions” between coherence

' This is related to the fact that the Hamiltonian has rotational symmetry. The eigenstate |r) transforms
according to the irreducible representation M, of the one-dimensional rotation group (24). Hence |ry(s|
transforms according to the representation p,, = M, — M,.
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FIG. 1. Coherence-transfer maps (CT maps) for various 2D experiments involving three pulses. Solid
lines indicate pathways that involve a single-order p in the evolution period. For a basic understanding of
the experiments, these pathways suffice. If pure phase lineshapes are not essential (e.g., if composite lineshapes
or absolute-value plots are acceptable), it is sufficient to select the pathways shown by solid lines. Mirror-
image pathways with —p in ¢, are indicated by dashed lines. For pure phase spectra (i.e., pure 2D absorption
lineshapes), both solid and dashed pathways must be retained. Four experimental schemes are shown: (a)
2D exchange spectroscopy (NOESY), (b) relayed correlation spectroscopy (pathways shown for fixed mixing
interval r,,), (c) double-quantum spectroscopy and (d) 2D correlation spectroscopy with double-quantum
filter (v, = 0).

orders. The route of a particular component of coherence is referred to as a “coherence-
transfer pathway.” All coherence-transfer pathways of a pulse experiment start with
p = 0 (thermal equilibrium) and must end with single-quantum coherence to be
detectable. If we choose to observe the complex signal in the detection interval by
quadrature detection,

sT(0) = s) + is,(0) = Tr{a()F,} + i Tr{o(O)F,} = Tr{a()F*} [4]

where F* = 2, I}, only density operator components proportional to I can contribute
to the signal, and all pathways that do not lead to p = —1 can be disregarded. However,
as noted by Bain (22), imperfect quadrature detection (i.e., imbalance of the two
receiver channels) leads to partial observation of single-quantum coherence com-
ponents with p = +1.

The examples in Fig. 1 show the coherence transfer pathways that are relevant to
four well known techniques involving three consecutive coherence-transfer steps.
Apart from the incrementation of the intervals in the course of the experimental
sequence, these methods merely differ in the selection of coherence-transfer pathways.
A single pathway suffices if absolute-value spectra or phase-sensitive spectra with
composite (“phase-twisted”) lineshapes are acceptable, while “mirror image” pathways
(dashed lines in Fig. 1) must be retained simultaneously if pure phase spectra (i.e.,
pure 2D absorption lineshapes) are essential, as will be discussed below.
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It is important to note that the order p = 0 may comprise Zeeman polarization
(represented by density operator terms proportional to i), longitudinal scalar or
dipolar spin order (e.g., Ii.l;;), and zero-quantum coherence (e.g., Ii/;). This is
particularly relevant for 2D exchange spectroscopy (Fig. 1a) (28, 29). In the case of
relayed magnetization transfer (Fig.1b) (30) the delay 7, can be kept constant, in
which case the sign of the coherence order in 7, is irrelevant and two pathways can
be allowed simultaneously. It is also possible to vary 7, in concert with ¢, (31, 32),
in which case the pathway selection determines whether the w; domain will contain
sums or differences of chemical shifts. In multiple-quantum spectroscopy (Fig. ic)
(8-12), we have the option of observing both +p and —p coherences in the evolution
period, or we may restrict the transfer as shown by solid lines. In correlation spec-
troscopy with multiple-quantum filters (Fig. 1d) (I4), it is not necessary to select the
sign of the coherence order in the 7, interval, but one has the option of selecting
only p = +1 coherence in the evolution period.

SELECTION OF COHERENCE-TRANSFER PATHWAYS

In experiments employing nonselective pulses, numerous coherence-transfer path-
ways can occur simultaneously. In principle, it is possible to use cascades of selective
pulses to restrict the number of pathways, but it turns out that phase-shifted nonselective
pulses provide a more flexible approach to the selection of desirable pathways.

Consider a complete pulse experiment with n coherence transfer processes expressed

by the propagators U,, U,, -+ U,:
Uy U2 Un
G ==+ = o(d) [s]

In the context of 2D spectroscopy, the first propagator typically represents the excitation
process, while the last propagator corresponds to the conversion into observable
magnetization. The intermediate propagators, which only occur in some experiments,
induce coherence transfer between various orders. A propagator may represent a
single pulse or a sequence of pulses, such as the composite sequence (7/2)-7—(7)~7-
(/2) commonly used for multiple-quantum excitation (25). Each propagator U, causes
a transfer of a particular order of coherence ¢”(f; ) into numerous different orders
o”(t7):

Uiet)U ™" = 2 o?(t) [6]

P

where the arguments of the density operators refer to the state just before and im-
mediately after the transformation by U;. This leads to a “branching” or “fanning
out” of the coherence-transfer pathways. After n consecutive coherence-transfer steps,
each pathway can be characterized by a set of n values:

Ap; = p'(tT) — p(&) [7]

corresponding to the changes in coherence order under the propagators U;. The
complete pathway is therefore specified by a vector

Ap = {Apy, Ap», .. ., Ap,}. (8]
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Since all pathways must begin with p = 0 and are assumed to end with p = —1
to be observable (see Eq. [4]), the sum of the components of the vector Ap is fixed,

ZAp,-= -1 [9]

Thus if (n — 1) values of Ap; are specified by (» — 1) independent phase cycles as
discussed below, the entire vector Ap and hence the complete pathway are defined
unambiguously. Because the rf phase shifts required for the pathway selection are
often subject to systematic errors, it may however be advisable in practice to employ
n independent phase cycles to select the desired Ap; values under all n coherence
transfer steps.
The key to the separation of coherence-transfer pathways is the use of propagators
U,(¥;) that are shifted in phase
Ui(¥;) = exp{—i¥,;F.} U,(0) exp{i®,F,}. [10]
If a particular propagator U is made up of a sequence of pulses, each constituent
pulse must be incremented in phase. For example, the excitation sequence commonly
used in double-quantum spectroscopy becomes (w/2)e~T~(m)e~7—(7/2)e.
Under a phase-shifted propagator U;(¥;), Eq. [6] takes the form
U)oU) = 2 o”(tF) exp{—iAp:¥;:}. [11]
”
Thus the phase shift of a coherence component that is transferred by the propagator

U, is given by Ap;#;. In symbolic notation, Eq. [11] may be written
Ui(#:)

of(t7) — 2 o' (1) exp{—iAp;¥;}. [12]

p

After n consecutive coherence-transfer steps, one obtains single-quantum coherence
components (p = —1) with phases that reflect the pathways Ap and the propagator
phases ¥;:

P, P, =TT =P = =0,=0,0
X exp{—i{Ap1¥1 + Ap,¥$r + - - - + Ap#y)}  [13a]

= ¢# (¥ = 0) exp{—iAp¥} [13b]
with the vector notation for Ap in Eq. [8] and
P={P,0,...,9,) [14]

The phase shifts of Eq. [13] also occur in the complex signal observed during the
detection period (Eq. [4]). It is convenient to decompose the signal into contributions
of individual pathways:

s(t) = 2 s%%). [15]
Ap
With a given vector of phase shifts ¥, the signal associated with a certain pathway

carries the phase
AP, 1) = 5220, 1) exp{—iAp®}. [16]
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The characteristic phase shift in Eq. [16] can be used, following Wokaun and Ernst
(9), to separate the different pathways under a particular propagator U; by a Fourier
analysis with respect to the rf phase of this propagator U;.

To restrict the coherence transfer under U; to a particular change Ap; in coherence
order, we may perform N; experiments where the rf phase ¢; of the propagator is
incremented systematically:

¢, = k2x/N;, k=0,1,...,N— 1. [17]

The N; signals s(¥;, 1) observed in the detection period are then combined according
to a discrete Fourier analysis with respect to the phase ¢;,
1 Ni—1
587y = — 2 5(%:, 1) exp(idpi®.). [18]
Ni ki=0
By this process, all coherence-transfer pathways are selected which undergo a change
in coherence order Ap; under the propagator U;. However, by carrying out a series
of N; experiments, it is not possible to select a unique Ap;, but rather a series of
values Ap; = nN; with n = 0, 1, 2, .... This situation is reminiscent of aliasing in
Fourier analysis and is a consequence of the sampling theorem. Clearly, if a unique
Ap; value must be selected from a range of r consecutive values, N; must be chosen
at least equal to r.
It is useful to exhibit the required selectivity of the phase cycle by listing all possible
changes in coherence order, for example,

Api: —33 _25 _19 (0)’ (1)9 2: 35 [19]

where the values of Ap; that must be blocked are set in parentheses, while the desired
value is set in boldface. The minimum number of experiments to be performed in
this case would be N; = 3. The examples discussed below will illustrate the resulting
phase cycles.

In many experiments a more restrictive selection of pathways is desired than can
be obtained by cycling the phase of a single propagator U;. In such cases, a desired

pathway with successive changes in coherence order Ap,, Ap,, ..., Ap, under the n
propagators can be retained selectively by cycling the phases of each of the relevant
propagators U (¥,), Ux(¥,), ..., UJ?¥,) separately:
Y, =k2x/Ny, ..., Y, = k.2n/N,,
for
kk=0,1,...,Ny—1,..., k,=0,1,...,N,— L. [20]

A unique prescription for the phase cycle is obtained by incrementing &, through all
N, steps before incrementing k,. The total number of experiments to be performed
is determined by the product N = N+ N,-...-N,. To select the desired pathway
characterized by the vector Ap in Eq. [8], the signals must be combined according
to Na—1 Np—1

Z 2 -+ 2 s() exp{+iAp¥} [21]

=0 k2=0 kn=0

1
§5() = N,

where
Ap‘P = Ap1k121r/N, + Ap2k227l'/N2 + e+ Ap,,k,,21r/N,,. [22]
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The principle of the pathway selection becomes obvious by observing that the signal
5(2) consists of the contributions of all possible pathways Ap’ (see Eqgs. [15] and [16]):

s(B) = 2 s%%(0, 1) exp{—iAp'¥}. 23]

Ap/

Clearly, the discrete #n-dimensional Fourier analysis in Eq. [21] leads to a nonvanishing
signal for Ap’ = Ap. However, since the selectivity under each propagator U, is
determined by the number N; of phase increments, there are a manifold of pathways
that survive the selection process, with

Ap = {Ap, = m\Ny, Ap, £ ;N,, ..., Ap, £ n,N,}. [24]

Because the maximum order of coherence |p.] < K in a system with X spins 1/2,
and because the amplitude of coherence transfer into very high orders is small, it is
usually possible to retain a unique pathway by relatively small increment num-
bers N;.

There are three different strategies to achieve the multiplication of the signals by
the phase factors necessary for the Fourier analysis in Eq. [21]: (a) multiplication of
the complex signals with complex phase factors (this can be achieved conveniently
with routine phase-correction procedures); (b) phase-shifting of all pulses in the se-
quence through 2 Ap;¥; and addition of the signals without weighting; (c) shifting
of the phase of the receiver reference channel. Strategy (c) was adopted in the ex-
perimental examples discussed below. With the definition of the observable operator
F* in Eq. [4], the reference phase must be ¥ = —Z Ap,¥;. The opposite phase shift
must be applied if the observable operator is F—, in which case the pathways terminate
at the level p = +1.

The parameters involved in Eq. [21] are shown schematically in Fig. 2 for a hy-
pothetical experiment involving three coherence-transfer steps. To select the desired
pathway, the reference channel of the phase-sensitive detector (PSD) can be shifted
in phase as indicated in the figure.

PURE 2D ABSORPTION LINESHAPES

In the evolution period ¢,, there are always two coherences associated with each
transition [r) < |s) that have opposite orders p = M, — M, and p’ = —p and opposite
frequencies. If the two coherence-transfer pathways +p — —1 and —p — —1 are both
allowed, the counterrotating components lead, after complex Fourier transformation
with respect to #,, to signals that are symmetrically disposed about w; = 0. Each
signal has a lineshape that consists of an admixture of 2D absorption and 2D dispersion
components (I). This composite lineshape is often referred to as a ““phase-twisted”
lineshape (33).

Consider by way of example a 2D correlation spectrum (COSY) (/-4) obtained
with the basic pulse sequence (7/2),—~t,—(8)e—t, and complex Fourier transformation
in both dimensions. The schematic spectrum in Fig. 3a shows only diagonal peaks
for clarity. The peaks that appear symmetrically with respect to w; = 0 (open and
filled symbols) have been referred to as “P-type” and “N-type” signals (3) or “anti-
echoes” and “echoes” (4). In terms of coherence transfer, these signals result from
p=0——1— —1and p =0 — +1 — —1 pathways, respectively.
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F1G. 2. The selection of a coherence transfer pathway, characterized in this hypothetical example by the
changes in coherence order Ap, = +3, Ap, = —7, and Ap; = +3, can be achieved by cycling the phases
of the three coherence transfer pulses and by shifting the phase of the reference channel of the phase-
sensitive detector (PSD).

If the two frequency components at *+w, have equal amplitude, a real Fourier
transformation with respect to ¢, leads to a symmetrical superposition of the signals
associated with mirror-image pathways 0 — +p — —1 and 0 — —p — —1. This
superposition yields pure lineshapes, i.e., either pure 2D absorption or pure 2D dis-
persion (33, 34). Pure phase is obtained regardless of inhomogeneous broadening,
which may however lead to different lineshapes and different peak heights of the two
components.

Cross-peaks in COSY spectra and remote connectivity signals in double-quantum
spectra (11) are symmetrical for mixing pulses with arbitrary §. Diagonal peaks in
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F1G. 3. (a) Schematic representation of the diagonal peaks in single-quantum correlation spectroscopy
(COSY) with complex Fourier transformation in both dimensions. All signals have composite (phase-
twisted) lineshapes; filled symbols correspond to p = 0 — +1 — —1 pathways (“N peaks™), open symbols
are associated with p = 0 — —1 — —1 pathways (‘P peaks”). If the amplitudes of the two classes are equal,
pure phase spectra can be obtained by a real Fourier transformation with respect to ¢,. If the carrier is
positioned within the spectrum, the two classes of signal overlap. (b) The two types can be separated by
incrementing the rf phase of the initial preparation pulses in concert with the evolution time (TPPI procedure).
The principle is applicable to homo- and heteronuclear single- and multiple-quantum spectra.
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COSY spectra of weakly coupled systems and direct connectivity signals in multiple-
quantum spectra have symmetrical amplitudes only for 8 = «/2.

The overlap of the two classes of signal in Fig. 3a is undesirable and complicates
the analysis. To separate the two classes, three strategies can be employed:

(a) If the carrier is positioned outside the spectrum, the two types of signals do
not overlap, and both can be retained with a phase cycle with 2p steps. In the case
of single-quantum correlation spectroscopy, the cycle boils down to a two-step phase
alternation for the elimination of axial peaks.

(b) By means of a phase cycle with N > 2p + 1, it is possible to select one type
of signal irrespective of the position of the carrier. The selection of a single pathway
invariably leads to composite lineshapes. However, by properly combining the signals
originating from the two pathways 0 — +p — —1 and 0 — —p — —1, it is possible
to obtain pure phase spectra. Note that the two classes of signals can be extracted
from the same set of N experiments with the Fourier analysis given in Eq. [18].
Separate complex Fourier transformations lead to two spectra analogous to Fig. 3a,
one with filled symbols only, the other with open symbols. After reversal of the w,
axis in one of the spectra, the addition of the two matrices leads to pure phase
lineshapes. In the case of single quantum spectroscopy, it is of course possible to use
N = 4> 2p+ 1, and the procedure is equivalent to the linear combinations described
by Bachmann et al. (35) and States ez al. (36).

(c) Alternatively, it is possible to shift the signals in the w, domain in such a way
that the two classes of signal do not overlap even if the carrier is positioned within
the spectrum. In the context of 1D spectroscopy, it has been shown that the effective
receiver reference frequency can be shifted with respect to the transmitter carrier
frequency by recording a free induction decay where the receiver reference phase is
incremented for subsequent sampling points (37). The same idea can be incorporated
in the w, (38) and w; domains (39) of 2D spectra. In the latter case, the experimental
procedure closely resembles a method that has found widespread use in multiple-
quantum NMR, known as *‘time-proportional phase incrementation” (TPPI) (8, 40).
To obtain pure lineshapes, the rf phase of the excitation propagator is incremented
in concert with ¢, according to

L o

i Aty 2|pl (23]
where |p| is the order of multiple-quantum coherence evolving in ¢, . The characteristic
transformation of p-quantum coherence under rf phase shifts causes signals with
opposite orders p and p’ = —p to shift in opposite directions by (4Az,)"". The case
of single-quantum correlation spectroscopy (COSY) is shown schematically in Fig.
3b. If the amplitudes are symmetrical, a real Fourier transformation can be calculated
with respect to ¢, to obtain pure phase spectra (41).

An advantage of strategies (b) and (c) in comparison to (a) is the possibility of setting
the carrier in the center of the spectrum, which reduces rf power requirements. With
regard to data storage requirements, strategy (b) with the selection of a single pathway
is most economical. This method is sufficient for absolute-value displays.

Pure phase spectra obtained with strategies (b) and (c) require twice as much data
storage space, while pure phase spectra obtained with method (a) demand a fourfold
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number of points in time domain (since twice the number of points must be recorded
in 1,). Clearly, strategy (c) is of particular simplicity with regard to data handling.
This TPPI procedure for generating pure phase spectra will be discussed in the examples
in the following sections.

HOMONUCLEAR CORRELATION SPECTROSCOPY

In situations where pure 2D absorption is not essential, it is possible to simplify
homonuclear correlation spectra obtained with the basic pulse sequence (#/2)-f,-
(B)-t, by retaining only p = 0 — +1 — —1 (““N peaks”). This approach yields spectra
with minimum w,; bandwidth, similar to those of Fig. 3a but where the signals indicated
by open symbols are eliminated by phase cycling. The required selectivity of the
mixing process

Ap,: =3, |-2,(=1), (0], 1,2,3 [26]

can be achieved with a three-step cycle with N, = 3, with mixing pulse phases
¢, = 0, 2x/3, and 4x/3, and receiver phases ¥™ = 0, 47/3, and 2x/3. Aliasing in
the resulting three-point Fourier transform leads to the selection of a periodic series
of Ap values with identical behavior. The fundamental period is set between bars in
Eq. [26]. The additional pathways that are retained (Ap, = - -+ —5, 1,4, - - -) are
not relevant in this experiment.
To avoid the uncommon phase shifts of 27/3 and 4x/3, it is of course allowed to
select N, = 4,
Ap,: =3, -2, (=1),(0), 1], 2, 3 [27]

which leads to four experiments with mixing phases ¥, = 0, 7/2, 7, and 37/2, and
receiver phases ¥ = 0, 7, 0, = (i.e., alternating addition and subtraction of the
signals). This cycle is equivalent to “Exorcycle” (42) and has been used in standard
SECSY spectroscopy (2, 3), in heteronuclear 2D correlation spectroscopy (43, 44),
and in heteronuclear relayed magnetization transfer (31, 32). In cases where two
consecutive coherence-transfer steps call for two selection cycles, significant time
savings can be obtained by reducing the total number of complementary experiments
N>+ N from 42 = 16 to 3° = 9 by using three-step cycles.

To obtain 2D correlation spectra with pure phase with the TPPI procedure, both
pathways p = 0 — +1 — —l and p = 0 — —1 — —1 have to be retained. The
required selectivity of the mixing process

Apy: =2,(=1),0 [28]
can be achieved with a two-step cycle (N, = 2, @, = 0, m; ¢*f = 0, 0).

2D EXCHANGE SPECTROSCOPY (NOESY)

The coherence-transfer pathways that may occur in 2D exchange spectroscopy (28,
29) are shown in Fig. la. If pure 2D absorption lineshapes are not required, it is
possible to select the pathway p = 0 — +1 — 0 — —1 by cycling the phase of the
first pulse to select

Apy: (=1), (0), 1 [29]

while the third pulse must achieve the selection

Ap3: (_pmax - ])) R -—.13 DY (pmax - 1) [30]
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where p™* is the highest order of multiple-quantum coherence that can contribute
significantly, which depends on the number of coupled nuclei. Except for the desired
value Ap = —1, all Ap values in the interval given in Eq. [30], including the limits
which are set in brackets, must be suppressed. This can be achieved with a cycle
Ni{+N; =3:(p"* + 1) steps.

If pure 2D absorption lineshapes are to be obtained, two pathways must be retained
with p = 0 — 1 — 0 — —1. This task can be accomplished by eliminating longitudinal
magnetization in the evolution period:

Ap;: -1, (0), +1 [31]
and by selecting the transfer 0 — —1 by cycling the third pulse:
Apy: (=p™* = 1), + oo, =L oo, (PP 1) (32]

which can be achieved with a cycle of N,- N3 = 2-(p™* + 1). For p™* = 3, the
cycling of the last pulse and the receiver phase (9™ = kx/2) corresponds to the well-
known “Cyclops” sequence (22, 45).

The shortest possible phase cycles (irreducible cycles) are shown in Table 1 for
systems without resolved couplings (p™* = 1) and in Table 2 for coupled systems
with p™® = 3, The abbreviation TPPI (time proportional phase shift) indicates that
the first pulse must be incremented in phase by A?, = wt,/(2ALy).

In practice, it may be advisable to use more extensive phase cycles, particularly if
the rf phase shifts are subject to systematic errors. Thus Table l1a can be extended

TABLE 1

PHASE CYCLES FOR 2D EXCHANGE SPECTROSCOPY

(a) Spin system without resolved couplings (p™* = 1): Selection of
p=0— +1—0— —1 pathway

Ap, = +1 Ap, = free Aps = —1
¢, = TPPI ¢, =0 Py=0 o =0
= 2x/3 + TPPI =0 =0 = 4x/3
= 4x/3 + TPPI =0 =0 = 2x/3
= TPPI =0 =z =7
= 2x/3 + TPPI =0 =7 = /3
= 4x/3 + TPPI =0 = = 2x/3

(b) Spin system without resolved couplings (p™ = 1): Selection of
p=0— x1 — 0 — —1 pathways to obtain
pure 2D absorption lineshapes

Ap, = =1 Ap, = free Ap, = =1

¥, = TPPI $,=0 Y, =0 ol =0
= w + TPPI =0 =0 =7
= TPPI =0 = =

T =

= + TPPI =0




COHERENCE-TRANSFER PATHWAYS IN PULSED NMR 381

TABLE 2

PHASE CYCLE FOR 2D EXCHANGE SPECTROSCOPY

Coupled spins with p™ = 3; Selection of p=0 — =1 — 0 — —1
to obtain pure 2D absorption lineshapes

Ap, = 1 Ap, = free Apy = —1

¢, = TPPI $,=0 Py=0 el =
=7 + TPPI =0 =0 =z
= TPPI =0 = /2 = /2
=7 + TPPI = =7/2 = 3n/2
= TPPI = =7 =7
=1 + TPPI = =7 =
= TPPI = = 3n/2 = 3x/2
=x + TPPI = = 3w/2 = 7/2

by specifying that Ap, must be —1 with N, = 3(¥, = k27/3, k, = 0, 1, 2) with an
additional shift of the receiver reference phase A¥™ = k,2x/3. Tables 1b and 2 can
be extended by specifying that Ap, must be £1 with N, = 2(¥, = kom, bk, = 0, 1)
with an additional shift of the reference phase A®™ = k,r. These additions are strictly
speaking redundant, but may improve the degree of suppression in practical circum-
stances.

CORRELATION SPECTROSCOPY WITH MULTIPLE-QUANTUM FILTERS

Recently, a modification of homonuclear correlation spectroscopy has been proposed
where coherence is transferred in two steps via multiple-quantum coherence in order
to edit 2D spectra (14, 15).

The coherence transfer pathways that are relevant to double-quantum filtered cor-
relation spectroscopy are shown in Fig. 1d. If pure 2D absorption lineshapes are not
required, the transfer can be restricted to the two pathways 0 — +1 — +2 — —1
and 0 — +1 — —2 — —1 by selecting the following Ap values in the first and third
pulse

Api: (=1),(0), 1 [33]
Ap3: —39 (_2)’ (_1)’ (O)’ 1 [34]

which requires a cycle with N,+N; = 3-4 = 12 steps. To avoid uncommon phase
shifts, we can of course select the desired pathway with a 16-step cycle.

In general if the filtration procedure is supposed to retain orders +p, and if pure
phase lineshapes are not required, it is sufficient to select

Api: (=1),(0), 1 [35]
Apy: —p-1, + - -, p—1, [36]

where all Ap; values in the interval between the desired values must be blocked,
which requires a cycle with N, N; = 3.2p experiments.
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To obtain pure 2D absorption lineshapes, the four pathways 0 — +1 — +p — —1
and 0 — —1 — £p — —1 must be allowed simultaneously. The pathway 0 — 0 —
+p — —1 is impossible, since the second nonselective pulse cannot transform lon-
gitudinal polarization into multiple-quantum coherence. It is therefore possible to
allow all pathways under the first two pulses, and to select the two pathways +p —
—1 and —p — —1 under the last pulse:

Ap3: _p_la ct p—1> [37]

where all values between the limits must be suppressed. This can be achieved with
a cycle with N; = 2p steps. In the case of double-quantum filtered correlation spec-
troscopy one obtains N; = 4 with rf phases ¥; = 0, n/2, 7, 37/2 and receiver phases
¢rf = 0, 3x/2, x, w/2. This cycle corresponds to well-known procedures for double-
quantum selection (7, 9).

The selection of the pathways 0 — +1 — +p — —1 has been tested experimentally
by recording homonuclear proton 2D correlation spectra of thymidine. All three
spectra in Fig. 4 were obtained with delayed acquisition, according to the scheme
known as “spin-¢cho correlation spectroscopy” (SECSY) (2, 3). This representation
relies on the suppression of 0 — —1 — +p — ~1 signals (so-called “P peaks™), since
this is a condition for reducing the «, bandwidth (3). The conventional SECSY
spectrum (Fig. 4a) can be simplified with a double-quantum filter (Fig. 4b) which in
effect eliminates the responses of isolated spins. If a triple-quantum filter (Fig. 4c) is
used, only signals stemming from subunits with at least three coupled protons survive,
in accordance with coherence transfer selection rules (17, 14).

MULTIPLE-QUANTUM SPECTROSCOPY

In conventional two-dimensional p-quantum spectra (8-11), the coherences of
order +p and —p lead to pairs of signals symmetrically disposed about w; = 0. If the
mixing propagator consists of a single pulse with § = w/2, these signals have equal
amplitudes (11). If both types of signals are retained, pure 2D absorption lineshapes
can be obtained with the procedures described above. If, on the other hand, the
0 — =1 — +p — —1 pathways are selected, the bandwidth in the w, domain can be
reduced, although at the expense of pure 2D absorption lineshapes. This selection
has been achieved with z rotations (46), with phase shifts in increments of w/4 (47),
and, for the special case of two-spin systems, by exploiting the dependence on the
rotation angle of the rf pulse (48), and can also be achieved with field gradient
pulses (49).

In the case of double-quantum spectroscopy, shown schematically in Fig. 1c, the
phase of the mixing pulse (or of the sequence of pulses that constitute the mixing
propagator) can be cycled in order to select the pathways that involve coherence of
order p = +2in ¢;:

Apy: —4, =3, (—2), (—1), (0), (1), 2, 3. (38]

Values with Ap; < —3 or Ap; > 1 are irrelevant if we assume that there are no
coherences of order |p| > 2 in the evolution period. In this case, a five-step cycle with
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TABLE 3

PHASE CYCLE FOR DOUBLE-QUANTUM SPECTROSCOPY

Selection of p = 0 — £1 — +2 — —1 pathway
in systems with p™> = 3

Ap, = free Ap, = free Ap; = -3

Y = $Y,=0 ?,=0 oref =
= = =x/3 =r
= = =2x/3 =
= = =x =7
= = = 4x/3 =
= = = 57/3 =7

N3 = 5 is sufficient. If the transfers p = +3 — —1 must be suppressed as well,
we select N3 = 6. By way of example, the six-step cycle is shown in Table 3; this
cycle has been used for simplifying the experimental double-quantum spectrum dis-
cussed below,

Selective observation of the 0 — +1 — 43 — —1 pathway in triple-quantum
spectroscopy can be achieved with

Ap3: _49 (_3)’ (_2)5 (—1)’ (0)’ (1), (2)’ 3 [39]

which can be realized with N3 > 7. If p = £4 — —| transfers are to be suppressed
as well, it is necessary to use a cycle with N; > 8.

If pure 2D absorption lineshapes are required, the pathways involving the coherence
orders +p and —p in the evolution period must be retained simultaneously. In the
case of double-quantum spectroscopy, the selection

Ap3: —4a —33 (_2)7 (_1)9 (0)) 13 2: 3. [40]

can be achieved with N; = 4. In general, simultaneous transfer is possible with
N3 = 2p experiments. Such cycles have been used in many applications of multiple-
quantum NMR (9, 11).

The selection of the p = 0 — +1 — +2 — —1 pathway in double-quantum spectra
makes it possible to delay the beginning of data acquisition to a point in time 2¢,
after initial excitation (50-52). This procedure causes the signals to shift in the w,
domain, as shown in Fig. 5, leading to a presentation of double-quantum spectra
that closely resembles the familiar picture of single-quantum correlation spectra
(COSY). The signals associated with directly connected pairs of nuclei are indicated
by filled symbols. They are contained within a frequency band indicated by dotted
lines (53). Signals associated with remote connectivity, which arise from double-
quantum coherence involving two nuclei A and M that is transferred to a third nucleus
X (11), are indicated by open symbols. These signals, which may fall outside the
frequency band indicated by dotted lines, cannot occur in double-quantum spectra
of two-spin systems, e.g., in INADEQUATE spectra of carbon-13 in natural abundance.
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FIG. 5. Schematic representations of +2-quantum spectra of a three-spin AMX system obtained with
selection of the pathways 0 — +1 — +2 — —1 (Fig. l¢). (a) Conventional form, (b) COSY-like representation
obtained by delaying the acquisition to 2¢, after initial excitation. Filled and open symbols represent signals
associated with directly and remotely connected nuclei (/7). The former fall within a frequency band
indicated by dotted lines. The virtual diagonals are indicated by dashed lines. In the COSY-like representation
(b), the filled symbols appear at the same frequency coordinates as cross-peaks in conventional single-
quantum COSY spectra. Additional information can be derived from the remote connectivity signals. For
example, the signal at the bottom right stems from double-quantum coherence involving the nuclei A and
M that is transferred into observable X magnetization. Its location is found by drawing a line through the
two A, M cross-peaks (see arrows).

In this case the w, bandwidth may be reduced by a factor of two without loss of
information.

An experimental example of a double-quantum spectrum in COSY-like represen-
tation is shown in Fig. 6. The signals associated with remote connectivity do not
have symmetrically related counterparts and can be eliminated by symmetrization.
The remaining signals, which correspond to filled symbols in Fig. 5b, have the same
frequency coordinates (and the same information content) as cross-peaks in single-
quantum correlation spectra.

It should be noted that experimental methods involving delayed acquisition suffer
from sensitivity losses due to transverse relaxation after the mixing pulse. The same
COSY-like representation could be obtained with better sensitivity and pure phase
lineshapes by a mathematical transformation of a double-quantum spectrum ob-

tained without delayed acquisition, in analogy to the foldover correction procedure
(FOCSY) (3).

CONCLUSIONS

Our recent experience has shown that coherence-transfer maps which portray the
relevant coherence-transfer pathways are powerful tools for understanding and de-
signing new pulse experiments. In several cases, the pulse sequence alone does not
characterize the essential features of an experiment. It is rather the selection of specific
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FIG. 6. Absolute-value double-quantum spectrum of thymidine (assignment as in Fig. 4), presented in
COSY-like form with selection of the solid pathways in Fig. ¢ and delayed acquisition, as shown schematically
in Fig, 5b. The carrier was positioned at the high-field end of the spectrum, Symmetrical excitation and
detection was used with the pulse sequence (x/2),—7~(m),—7—(7/2)—t1~(7/2),~7—(7),—7—(7/2),~t)—(acquisition)
as described by Serensen et al. (54). The phase of the detection sandwich was cycled in increments of
2x/6 (60°). Same sample and conditions as in Fig. 4.

coherence-transfer pathways by an appropriate phase cycle which constitutes the
essence of an experiment. For example, three-pulse experiments can be designed for
relayed coherence transfer, for 2D exchange spectroscopy, for multiple-quantum fil-
tering, and for multiple-quantum spectroscopy merely by selecting different coherence-
transfer pathways.

At first sight it may appear unnecessary and artificial to distinguish the sign of the
order of coherence. However, despite the Hermitian character of operators in quantum
mechanics, it is indeed possible to trace out individual pathways violating Hermitian
symmetry by combining results obtained from a phase-cycled sequence of experiments.
In actual fact, it turns out that the distinction of the sign of coherence is of central
importance for the design of optimized experiments.

In the practical examples described in this paper, phase cycles have been confined
to individual pulses. It should however be noticed that the formalism is more general
and also allows phase-cycling of entire groups of pulses as well as interlaced phase
cycles of different hierarchy.
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The discovery that many of the commonly used four-step phase cycles can in
principle be replaced by shorter three-step phase cycles may serve as an example
illuminating the power of coherence-transfer pathway considerations. It is likely that
the same concepts can also help in the design of pulse experiments in electron spin
resonance and in optical spectroscopy.
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