

Exercises: NMR Crystallography

Jacob Holmes (Jacob.holmes@epfl.ch) 03.14.2025

a) AZD8329 is a pharmaceutical compound with potential for the treatment of type 2 diabetes. Accurate ^1H chemical shifts for AZD8329 are given below. You can find the structures of four different polymorphs of AZD8329 on Moodle. Determine the correct polymorph using the chemical shifts predicted by <https://tools.materialscloud.org/shiftml/>. For this, calculate the root-mean-square deviation between experimental and calculated chemical shifts for the polymorphs A-D.

Atom Label	^1H δ (ppm)	Atom Label	^1H δ (ppm)
1	6.92	12	1.8
2	8.69	13	1.6
3	9.01	14	0.44
4	8.47	15	1.54
5	15.37	16,17	1.88
6	7.73	18,19	0.8
7	9.64	20	1
8	2.90	21,22	1.74
9	1.78	23,24,25,	
10,11	1.88	26,27,28,	
		29,30,31	0.73

b) What would (should) you do for chemically equivalent atoms and/or exchanging protons?

c) When using the program, you can choose between chemical shieldings and chemical shifts. What is the difference? How do you get from one property to the other?