

Exercise Session 3

IESM Fall 2024-2025

Yuri, Salomé, Sophia, Andrea, Qihao, Junwu

October 01, 2024

Interviews:

- All of you should have received a detailed feedback on Moodle for reports of Ex1
- If everything is correct, simple checkmarks are added
- Comments added when something is wrong/unclear/uncomplete
- Overall comment added to the report

Exercise 3

Large Basis Sets, Dissociation Energy and Geometry Optimisation (Reminder: you can download these slides from the [Exercise page](#))

Learning goals	Chapter in script	Resources
Influence of basis sets Geometry optimization procedure Basics of HF theory: RHF vs UHF	Chapter 3 - Basis functions in quantum chemistry Chapter 4 - An introduction to Hartree Fock theory	Jensen, F. (2017). Introduction to computational chemistry. John Wiley & sons. • Chapter 5 - Basis Sets Introduction to Hartree-Fock Molecular Orbital Theory by the Sherrill group: slides and videos (part 1 , part 2) Geometry Optimization by the Sherrill group: slides and video

Influence of basis set

- System under study: H_2 molecule at equilibrium bondlength (H–H distance 0.7414 Å)

- You will compute the equilibrium energy of the molecule using different basis sets
 - 6-31G
 - 6-311G
 - aug-cc-pVTZ (Dunning's correlation-consistent basis, defined such that systematic improvement over total energies and molecular properties is possible)

Introduction to HF Theory

- We will use HF theory (which will be treated in detail during Lectures and next Exercise session) to calculate energies
- In this exercise, you will qualitatively see the differences between RHF and UHF

HF method = approximate many-body wavefunction to a single Slater determinant

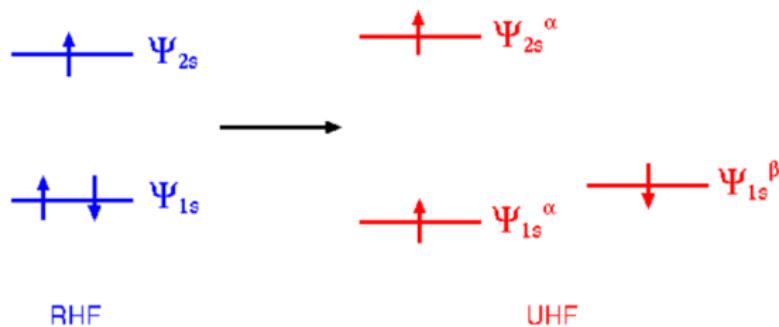
$$\Psi(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_n) \approx \Psi_{HF} \equiv \frac{1}{\sqrt{N}} |\phi_1(\mathbf{r}_1)\phi_2(\mathbf{r}_2)\dots\phi_n(\mathbf{r}_n)|$$

→ Ψ_{HF} inserted into time-independent Schrödinger equation to find eigenvalue, i.e. $E = \langle \Psi_{HF} | \hat{H}_{el} | \Psi_{HF} \rangle$. What is found is a **variational solution**, i.e. HF energy is always above true energy.

SCF method

HF equations (will be derived in detail during Lectures)

$$E_{HF} = \sum_i \left\langle \phi_i \left| \hat{h} \right| \phi_i \right\rangle + \frac{1}{2} \sum_{i,j} ([\phi_i \phi_i | \phi_j \phi_j] - [\phi_i \phi_j | \phi_j \phi_i]) \quad \forall \phi_i$$

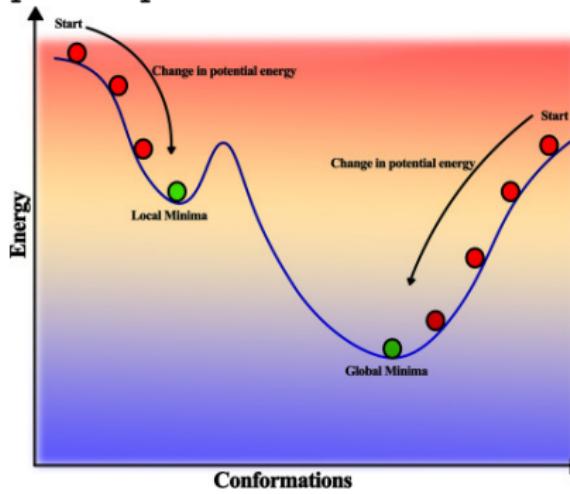

where $[\dots | \dots]$ integrals contain Coulomb and Exchange operators, whose action on orbital ϕ_i depends on all the other one-electron orbitals ϕ_j . Hence, HF equations have to be solved iteratively until self-consistency (**selfconsistent field SCF method**)

	Total Energy	Delta E	RMS [F,P]
@DF-UHF iter SAD:	-0.85212229561042	-8.52122e-01	0.00000e+00
@DF-UHF iter 1:	-1.12493424123815	-2.72812e-01	1.62339e-02 DIIS
@DF-UHF iter 2:	-1.12669596352817	-1.76172e-03	2.38980e-03 DIIS
@DF-UHF iter 3:	-1.12673509439903	-3.91309e-05	3.36383e-06 DIIS
@DF-UHF iter 4:	-1.12673509447661	-7.75795e-11	2.74379e-09 DIIS
Energy and wave function converged.			

RHF and UHF methods

- So far we did not discuss spin components! MO are composed of a MO spatial wavefunction ($\phi_i(\mathbf{r}_i)$) and a MO spin wavefunction (α or β , i.e. \uparrow or \downarrow spin)
- In practice, different HF implementations are possible:
 - **RHF** (Restricted HF): each spatial MO $\phi_i(\mathbf{r}_i)$ is used twice, once multiplied by a α spin and the other by the β spin \Rightarrow same spatial component! This is reasonable for **closed-shell systems** (even number of electrons), where spatial MO is fully occupied.
 - **UHF** (Unrestricted HF): different spatial MO used for α and β spins. This allow to describe **open-shell systems** (odd number of electrons), **but** a single Slater determinant of different orbitals for different spins is not an eigenfunction of the total spin operator $\hat{\mathbf{S}}^2$ (this produced the so-called *spin contamination*, where the ground state is *contaminated* by excited states).

RHF vs UHF


[Image source] Note that here Ψ is a MO!

- RHF suitable for closed-shell systems, UHF for open-shell
- UHF doubles the spatial orbitals, hence it is more computationally expensive

In this exercise you will record the dissociation curve for H_2 molecule - what is the effect of using RHF vs UHF?

Geometry optimization

- Until now **single-point calculations** (nuclear positions fixed)
`psi4.energy(method/basisset, molecule)`
- **Geometry optimization**: starting from an initial configuration, you can follow the curvature on the PES down to the minimum, i.e find the equilibrium geometry
`psi4.optimize(method/basisset, molecule)`

[Image source]

Exercise 3 - Tips

Tips!

- You'll need to edit some code cells and having a look at code in Ex2 may be helpful
- You'll use `matplotlib` to make plots, more information on it can be found [here](#)
- HF method will be treated in detail in next Lectures and Exercises, for today make sure to have understood the general idea. [Psi4 manual](#) has also a quick theory introduction on HF and is useful to get familiar with different HF methods/keywords.
- Make sure to understand the difference between a single-point calculation and a geometry optimization (you will see it in practice in Ex3.3)!