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Polarizable Force Field Models
charge-on-spring 
or shell model or

charge equilibration or 
chemical potential 

equilibration

µind: induced atomic dipole
a: atomic polarizability

E:  electric field

atomic charges redistributed to 
equalize electronegativity at each site

qD:  charge of Drude
particle

kD:  harmonic spring 
constant

Energy needed for charge redistribution Eself
C: electronegativity; h: chemical harness
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AMOEBA (atomic multipole optimized energetics for biomolecular applications) 
(Ponder et al. J. Comp. Chem. 23, 1497 (2002)

Bond and angle potentials include anharmonicity effects through higher order terms:

Additional bond-angle coupling terms and

Van der Waals interactions: buffered 14-7:

𝜌!"= 𝑅!" / R#$%

Induced dipole model 

potentials to keep sp2
carbons planar

standard torsion potential
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AMOEBA Electrostatic Interactions

=

via atomic multipole expansion

Induced dipoles

Coulomb 
interactions of 
permanent multipole 
moments: charge-
charge, charge-
dipole etc..

E: total electric field generated by all other permanent 
atomic multipoles and induced dipoles

q: atomic charge
µ: atomic dipole moment

Q: atomic quadrupole moment

=> has to be solved self-consistently
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Are Polarization Effects Important? 

Standard Deviation of the 
Electrostatic Potential

Gly-Ala in Water (SPC), 
QM Based MD 10ps, 300K
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AMBER95:          6-13 %
GROMOS96:       9-16 %
D-RESP:              6-8   %
D-RESP(pol):          5  %

Potential:

AMBER95:          6 %
GROMOS96:       7 %
D-RESP:              3 %
D-RESP(pol):      2 %

Dipole Moment:

H. Hugosson et al., J.Comp. Chem. 27, 672 (2006); P. Maurer,  et al. JCTC (2007) 
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Automatized Generation of Force Fields

QM

MM MMForce 
Matching

Force field parameters si fitted to minimize difference between
reference and force field forces on each atom

L: number of 
configurations

N: number of atoms
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Machine Learning Potentials
Kernel Methods:

Recent review: Unke et al. Chem. Rev. 121, 16, 10142 (2021)

Neural Networks:

Input layer
Hidden layers

output layer

M: descriptor of chemical 
environment  of atom I

• Descriptor Based NNs
• End-to-end (input atomic charges

and coordinates)
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Machine Learning Potentials
Important to impose physical constraints:
• Energy conservation (consistency of energy and forces)
• Translational invariance
• Rotational invariance
• Permutational invariance

Advantages:
• Do not need to know anything about 

interactions/form of the potential
• Automatized: no tedious FF development
• Can also be used for chemical reactions & charge 

transfer phenomena

Disadvantages:
• Have to generate enough training data
• 1-3 orders of magnitude slower than FF based MD
• Can become unreliable when getting into regions 

far from training set
• Makes no use of physical knowledge even when it 

would be available

Software packages
for ML-FFs:
AMP (ó ASE)

Aenet
DeePMD(óLAMMPS)

PhysNet
TensorMol
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