Polarizable Force Field Models
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AMOEBA (atomic multipole optimized energetics for biomolecular applications)
(Ponder et al. J. Comp. Chem. 23, 1497 (2002)

Induced dipole model
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Bond and angle potentials include anharmonicity effects through higher order terms:

Upona = Ko — bo)’[1 — 2.55(b — by) + (7/12)2.55(b — by)°]
= Ky(0 — 6p)*[1 — 0.0140 — 6,) + 5.6 x 1070 — 6, — 7.0 x 10776 — 6, +
22310750 — 0,1

U,

angle

Additional bond-angle coupling terms and

Upy = Kygl(b — by) + (b'=b)1(O — 6,)

Van der Waals interactions: buffered 14-7:
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AMOEBA Electrostatic Interactions

p— ) q: atomic charge
U= Uge + Uge 4 atomic dipole moment
Q: atomic quadrupole moment
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Atomic multipoles

QM
Coulomb
interactions of
permanent multipole
moments: charge-

s Charge charge, charge-
Charge + Dipole dipole etc..
Dipole +
Quadrupole
i Induced dipoles
Ulnd
ele ‘uind =aF E: total electric field generated by all other permanent
atomic multipoles and induced dipoles
Ui = _ % 3 (4 TE, => has to be solved self-consistently
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Are Polarization Effects Important?
Standard Deviation of the
Electrostatic Potential
2
ESP
; t
5 qi '()_Vj(t,)
17T jeMM | icOM r,-j(t )
SD(t)=— [dt' 3
Ty T Vi)
jeMM Gly-Ala in Water (SPC),
QM Based MD 10ps, 300K
Potential: Dipole Moment:
AMBER95: 6-13 % AMBER95:
GROMOS96: 9-16 % GROMOS96:
D-RESP: 6-8 % D-RESP:
D-RESP(pol): 5 % D-RESP(pol):
H. Hugosson et al., J.Comp. Chem. 27, 672 (2006); P. Maurer, et al. JCTC (2007)
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Automatized Generation of Force Fields

Force field parameters i fitted to minimize difference between
reference and force field forces on each atom

Force
Matching

—
L: number of

configurations
N: number of atoms
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Machine Learning Potentials

Recent review: Unke et al. Chem. Rev. 121, 16, 10142 (2021)
Kernel Methods:

E, :Zﬂocal(MI) :ZZaJk(MJ~MI) =Zk1a

IeA

M: descriptor of chemical

19} 0
Fp= TOR, [Ba] = “OR, [Ba] =~ XI: OR, [r] environment of atom I

0 OM;
- _ ; ; QJTMIIC(M,, M;) R,

Neural Networks:

Hidden layers

Input layer

» Descriptor Based NNs
* End-to-end (input atomic charges
and coordinates)
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Machine Learning Potentials

Important to impose physical constraints:
Energy conservation (consistency of energy and forces)

Translational invariance
Rotational invariance
Permutational invariance

Advantages:

Do not need to know anything about
interactions/form of the potential

Automatized: no tedious FF development

Can also be used for chemical reactions & charge
transfer phenomena

Disadvantages:

Have to generate enough training data
1-3 orders of magnitude slower than FF based MD
Can become unreliable when getting into regions

far from training set
Makes no use of physical knowledge even when it

would be available

Software packages
for ML-FFs:
AMP (& ASE)
Aenet
DeePMD(<>LAMMPS)
PhysNet
TensorMol
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