

Polarizable Force Field Models		
Induced point dipole	charge-on-spring or shell model or Drude oscillator	charge equilibration or chemical potential equilibration Fluctuating charge
$\mu^{\text{ind}} = \alpha E$ μ^{ind} : induced atomic dipole α : atomic polarizability E : electric field	$\alpha = q_D^2/k_D$ q_D : charge of Drude particle k_D : harmonic spring constant	atomic charges redistributed to equalize electronegativity at each site $\chi_x = \left(\frac{\partial E_x}{\partial q_x} \right) = \chi_x^* + 2\eta_x^* q_x + k \sum_{\beta \neq x} \frac{q_\beta}{R_{x\beta}}$ X : electronegativity; η : chemical harness
Energy needed for charge redistribution E_{self}		
$E_{\text{self}}^{\text{Ind}} = \sum_i \frac{1}{2} \alpha_i^{-1} \mu_i^2$	$E_{\text{self}}^{\text{Drude}} = \sum_i \frac{1}{2} k_{D,i} \mathbf{d}_i^2$	$E_{\text{self}}^{\text{FQ}} = \sum_i (\chi_i q_i + \eta_i q_i^2)$

26

AMOEBA (atomic multipole optimized energetics for biomolecular applications)		
(Ponder et al. J. Comp. Chem. 23, 1497 (2002))		
Induced dipole model		
$U = U_{\text{bond}} + U_{\text{angle}} + U_{\text{b}\theta} + U_{\text{oop}} + U_{\text{torsion}} + U_{\text{vdW}} + U_{\text{ele}}^{\text{perm}} + U_{\text{ele}}^{\text{ind}}$		
Bond and angle potentials include anharmonicity effects through higher order terms:		
$U_{\text{bond}} = K_b(b - b_0)^2 [1 - 2.55(b - b_0) + (7/12)2.55(b - b_0)^2]$ $U_{\text{angle}} = K_\theta(\theta - \theta_0)^2 [1 - 0.014(\theta - \theta_0) + 5.6 \times 10^{-5}(\theta - \theta_0)^2 - 7.0 \times 10^{-7}(\theta - \theta_0)^3 + 2.2 \times 10^{-8}(\theta - \theta_0)^4]$		
Additional bond-angle coupling terms and		
$U_{\text{b}\theta} = K_{\text{b}\theta}[(b - b_0) + (b' - b'_0)](\theta - \theta_0)$ $U_{\text{oop}} = K_\chi \chi^2 \quad \text{potentials to keep sp}^2 \text{ carbons planar}$		
Van der Waals interactions: buffered 14-7:		
$U_{\text{vdW}}(ij) = \epsilon_{ij} \left(\frac{1.07}{\rho_{ij} + 0.07} \right)^7 \left(\frac{1.12}{\rho_{ij}^7 + 0.12} - 2 \right)$		
standard torsion potential		
$U_{\text{torsion}} = \sum_n K_{n\phi} [1 + \cos(n\phi \pm \delta)]$		

27

AMOEBA Electrostatic Interactions

$U_{\text{ele}}^{\text{perm}} = U_{\text{ele}}^{\text{perm}} + U_{\text{ele}}^{\text{ind}}$

q : atomic charge
 μ : atomic dipole moment
 Q : atomic quadrupole moment

$U_{\text{ele}}^{\text{perm}}$ via atomic multipole expansion $\mathbf{M} = [q, \mu_x, \mu_y, \mu_z, Q_{xx}, Q_{xy}, Q_{xz}, \dots, Q_{zz}]^T$

QM

Atomic multipoles

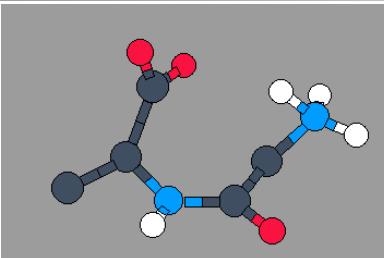
Coulomb interactions of permanent multipole moments: charge-charge, charge-dipole etc..

Induced dipoles

$U_{\text{ele}}^{\text{ind}}$

$\mu^{\text{ind}} = \alpha E$

E : total electric field generated by all other permanent atomic multipoles and induced dipoles


\Rightarrow has to be solved self-consistently

28

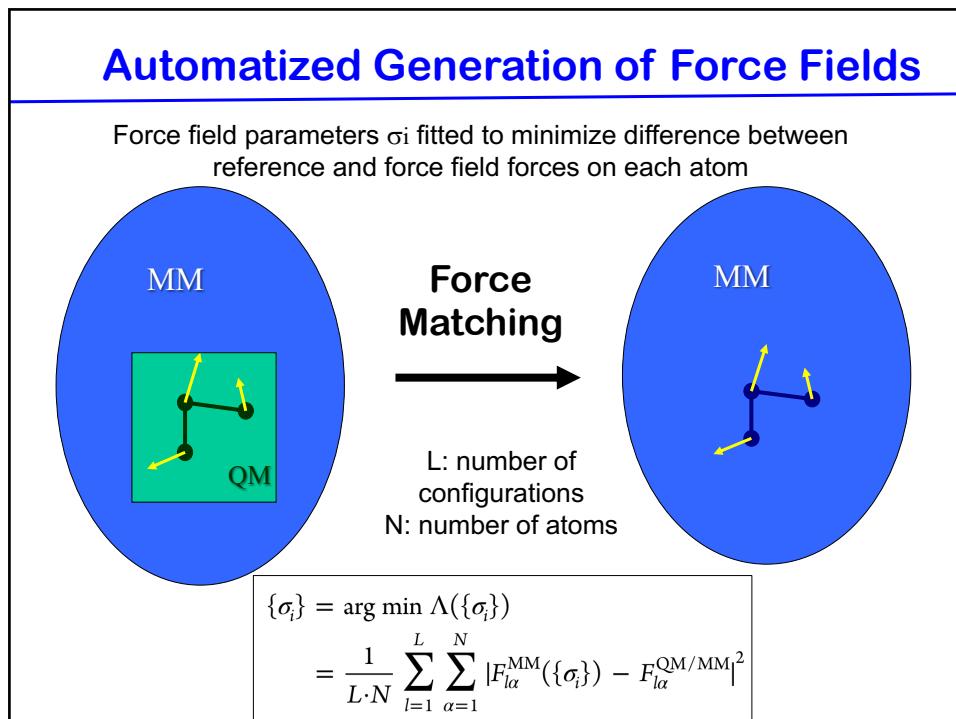
Are Polarization Effects Important?

Standard Deviation of the Electrostatic Potential

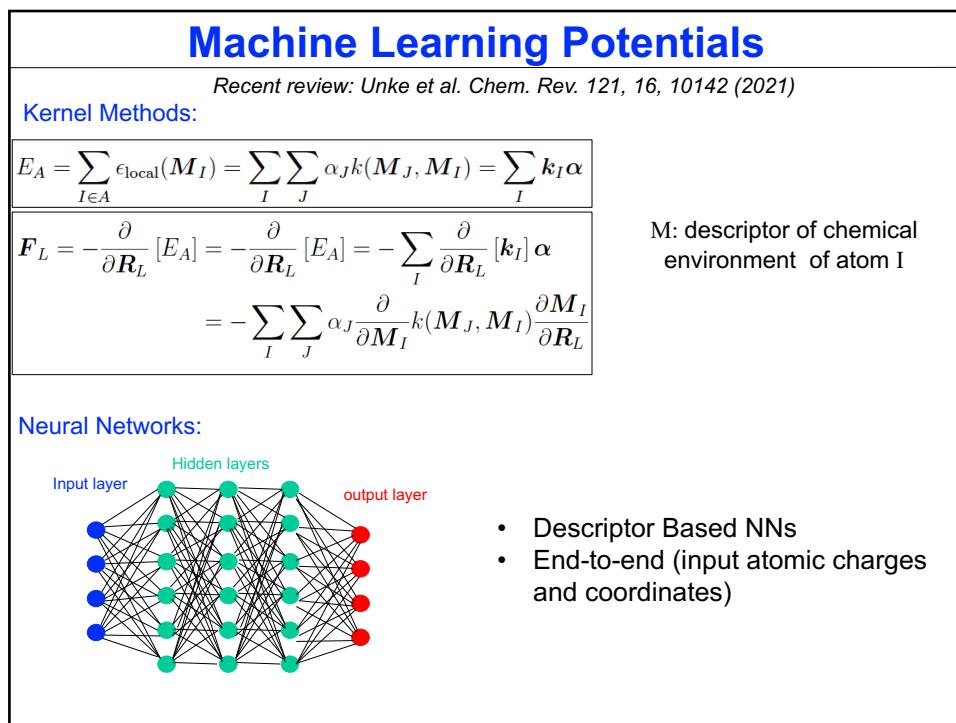
$$SD(t) = \frac{1}{T} \int_0^T dt' \sqrt{\frac{\sum_{j \in MM} \left(\sum_{i \in QM} \frac{q_i \text{ESP}(t)}{r_{ij}(t')} - V_j(t') \right)^2}{\sum_{j \in MM} V_j(t')^2}}$$

Gly-Ala in Water (SPC),
QM Based MD 10ps, 300K

Potential:


AMBER95:	6-13 %
GROMOS96:	9-16 %
D-RESP:	6-8 %
D-RESP(pol):	5 %

Dipole Moment:


AMBER95:	6 %
GROMOS96:	7 %
D-RESP:	3 %
D-RESP(pol):	2 %

H. Hugosson et al., J.Comp. Chem. 27, 672 (2006); P. Maurer, et al. JCTC (2007)

29

30

31

Machine Learning Potentials

Important to impose physical constraints:

- Energy conservation (consistency of energy and forces)
- Translational invariance
- Rotational invariance
- Permutational invariance

Software packages for ML-FFs:

- AMP (\leftrightarrow ASE)
- Aenet
- DeePMD (\leftrightarrow LAMMPS)
- PhysNet
- TensorMol

Advantages:

- Do not need to know anything about interactions/form of the potential
- Automatized: no tedious FF development
- Can also be used for chemical reactions & charge transfer phenomena

Disadvantages:

- Have to generate enough training data
- 1-3 orders of magnitude slower than FF based MD
- Can become unreliable when getting into regions far from training set
- Makes no use of physical knowledge even when it would be available