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Chapter 3:

Monte Carlo Simulations

1

Evaluation of  Ensemble Properties

Properties of thermodynamic ensembles:                       A = wiAi
i=1

Ntot

∑
wi: probability of finding 
system in configuration I
wi = Ni/Ntot

All possible classical configurations defined by the phase space (rN, pN) with rN: r1…rN, 
pN: p1..pN => evaluate phase space integrals A = ... d!r N d!pNw(!r N , !pN )A(!r N , !pN )∫∫
For the canonical ((NVT) ensemble:

w !r N , !pN( ) = e
−Etot

!r N , !pN( )/kBT

... d!r N d!pNe
−Etot

!r N , !pN( )/kBT∫∫

Boltzmann factor

Partition function

A =
Ψ Â Ψ

Ψ Ψ
=

... d!r NΨ*AΨ∫∫
... d!r NΨ*Ψ∫∫

QM analogon:

6N 
dimensional 
integralEtot

!r N , !pN( ) = Epot !r N( )+ Ekin !pN( )A =
... d!r N d!pN∫∫ A !r N , !pN( )e−Etot

!r N , !pN( )/kBT

... d!r N d!pNe
−Etot

!r N , !pN( )/kBT∫∫
Momentum part simple quadratic dependence => analytic evaluation possible
Potential energy part more complex => evaluated numerically
=> Configurational space integral 

A =
... d!r N∫∫ A !r N( )e−Epot

!r N( )/kBT

... d!r Ne
−Epot

!r N( )/kBT∫∫
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1) Which algorithms do you know to perform a numerical integration of a 
function? 

        

Quiz IV: Numerical Integration 

f(x)

a            b          x

f x( )
a

b

∫ dx ≈ wi f xi( )
i
∑
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Numerical Evaluation of Configurational Space Integrals

1) By Numerical quadrature                       

1D example 

a            x                b 

f(x) e.g. with:
• trapezoidal rule
• Simpson’s rule
• Etc.   

f (x)dx ≈ (b− a)
M

f (xi+1)− f (xi )
2i=1

M−1

∑
a

b

∫

uniform grid of M points with grid spacing  
Δx = b− a

M
To evaluate 3N dimensional integral => M3N points
e.g. M=100 => 1003N grid points   with N=1000-100’000

2) By Monte Carlo sampling                       

f (x)dx ≈ (b− a) f (x) = (b− a)
M

fi (xi )
i=1

M

∑
a

b

∫
Still high-dimensional (3N) integral
xi randomly chosen e.g. equal 
probability [0,1] => uniform sampling?

Computer exercise 1: Determination of p via Monte Carlo sampling  

Þ Uniform sampling becomes inefficient when 
function is very inhomogeneous!!!

Þ Statistically important parts of configurational 
space often highly inhomogeneously distributed!
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Previous exercise:         
 Derivation of  the Maxwell-Boltzmann Distribution

What is the probability              to find a particle with momentum     in a system of 
classical particles (no quantum effects) with only kinetic energy (Epot = 0) at 
temperature T (canonical ensemble)? b = 1/kBT

P !p( ) !p

P !p( ) = e
−
β
!p• !p
2m

d!pe
−
β
!p• !p
2m

−∞

+∞

∫
= P px , py , pz( ) = e

−
β ( px

2+py
2+pz

2 )
2m

dpxe
−
β px

2

2m dpye
−
β py

2

2m

−∞

+∞

∫ dpze
−
β pz

2

2m

−∞

+∞

∫
−∞

+∞

∫

e−ax
2

−∞

+∞

∫ dx = π
a

a = β
2m

=
1

2mkBT

P !p( ) = (2πmkBT )−3/2e
−
β p2

2m P v( ) = 2
π

⎛

⎝
⎜

⎞

⎠
⎟

1/2
m
kBT

⎛

⎝
⎜

⎞

⎠
⎟

3/2

v2e
−
mv2

2kBT
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Homogeneous Sampling versus  Importance Sampling  

Example: Maxwell-Boltzmann Distribution

T1
T2
T3

v                                                                      v

P P
tot

-> most regions: zero contribution!
Uniform random sampling is not efficient!
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Importance Sampling  

A = wiAi
i=1

Ntot

∑

Evaluate ensemble averages via MC 
sampling

Ideally:
choose sampling points/configurations 
with important contributions => 
importance sampling
e.g. thermal averages in canonical 
ensemble =>generate sampling points 
according to their Boltzmann weights!

Partition function Q
=> Again 3N dimensional integral!w !r N( ) = e

−Etot
!r N( )/kBT

... d!r Ne
−Etot

!r N( )/kBT∫∫
Idea: cannot evaluate absolute probabilities but can calculate relative probabilities!

Pi
Pj
=

e
−Etot

!ri
N( )/kBT

Q

e
−Etot

!rj
N( )/kBT

Q

= e
− Etot

!ri
N( )−Etot !rjN( )( )/kBT Relative probability of configurations i and j 

© Daan Frenkel
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Metropolis algorithm  

1 Choose initial configuration rold with finite Boltzmann weight 
2 Generate new configuration rnew from rold via random move with probability aon
3 Accept/reject new configuration rnew with relative Boltzmann probability

acc(!rold →
!r new ) =min 1,e

−(E ( !r new )−E (
!r old ))/kBT( )

4 If rnew is accepted set rold = rnew and goto 2
      if rnew is not accepted goto  2 

- If Enew < Eold => accept
- If Enew > Eold -> accept with 

relative Boltzmann probability

Þ Generates random walk through configuration space where every configuration is 
visited with a Boltzmann probability 

Þ Probability of accessing new configuration rnew only depends on current configuration 
rold (and not on previously visited points, no memory effect)

Þ  Markov process, Markov chain

1 How do we choose the initial configuration?
       - start from low T in e.g known crystal structure and heat
         system up to T
       - distribute molecules on a uniform grid
       - etc..

N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, 
A.H. Teller, E. Teller  J .Chem. Phys. 21, 1087 (1953)

Andrey Andrejevich 
Markov (1856-1922)

Nicholas 
Metropolis

(1915-1999)

Edward 
Teller 
(1908-
2003)

Arianna 
Rosenbluth
(1927-2020)

Augusta H. 
Teller 

(1909-2000)

Marshall 
Rosenbluth
(1927-2003)
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1) Hypothetical* case:

       In the beginning of the semester, you have decided that you will attend the
       lectures/exercises of the MD/MC course with a probability of  5/6. 
       Every  Tuesday morning, you decide if you will attend or not. How can you
       make sure that the probability is 5/6?
        

Quiz V: Random Process  with Given Probability 

* This is a purely hypothetical case since, fascinated by the subject, you have of 
course decided to come to the course 100% of the time! 
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Metropolis algorithm  

1 Choose initial configuration rold with finite Boltzmann weight 
2 Generate new configuration rnew from rold via random move with probability aon
3 Accept/reject new configuration rnew with relative Boltzmann probability

acc(!rold →
!r new ) =min 1,e

−(E ( !r new )−E (
!r old ))/kBT( )

4 If rnew is accepted set rold = rnew and goto 2
      if rnew is not accepted goto  2 

- If Enew < Eold => accept
- If Enew > Eold -> accept with 

relative Boltzmann probability

Þ Generates random walk through configuration space where every configuration is 
visited with a Boltzmann probability 

Þ Probability of accessing new configuration rnew only depends on current configuration 
rold (and not on previously visited points, no memory effect)
Þ  Markov process, Markov chain

1 How do we choose the initial configuration?
       - start from low T in e.g .known crystal structure and heat system up to T
       - distribute molecules on a uniform grid
       - etc..
3 How do we accept/reject with a given probability accon?
Þ Compare with known random process! Generate random number ranf [0,1] 
Þ if accon > ranf => accept, otherwise reject
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DEMO

Monte Carlo Simulation of  
methane/water

https://youtu.be/78tzIwqd4f8
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Metropolis algorithm  

1 Choose initial configuration rold with finite Boltzmann weight 
2 Generate new configuration rnew from rold via random move with probability aon
3 Accept/reject new configuration rnew with relative Boltzmann probability

acc(!rold →
!r new ) =min 1,e

−(E ( !r new )−E (
!r old ))/kBT( )

4 If rnew is accepted set rold = rnew and goto 2
      if rnew is not accepted goto  2 

- If Enew < Eold => accept
- If Enew > Eold -> accept with 

relative Boltzmann probability

Þ Generates random walk through configuration space where every configuration is 
visited with a Boltzmann probability 

Þ Probability of accessing new configuration rnew only depends on current configuration 
rold (and not on previously visited points, no memory effect)
Þ  Markov process, Markov chain

1 How do we choose the initial configuration?
       - start from low T in e.g .known crystal structure and heat system up to T
       - distribute molecules on a uniform grid
       - etc..
3 How do we accept/reject with a given probability accon?
Þ Compare with known random process! Generate random number ranf [0,1] 
Þ if accon > ranf => accept, otherwise reject
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https://youtu.be/78tzIwqd4f8
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Stochastic Matrix Aon  

Α =

α11 ... α1N
!
αN1 ! αNN

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Stochastic matrix, transition matrix, underlying matrix of Markov process:
Square matrix that gives transition probability aon to go from any state o to any state n 

Any conditions for A?

Example of a stochastic matrix of a Markov process (wikipedia): Cat & mouse

5 states:

State 1:  (1,3)
State 2:  (1,5)
State 3:  (2,4)
State 4:  (3,5)
State 5:  (2,2)(3,3),(4,4)

Α =

0 0 1/ 2 0 1/ 2
0 0 1 0 0
1/ 4 1/ 4 0 1/ 4 1/ 4
0 0 1/ 2 0 1/ 2
0 0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

What is the 
average life 
time of the 
mouse?

1        2        3        4       5

- A asymmetric
- has an absorbing state 
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Stochastic Matrices for Ensemble Sampling: Detailed Balance  

Overall probability to reach rnew: pon = aon accon

N !rnew( )
N !rold( )

=
π on
π no

=
αonaccon
αnoaccno

=
αonaccon
αnoaccno

= e−(Enew−Eold )/kBT

=> aon = ano   => A  symmetric!

microscopic reversibility - detailed balance

For MC sampling: considerable freedom to choose random moves, matrix A but some 
important conditions should be fulfilled:  detailed balance ((microscopic reversibility)

Once systems has reached thermodynamic equilibrium with correct statistical 
weights, these weights should not change anymore

Only possible if total probability to generate rnew from all possible states rold is equal to 
the probability of leaving rnew

K =
B⎡⎣ ⎤⎦
A⎡⎣ ⎤⎦
=
kAB
kBA

kAB A⎡⎣ ⎤⎦= kBA B⎡⎣ ⎤⎦

kAB

kBA
Like dynamic equilibrium in chemical reactions  A         B

In equilibrium:      N(rold)pon = N(rnew)pno
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Metropolis algorithm  

1 Choose initial configuration rold with finite Boltzmann weight 
2 Generate new configuration rnew from rold via random move with probability aon
3 Accept/reject new configuration rnew with relative Boltzmann probability

acc(!rold →
!r new ) =min 1,e

−(E ( !r new )−E (
!r old ))/kBT( )

4 If rnew is accepted set rold = rnew and goto 2
      if rnew is not accepted goto  2 

- If Enew < Eold => accept
- If Enew > Eold -> accept with 

relative Boltzmann probability

Þ Generates random walk through configuration space where every configuration is 
visited with a Boltzmann probability 

Þ Probability of accessing new configuration rnew only depends on current configuration 
rold (and not on previously visited points, no memory effect)
Þ  Markov process, Markov chain

1 How do we choose the initial configuration?
       - start from low T in e.g .known crystal structure and heat system up to T
       - distribute molecules on a uniform grid
       - etc..
3 How do we accept/reject with a given probability accon?
Þ Compare with known random process! Generate random number ranf [0,1] 
Þ if accon > ranf => accept, otherwise reject
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Trial Moves  

Ideal Properties:

• Should not violate detailed balance

• Should generate all possible thermally accessible configurations
     (ergodicity)
• Should be efficient:  minimum number of necessary moves for maximal 

accuracy

• Generate next configuration with high acceptance probability and at the 

same time moving widely in configurational space

=> Often trade-off between acceptance ratio (percentage of successful 

moves) and ergodicity

18



9

Trial Moves  

Translational Moves:
x => x + Dx (ranf -0.5)
y
z…

Orientational Moves

- To centre of mass or to particle coordinates?
- Move one particle or all at the same time?

θ => θ + Dθ (ranf -0.5)

Flexible molecules 
Random moves of Cartesian coordinates => not a good idea for chemically bonded
                                                                        systems
Random changes in internal coordinates e.g. dihedral angles
Þ Gets more and more difficult for large molecules (e.g. biomacromolecules 

proteins DNA), dense systems, low T 
Þ Smart moves necessary!

- Cartesian  unit vector
-   In Euler angles
- In quaternions(rigid body rotation)

Different thermodynamic ensembles
Isothermal-isobaric:  also variations of volume!
Grand canonical:  particle insertions/deletions

19

More Sophisticated Trial Moves  

Possible Trial Moves 
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file:////Users/ursularothlisberger/iCloud%20Drive%20(Archive)/Documents/ppt/uro/MDMC/2018/Monte_Carlo_move_sets.pdf

