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Chapter 2:

Statistical Mechanics in a Nutshell
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Checklist         

• Thermodynamic ensembles
• microcanonical, canonical, isobaric-isothermal, grand-canonical 

ensembles
• Microstate
• Statistical mechanics  definitions of entropy, free energy
• fundamental postulates of statistical mechanics 
• Boltzmann distribution
• Maxwell-Boltzmann distribution
• Partition function
• Ensemble averages
• microscopic definitions of temperature, pressure
• Phase space – phase space integral
• Configuration space – configuration space integral
• ergodicity and ergodic theorem

2



2

Link between microscopic <-> macroscopic systems         

Ru-tris(bipy) in water

102-105 atoms                                 Avogadro number 1023 of particles

Macroscopic sample

3

Link between microscopic <-> macroscopic systems         

Single molecule                simulation system                 macroscopic system

1 H2O, gas phase

N, V, E

N, V, T

N, p, T

µ, V, T

Many possible microscopic realizations
Every realisation: microstate
All microstates:  ensemble

microcanonical ens

canonical ensemble

Isobaric-isothermal

grand canonical ens

W(E)

E0       E1   E2

      

W(E)

E

quasi continuous spectrum
        -> classical SM 

W(E)

E
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Probability distribution         

What is the probability of finding the system in a certain 
microstate for a given ensemble?

What is the most likely energy distribution?

How can we calculate ensemble properties?
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1) You are throwing two (ideal) dice. Which total sum is the most likely 
outcome? 

Quiz II: Throwing Dice
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Statistical Mechanics definition of entropy

ÞEvery realization corresponds to one microstate of the system
ÞThere is a total of 36 microstates
Þ  the number of microstates associated with a given outcome determines its
     probability!   

Þ The number of possible realization/microstates is a crucial property!!
Þ Measure for the number of microstates W 

S = k ln W 
Entropy

k: Boltzmann constant
       1.38x10-23 J/K

ÞMeasure for the number of microstates
Þmeasure for probability/uncertainty!
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SM definition of entropy

ÞEvery realisation is one microstate
ÞThere is a total of 36 microstates
Þ  the number of microstates associated with a given outcome determines its
     probability!   

Þ The number of possible realisation/microstates is a decisive property!!
Þ Measure for the number of microstates W 

S = k ln W 
Entropy

k: Boltzmann constant
       1.38x10-23 J/K

ÞMeasure for the number of microstates
Þmeasure for probability/uncertainty!

Corresponding definition of the free energy

F = U – TS = U - kT ln W = - kT ln Q Helmholtz free energy
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Fundamental Postulates of SM

2nd law of thermodynamics: 
- nonequilibrium systems always evolve towards the state with highest 

entropy:  A -> B         DSAB > 0
- In an equilibrium system S is constant and has reached a maximum value

Entropy is a measure of the number of microstates W and the probability is 
given by W1/Wtot => entropy is a measure of probability => 2nd law of 
thermodynamics states that a process always occurs in the direction of 
the more likely state, i.e. the one  with the highest entropy

For an isolated macroscopic system with a constant 
total energy, particle number and volume (i.e. an 
isolated system) every microstate is equally probable.

2nd postulate of SM

1st postulate of SM
The result of a measurement of an observable in a 
macroscopic system is the ensemble average of such 
an observable.
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What is the most probable energy distribution?

E1, W1(E1) What is the most likely energy partitioning E1,E2?

W(E) =  W(E1,E2) = W(E1,E-E1) = W1(E1) W2(E-E1)
ln W (E,E-E1)  = ln W1(E1) + ln W2(E-E1)

E = constant = E1 + E2

The number of total microstates is maximal for: 
∂lnΩ E1,E − E1( )

∂E1
= 0

∂lnΩ1 E1( )
∂E1

+
∂lnΩ2 E − E1( )

∂E1
= 0 ∂E1 = −∂E2

E2 = E − E1

β1 = β2

β =
∂lnΩ
∂E ∂S

∂E
⎛

⎝
⎜

⎞

⎠
⎟
N ,V

=
1
T
= kB

∂lnΩ
∂E

⎛

⎝
⎜

⎞

⎠
⎟
N ,V

= kBβ

S = kB lnΩ N ,V ,E( )
∂lnΩ1 E1( )

∂E1
=
∂lnΩ2 E2( )

∂E2

For the most probable partitioning T1 = T2 => system is in thermal equilibrium! 

E2, W2(E2)

𝛽 =
1
𝑘!𝑇

Inverse temperature 
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What is the probability distribution in the canonical ensemble?

System
   Ei

bath E= const = Ei+EB ≈ EB

Probability p(Ei)?
pi Ei( ) =

ΩB E − Ei( )
ΩB E − E j( )

j
∑

Taylor expansion of lnWB(E-Ei) around E:

lnΩB E − Ei( ) = lnΩB E( )− Ei
∂lnΩB E( )

∂E
+ϑ Ei

2( )
∂lnΩB E( )

∂E
= β =

1
kBT

lnΩB E − Ei( ) = lnΩB E( )− Ei / kBT

pi Ei( ) =
ΩB E( )e−Ei /kBT

ΩB E( ) e−E j /kBT

j
∑

pi Ei( ) = e−Ei /kBT

e−E j /kBT

j
∑ Boltzmann Distribution

Q = e−E j /kBT

j
∑ Canonical Partition Function

ΩB E − Ei( ) =ΩB E( )e−Ei /kBT
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1) The Boltzmann distribution refers to a system of classical particles. 
What are the corresponding distributions for a system of quantum 
particles with a) fermions or b) bosons?

2)  

Quiz III: Boltzmann Distribution

What is the probability              to find a particle with momentum     in a 
system of classical particles (no quantum effects) with only kinetic energy 
(Epot = 0) at temperature T (canonical ensemble)? b = 1/kBT
Help:

P !p( ) !p

e−ax
2

−∞

+∞

∫ dx = π
a
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T1

T2

T3

v                                                                      v

P P
tot

Maxwell-Boltzmann Distribution
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Probability distribution in different ensembles

pi Ei( ) = e−Ei /kBT

e−E j /kBT

j
∑

pi Ei( ) = constMicrocanonical ensemble (NVE)

Canonical ensemble (NVT)

Simulation results from one ensemble can be converted to another!

pi Ei( ) = e−Hi /kBT

e−H j /kBT

j
∑Isobaric-isothermal ensemble (NpT) H = E + pV

Enthalpy H

Grand canonical ensemble (µVT) pi Ei( ) = e−Zi /kBT

e−Z j /kBT

j
∑

Z = E −µN

µ =
∂E
∂N
⎛

⎝
⎜

⎞

⎠
⎟

Grand potential Z
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Evaluation of Ensemble Properties

Properties of thermodynamic 
ensembles:                       A = wiAi

i=1

Ntot

∑
wi: probability of finding 
system in configuration i  
wi = Ni/Ntot

All possible states of a classical system are defined by (rN, pN) with rN: r1…rN, 
pN: p1..pN, the space spanned by all possible (rN, pN) is called the phase space.

For the canonical ((NVT) ensemble:

w !r N , !pN( ) = e
−Etot

!r N , !pN( )/kBT

... d!r N d!pNe
−Etot

!r N , !pN( )/kBT∫∫

Boltzmann factor

Partition function

S is given by the 
accessed phase space 
volume!

[Quantum analogon: Hilbert space]

Ensembles properties have to be evaluated as integrals over all possible states
=> evaluate 6N dimensional phase space integrals

A = ... d!r N d!pNw(!r N , !pN )A(!r N , !pN )∫∫
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Phase Space and Configuration Space

A =
Ψ Â Ψ

Ψ Ψ
=

... d!r NΨ*AΨ∫∫
... d!r NΨ*Ψ∫∫

QM analogon:

6N dimensional integral

Etot
!r N , !pN( ) = Epot !r N( )+ Ekin !pN( )A =

... d!r N d!pN∫∫ A !r N , !pN( )e−Etot
!r N , !pN( )/kBT

... d!r N d!pNe
−Etot

!r N , !pN( )/kBT∫∫

Momentum part simple quadratic dependence on p 
Þ analytic evaluation possible (remember: Maxwell-Boltzmann distribution)

Potential energy part more complex => evaluated numerically via computer 
simulations
=> 3N dimensional configurational space integral 

A =
... d!r N∫∫ A !r N( )e−Epot

!r N( )/kBT

... d!r Ne
−Epot

!r N( )/kBT∫∫

Canonical ensemble average:

(conservative forces) 
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Sampling thermodynamic ensembles

A = wiAi
i=1

Ntot

∑

Monte Carlo simulations: stochastic sampling of configurational space

Molecular dynamics simulations: time average 
 
Ergodicity: 
a dynamical system that has the same behavior averaged over space as 
averaged over time

All molecular dynamics simulations are based on the ergodic hypothesis:

A
ensemble

= A
time

Assumes that for a sufficiently long time trajectory the system visits all the 
configurations that are accessible at a given temperature
Not necessarily true!

A =
... d!r N d!pN∫∫ A !r N , !pN( )e−Etot

!r N , !pN( )/kBT

... d!r N d!pNe
−Etot

!r N , !pN( )/kBT∫∫
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Microscopic Definitions of T and p

T = 2
3

Ekin

N DOFkB
Ekin =

1
2

MIvI
2

I
∑ NDOF: number of degrees

           of freedom (3N)
kB: Boltzmann constant

Temperature

Pressure p = NkBT
V

+
1
3V

!ri ⋅
!
fi

i
∑

Ideal gas part virial
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Checklist         

• Thermodynamic ensemble: microcanonical, canonical, isobaric-isothermal, 
grand-canonical

• Microstate
• Stat.mech. definitions of entropy, free energy
• fundamental postulates of statistical mechanics 
• Boltzmann distribution
• Maxwell-Boltzmann distribution
• Partition function
• microscopic definitions of temperature, pressure
• Phase space – phase space integral
• Configuration space – configuration space integral
• Ensemble averages
• ergodicity and ergodic theorem
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