

Chapter 2:

Statistical Mechanics in a Nutshell

1

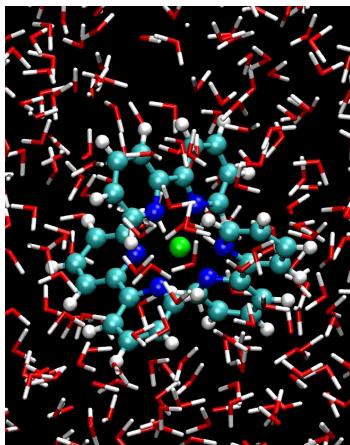
Checklist

- Thermodynamic ensembles
 - microcanonical, canonical, isobaric-isothermal, grand-canonical ensembles
- Microstate
- Statistical mechanics definitions of entropy, free energy
- fundamental postulates of statistical mechanics
- Boltzmann distribution
- Maxwell-Boltzmann distribution
- Partition function
- Ensemble averages
- microscopic definitions of temperature, pressure
- Phase space – phase space integral
- Configuration space – configuration space integral
- ergodicity and ergodic theorem

2

Link between microscopic \leftrightarrow macroscopic systems

Ru-tris(bipy) in water



$10^2\text{--}10^5$ atoms

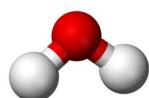
Macroscopic sample

Avogadro number 10^{23} of particles

3

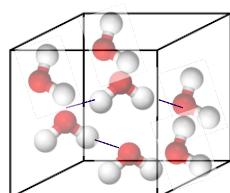
Link between microscopic \leftrightarrow macroscopic systems

Single molecule



$1 \text{ H}_2\text{O}$, gas phase

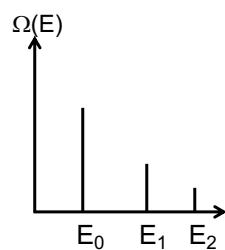
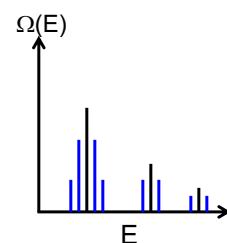
simulation system



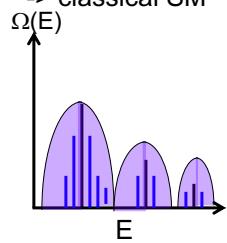
macroscopic system

microcanonical ens	\leftrightarrow	N, V, E
canonical ensemble	\leftrightarrow	N, V, T
Isobaric-isothermal	\leftrightarrow	N, p, T
grand canonical ens	\leftrightarrow	μ, V, T

Many possible microscopic realizations
Every realisation: **microstate**
All microstates: **ensemble**



quasi continuous spectrum
-> classical SM



4

2

Probability distribution

What is the probability of finding the system in a certain microstate for a given ensemble?

What is the most likely energy distribution?

How can we calculate ensemble properties?

5

Quiz II: Throwing Dice

- 1) You are throwing two (ideal) dice. Which total sum is the most likely outcome?

6

Statistical Mechanics definition of entropy

- ⇒ Every realization corresponds to one microstate of the system
- ⇒ There is a total of 36 microstates
- ⇒ the number of microstates associated with a given outcome determines its probability!
- ⇒ The number of possible realization/microstates is a crucial property!!
- ⇒ Measure for the number of microstates Ω

$$S = k \ln \Omega$$

Entropy
k: Boltzmann constant
 $1.38 \times 10^{-23} \text{ J/K}$

- ⇒ Measure for the number of microstates
- ⇒ measure for probability/uncertainty!

8

SM definition of entropy

- ⇒ Every realisation is one microstate
- ⇒ There is a total of 36 microstates
- ⇒ the number of microstates associated with a given outcome determines its probability!
- ⇒ The number of possible realisation/microstates is a decisive property!!
- ⇒ Measure for the number of microstates Ω

$$S = k \ln \Omega$$

Entropy
k: Boltzmann constant
 $1.38 \times 10^{-23} \text{ J/K}$

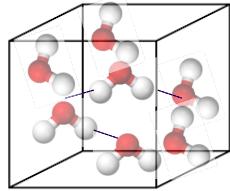
- ⇒ Measure for the number of microstates
- ⇒ measure for probability/uncertainty!

Corresponding definition of the free energy

$$F = U - TS = U - kT \ln \Omega = -kT \ln Q \quad \text{Helmholtz free energy}$$

10

Fundamental Postulates of SM



1st postulate of SM

The result of a measurement of an observable in a macroscopic system is the ensemble average of such an observable.

2nd postulate of SM

For an isolated macroscopic system with a constant total energy, particle number and volume (i.e. an isolated system) every microstate is equally probable.

2nd law of thermodynamics:

- nonequilibrium systems always evolve towards the state with highest entropy: $A \rightarrow B \quad \Delta S_{AB} > 0$
- In an equilibrium system S is constant and has reached a maximum value

Entropy is a measure of the number of microstates Ω and the probability is given by $\Omega_1/\Omega_{\text{tot}} \Rightarrow$ entropy is a measure of probability \Rightarrow 2nd law of thermodynamics states that a process always occurs in the direction of the more likely state, i.e. the one with the highest entropy

11

What is the most probable energy distribution?

$E_1, \Omega_1(E_1)$	$E_2, \Omega_2(E_2)$
----------------------	----------------------

$$E = \text{constant} = E_1 + E_2$$

What is the most likely energy partitioning E_1, E_2 ?

$$\Omega(E) = \Omega(E_1, E_2) = \Omega(E_1, E-E_1) = \Omega_1(E_1) \Omega_2(E-E_1)$$

$$\ln \Omega(E, E-E_1) = \ln \Omega_1(E_1) + \ln \Omega_2(E-E_1)$$

The number of total microstates is maximal for:

$$\frac{\partial \ln \Omega(E_1, E-E_1)}{\partial E_1} = 0 \quad \frac{\partial \ln \Omega_1(E_1)}{\partial E_1} + \frac{\partial \ln \Omega_2(E-E_1)}{\partial E_1} = 0 \quad E_2 = E - E_1$$

$$\frac{\partial \ln \Omega_1(E_1)}{\partial E_1} = \frac{\partial \ln \Omega_2(E_2)}{\partial E_2} \quad \boxed{\beta = \frac{\partial \ln \Omega}{\partial E}}$$

$$\beta_1 = \beta_2 \quad \left(\frac{\partial S}{\partial E} \right)_{N,V} = \frac{1}{T} = k_B \left(\frac{\partial \ln \Omega}{\partial E} \right)_{N,V} = k_B \beta$$

$$\boxed{\beta = \frac{1}{k_B T}} \quad \text{Inverse temperature}$$

For the most probable partitioning $T_1 = T_2 \Rightarrow$ system is in thermal equilibrium!

12

What is the probability distribution in the canonical ensemble?

System
 E_i

bath

$$E = \text{const} = E_i + E_B \approx E_B \quad p_i(E_i) = \frac{\Omega_B(E - E_i)}{\sum_j \Omega_B(E - E_j)}$$

Taylor expansion of $\ln \Omega_B(E - E_i)$ around E :

$$\ln \Omega_B(E - E_i) = \ln \Omega_B(E) - E_i \frac{\partial \ln \Omega_B(E)}{\partial E} + \mathcal{O}(E^2)$$

$$\ln \Omega_B(E - E_i) = \ln \Omega_B(E) - E_i / k_B T$$

$$\Omega_B(E - E_i) = \Omega_B(E) e^{-E_i/k_B T}$$

$$\frac{\partial \ln \Omega_B(E)}{\partial E} = \beta = \frac{1}{k_B T}$$

$$p_i(E_i) = \frac{e^{-E_i/k_B T}}{\sum_j e^{-E_j/k_B T}}$$

Boltzmann Distribution

$$p_i(E_i) = \frac{\Omega_B(E_i) e^{-E_i/k_B T}}{\Omega_B(E) \sum_j e^{-E_j/k_B T}}$$

$$Q = \sum_j e^{-E_j/k_B T}$$

Canonical Partition Function

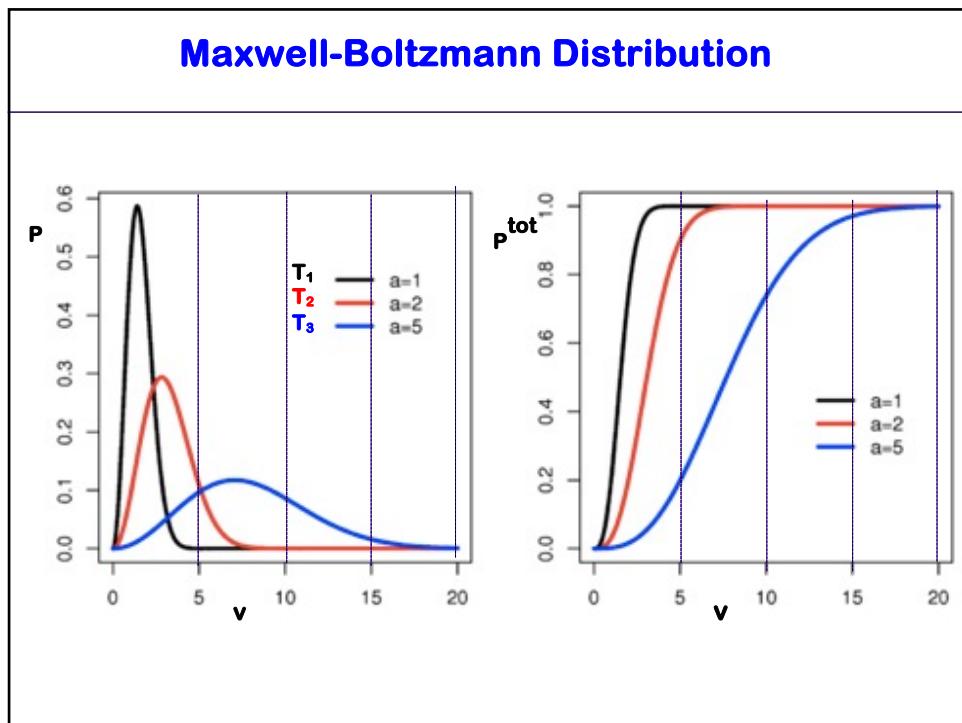
13

Quiz III: Boltzmann Distribution

- 1) The Boltzmann distribution refers to a system of classical particles. What are the corresponding distributions for a system of quantum particles with a) fermions or b) bosons?
- 2) What is the probability $P(\vec{p})$ to find a particle with momentum \vec{p} in a system of classical particles (no quantum effects) with only kinetic energy ($E_{\text{pot}} = 0$) at temperature T (canonical ensemble)? $\beta = 1/k_B T$
Help:

$$\int_{-\infty}^{+\infty} e^{-ax^2} dx = \sqrt{\frac{\pi}{a}}$$

14



16

Probability distribution in different ensembles	
Microcanonical ensemble (NVE)	$p_i(E_i) = \text{const}$
Canonical ensemble (NVT)	$p_i(E_i) = \frac{e^{-E_i/k_B T}}{\sum_j e^{-E_j/k_B T}}$
Isobaric-isothermal ensemble (NpT)	$p_i(E_i) = \frac{e^{-H_i/k_B T}}{\sum_j e^{-H_j/k_B T}}$
	Enthalpy H $H = E + pV$
Grand canonical ensemble (μ VT)	$p_i(E_i) = \frac{e^{-Z_i/k_B T}}{\sum_j e^{-Z_j/k_B T}}$
	Grand potential Z $Z = E - \mu N$ $\mu = \left(\frac{\partial E}{\partial N} \right)$
Simulation results from one ensemble can be converted to another!	

17

Evaluation of Ensemble Properties

Properties of thermodynamic ensembles:

$$\langle A \rangle = \sum_{i=1}^{N_{\text{tot}}} w_i A_i$$

w_i : probability of finding system in configuration i
 $w_i = N_i / N_{\text{tot}}$

All possible states of a classical system are defined by $(\mathbf{r}^N, \mathbf{p}^N)$ with $\mathbf{r}^N: \mathbf{r}_1 \dots \mathbf{r}_N$, $\mathbf{p}^N: \mathbf{p}_1 \dots \mathbf{p}_N$, the space spanned by all possible $(\mathbf{r}^N, \mathbf{p}^N)$ is called the **phase space**.
[Quantum analogon: Hilbert space]

Ensembles properties have to be evaluated as integrals over all possible states
=> evaluate 6N dimensional phase space integrals

$$\langle A \rangle = \int \dots \int d\vec{r}^N d\vec{p}^N w(\vec{r}^N, \vec{p}^N) A(\vec{r}^N, \vec{p}^N)$$

S is given by the accessed phase space volume!

For the **canonical** ((NVT) ensemble:

$$w(\vec{r}^N, \vec{p}^N) = \frac{e^{-E_{\text{tot}}(\vec{r}^N, \vec{p}^N)/k_B T}}{\int \dots \int d\vec{r}^N d\vec{p}^N e^{-E_{\text{tot}}(\vec{r}^N, \vec{p}^N)/k_B T}}$$

Boltzmann factor

Partition function

18

Phase Space and Configuration Space

Canonical ensemble average:

$$\langle A \rangle = \frac{\int \dots \int d\vec{r}^N d\vec{p}^N A(\vec{r}^N, \vec{p}^N) e^{-E_{\text{tot}}(\vec{r}^N, \vec{p}^N)/k_B T}}{\int \dots \int d\vec{r}^N d\vec{p}^N e^{-E_{\text{tot}}(\vec{r}^N, \vec{p}^N)/k_B T}}$$

6N dimensional integral

$$E_{\text{tot}}(\vec{r}^N, \vec{p}^N) = E_{\text{pot}}(\vec{r}^N) + E_{\text{kin}}(\vec{p}^N)$$

(conservative forces)

Momentum part simple quadratic dependence on p
=> analytic evaluation possible (remember: Maxwell-Boltzmann distribution)

Potential energy part more complex => evaluated numerically via computer simulations

=> 3N dimensional configurational space integral

$$\langle A \rangle = \frac{\int \dots \int d\vec{r}^N A(\vec{r}^N) e^{-E_{\text{pot}}(\vec{r}^N)/k_B T}}{\int \dots \int d\vec{r}^N e^{-E_{\text{pot}}(\vec{r}^N)/k_B T}}$$

QM analogon:

$$\langle A \rangle = \frac{\langle \Psi | \hat{A} | \Psi \rangle}{\langle \Psi | \Psi \rangle} = \frac{\int \dots \int d\vec{r}^N \Psi^* A \Psi}{\int \dots \int d\vec{r}^N \Psi^* \Psi}$$

19

Sampling thermodynamic ensembles

$$\langle A \rangle = \frac{\int \dots \int d\vec{r}^N d\vec{p}^N A(\vec{r}^N, \vec{p}^N) e^{-E_{tot}(\vec{r}^N, \vec{p}^N)/k_B T}}{\int \dots \int d\vec{r}^N d\vec{p}^N e^{-E_{tot}(\vec{r}^N, \vec{p}^N)/k_B T}}$$

$$\langle A \rangle = \sum_{i=1}^{N_{tot}} w_i A_i$$

Monte Carlo simulations: stochastic sampling of configurational space

Molecular dynamics simulations: time average

Ergodicity:

a dynamical system that has the same behavior averaged over space as averaged over time

All molecular dynamics simulations are based on the ergodic hypothesis:

$$\langle A \rangle_{ensemble} = \langle A \rangle_{time}$$

Assumes that for a sufficiently long time trajectory the system visits all the configurations that are accessible at a given temperature

Not necessarily true!

20

Microscopic Definitions of T and p

Temperature

$$E_{kin} = \frac{1}{2} \sum_I M_I v_I^2$$

$$T = \frac{2}{3} \frac{E_{kin}}{N^{DOF} k_B}$$

N^{DOF} : number of degrees of freedom ($3N$)
 k_B : Boltzmann constant

Pressure

$$p = \frac{Nk_B T}{V} + \frac{1}{3V} \sum_i \vec{r}_i \cdot \vec{f}_i$$

Ideal gas part

virial

21

Checklist

- Thermodynamic ensemble: microcanonical, canonical, isobaric-isothermal, grand-canonical
- Microstate
- Stat.mech. definitions of entropy, free energy
- fundamental postulates of statistical mechanics
- Boltzmann distribution
- Maxwell-Boltzmann distribution
- Partition function
- microscopic definitions of temperature, pressure
- Phase space – phase space integral
- Configuration space – configuration space integral
- Ensemble averages
- ergodicity and ergodic theorem