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Chapter 5:

Molecular Dynamics Simulations 
(2)
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Determination of V(R)

• Pointwise QM determination of the full 3N dim PES
 Þ only practicable for very small molecules 

• PES determined on the fly where it is needed: Car-Parrinello MD
   Þ <1000 atoms

First-Principles Surfaces:

Empirical Interaction Potentials:

• Choice of functional form:

  V ({RI}) ≅ V1 RI( )
I
∑ + V2 RI ,RJ( )

J>I
∑

I
∑ + V3 RI ,RJ ,RK( )

K>J
∑

J>I
∑

I
∑ + ...

• most of the time truncated after pair-potential term
• few many-body force fields (3-body: Axilrod-Teller, n-body: Tersoff, glue 
potential, embedded atom method (EAM) => especially for metals)
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Determination of V(R)

• Pointwise QM determination of the full 3N dim PES
 Þ only practicable for very small molecules 

• PES determined on the fly where it is needed: Car-Parrinello MD
   Þ <1000 atoms

First-Principles Surfaces:

Empirical Interaction Potentials:

  

• Choice of functional form
  (2-body? Many-body? Nonpolarizable/Polarizable ? All 
   atom/united atom?)

Exp. Dipole moment H2O            1.85D (gas phase)
                                                      ~3 D (water)

• Parameterized with experimental or QC data on small
  gas phase molecules (plus adaption to condensed phase
  environment)
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https://www.ctcms.nist.gov/potent
ials 

Materials: Interatomic potentials 
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https://www.ctcms.nist.gov/potentials/
https://www.ctcms.nist.gov/potentials/
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Force Fields for Water
Most common: 

• Rigid water molecules
• Fix point charges on O, H and possibly on 

other sites
• Van Der Waals interactions on oxygens only 

SPC, SPCE, TIP3P                TIP4P                          TIP5P                          TIP6P      

Dipole moment:
   gas phase   1.85D
   liquid     ca.      3D
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(Bio)Molecular Force Fields
• molecules modeled as classical mechanical objects with electrostatic charge 
   interactions
• no explicit electrons only set of classical particles or  interaction sites
• no quantum effects

© Picture 
from wikipedia
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Standard (Bio)molecular Force Field
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• GROMOS, AMBER, CHARMM, OPLS-AA, MM3,  SYBIL, 
   UFF, SPC, SPC/E, TIP3P, TIP4P, TIP5P etc..

+
n
∑ kn 1+ cos(nϕijkh −ϕ0 )⎡⎣ ⎤⎦

ϕ

∑

electrostatics Lennard-Jones 12-6

Bond term             angle term

Torsional term
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chemical bonds (2 adjacent atoms): 
 -> described by mechanical springs: bond potential (harmonic, anharmonic,
        Morse etc..)
        force constants e.g. from stretching modes
 bond angles (3 adjacent atoms):   ditto  (harmonic, anharmonic etc..), 
  ® force constants e.g. from bending modes
Torsional Potentials (4 adjacent atoms)

• electrostatic interactions:  Coulomb interaction between effective (atom 
centered or off-site) point charges

• van der Waals interactions (Pauli repulsion &  dispersion): Lennard-
Jones 12-6, n-m, Williams exponential

C C

H

H H

H
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Polarizable Force Field Models
charge-on-spring 
or shell model or

charge equilibration or 
chemical potential 

equilibration

µind: induced atomic dipole 
a: atomic polarizability

E:  electric field

atomic charges redistributed to 
equalize electronegativity at each site

qD:  charge of Drude 
particle

kD:  harmonic spring 
constant

Energy needed for charge redistribution Eself
C: electronegativity; h: chemical harness
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AMOEBA (atomic multipole optimized energetics for biomolecular applications) 
Ponder et al. J. Comp. Chem. 23, 1497 (2002)

Bond and angle potentials include anharmonicity effects through higher order terms:

Additional bond-angle coupling terms and

Van der Waals interactions: buffered 14-7:

𝜌!"= 𝑅!" / R#$%

Induced dipole model 

potentials to keep sp2 
carbons planar 

standard torsion potential
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AMOEBA Electrostatic Interactions

=

via atomic multipole expansion

Induced dipoles

Coulomb 
interactions of 
permanent multipole 
moments: charge-
charge, charge-
dipole etc..

E: total electric field generated by all other permanent 
atomic multipoles and induced dipoles

q: atomic charge
µ: atomic dipole moment

Q: atomic quadrupole moment

=> has to be solved self-consistently
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Are Polarization Effects Important? 

Standard Deviation of the 
  Electrostatic Potential

    

Gly-Ala in Water (SPC), 
QM Based MD 10ps, 300K
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AMBER95:          6-13 %
GROMOS96:       9-16 %
D-RESP:              6-8   %
D-RESP(pol):          5  %

Potential:

AMBER95:          6 %
GROMOS96:       7 %
D-RESP:              3 %
D-RESP(pol):      2 %

Dipole Moment:

H. Hugosson et al., J.Comp. Chem. 27, 672 (2006); P. Maurer,  et al. JCTC (2007) 
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Automatized Generation of  Force Fields

QM

MM MMForce 
Matching

Force field parameters si fitted to minimize difference between 
reference and force field forces on each atom

L: number of 
configurations

N: number of atoms
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Machine Learning Potentials
Kernel Methods:

Recent review: Unke et al. Chem. Rev. 121, 16, 10142 (2021)

Neural Networks:

Input layer
Hidden layers

output layer

M: descriptor of chemical 
environment  of atom I

• Descriptor Based NNs
• End-to-end (input atomic charges 

and coordinates)
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Machine Learning Potentials
Important to impose physical constraints:
• Energy conservation (consistency of energy and forces)
• Translational invariance
• Rotational invariance
• Permutational invariance

Advantages:
• Do not need to know anything about 

interactions/form of the potential
• Automatized: no tedious FF development
• Can also be used for chemical reactions & charge 

transfer phenomena

Disadvantages:
• Have to generate enough training data
• 1-3 orders of magnitude slower than FF based MD
• Can become unreliable when getting into regions 

far from training set
• Makes no use of physical knowledge even when it 

would be available

Software packages
 for ML-FFs:

     AMP (ó ASE)
     Aenet

          DeePMD(óLAMMPS)
     PhysNet

      TensorMol 
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MOLECULAR DYNAMICS PACKAGES

OpenMM                 http://openmm.org

AMBER                   http://ambermd.org

CHARMM           https://www.charmm.org/charmm/ 

GROMOS    http://www.gromos.net

GROMACS            http://www.gromacs.org   free (incl. source)

NAMD http://www.ks.uiuc.edu/Research/namd/  free (incl. source)

TINKER                  https://dasher.wustl.edu/tinker  free (incl. source)

X-PLOR                  ahttp://www.csb.yale.edu/userguides/datamanip/xplor

DL-POLY                 https://www.scd.stfc.ac.uk/Pages/DL_POLY.aspx

LAMMPS                 https://lammps.sandia.gov                

33



4/14/25

9

Limitations of Empirical Force Fields
Þ Transferability Problem
     empirical force fields are only parameterized for a 
     given electronic environment, cannot adjust to large 
     changes in the electron distribution
    (e.g. different types of chemical bonding)

Þ cannot treat breaking and forming of chemical bonds
      Þ no chemical reactions!

Þ many-body effects (polarization)!

Þ transition metals difficult to treat!

Þ  parameter-free first-principles MD 
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Car - Parrinello Molecular Dynamics 

Roberto 
Car

Michele 
Parrinello
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Does this fictitious dynamics have anything to do with the real 
physical dynamics???

• if 

the total energy of the system is » the real physical total energy:

0Ks'M eI »®<<µ

potIpotIe EKEKK +»++
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Mixed Quantum Mechanical / 
Molecular (QM/MM) Mechanical Methods

Interface 
region

QM part
~ 100-1000 atoms

 ~ 400 electrons

MM part
> 1000 solute atoms

 > 10000 solvent atoms
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"for the development of multiscale models for complex 
chemical systems”: mixed quantum mechanical/molecular 

mechancial (QM/MM) simulations

Nobelprize in Chemistry 2013
Martin Karplus Michael Levitt Arieh Warshel
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Mixed QM/MM Car-Parrinello Simulations

MM

JCP 116,  6941 (2002);  JPCB 106, 7300 (2002); JPCB 108,7963 (2004); reviews in: CHIMIA 56, 11 (2002); 
CHIMIA 59, 493 (2005); CHIMIA  9, 667-671 (2011); CHIMIA 65, 330-333 (2011)
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Electronic ground state EQM = EDFT (ps, pw, GGA)ZI

qm

EMM: AMBER or GROMOS
Non-polarizable 

CPMD (www.cpmd.org) 
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http://www.cpmd.org
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Quantum Effects in Biological Systems

High Electric Fields
Enzymatic Reactions 

Photoreactions 

Radiation DamageElectron Transfer Transition Metals 
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