Chapter 5

Molecular Dynamics Simulations (2)
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5.1 Ensembles and Time Averages

The classical equations of motions (in the Lagrangian (Eq. (4.1)), or in the
Newtonian formulation (Eq. (4.3))) describe the dynamic evolution of a system
in form of a discrete time trajectory over the potential energy surface.
Equivalents to macroscopic properties such as for instance, temperature T and
pressure P, can be defined on the microscopic level, e.g. as we have seen in
Eq. (4.36), the temperature of the system can be related to the average kinetic
energy per particle. If you perform an MD simulation of a finite size system, you
will notice that the temperature fluctuates. In fact, the observed temperature
fluctuations AT will be indirectly proportional to the square root of the number
of particles N, AT ~ 1/(N'?).

The pressure can be defined using the (molecular or atomic) virial given in Eq.
(4.37) as

PV = NkyT + (3N, 7; - F;) (5.1)

This establishes connections between macroscopic observables of ensembles
containing of the order of Avogadro’s number of particles and the microscopic
time-dependent properties of a single molecule. Any given point that has been
visited during the time evolution of the system is characterized not only by the
set of nuclear coordinates but also by the velocities (momenta) of each particle.
The space that is spanned by all the position and momenta coordinates of the
system is called phase space. By creating MD trajectories, we thus sample
different configurations in phase space.

Lets assume we follow the system for an infinite time and all parts of phase
space are accessible to us that should be reachable at this temperature
(ergodic system). Then we sample all possible configurations during our time
trajectory and furthermore, we visit all of them with the proper statistical weight.
Under these circumstances the average of a given property along our time
trajectory becomes equivalent to its macroscopic ensemble average. This link
to statistical mechanics is a very powerful one because it enables the
calculation of dynamic as well as thermodynamic properties as direct excerpts
from an MD trajectory. Typical examples of properties that can be calculated in
this way are for instance, diffusion coefficients, characteristic relaxation times,
dielectric constants, and viscosities. We also gain access to a variety of space
and time correlation functions such as e.g. radial distribution functions in liquids
or Fourier Transforms of the velocity-velocity autocorrelation functions as
fingerprints for vibrational spectra. The probably most important feature that
becomes available in this way is the possibility of determining relative free
energy differences.

This is terrific! However, the accuracy of all the derived properties depends
crucially on the quality of the underlying potential energy surface. Most of the
time, the potential energy surface is described in terms of empirically
parameterized interaction potentials (“force fields”) and the development of
reliable force fields is therefore of crucial importance for the predictive power of
molecular dynamics simulations.
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5.2 Force Fields

In principle, we know how to determine the underlying potential energy surface:
we have to solve the time-independent Schrbédinger equation on a dense
enough mesh of points in configuration space {R}. Subsequently, we can fit the
set of numerical values to an appropriate analytical form. However, it is easy to
see that a procedure that attempts a full determination of the potential energy
surface is impractical for most systems of more than a few atoms. Suppose that
we discretize every internal degree of freedom with M points. Hence, we will
have to perform of the order of MGN-9 solutions of the Schrédinger equation. If
we take e.g. M ~100, even for a system as small as a triatomic, we need of the
order of a million quantum chemical calculations! Clearly, an evaluation of the
entire potential energy surface is only feasible for very small molecules in the
gas phase whereas we are also interested in extended systems in condensed
phase. Unfortunately, it looks like we have to give up on the dream of an ab
initio force field determined directly from quantum mechanics!

In Chapter 6, we will see however that there is still a possibility to work with an
interaction potential that is fully based on first-principles. In so-called ab initio
or Car-Parrinello molecular dynamics simulations, all the interactions are
calculated on the fly directly from a quantum mechanical method. In this way,
instead of calculating the full 3N dimensional surface, the potential energy
surface is only determined where it is needed, i.e. at the points where the
system actually passes through.

Most of the molecular dynamics simulations are however based on empirically
parameterized potential energy surfaces (empirical “force fields”). For such a
parameterization, the essential physics of the interactions has to be captured
and condensed into a simple analytic form that then can be adjusted using
experimental or quantum mechanical data. The art of designing smart force
fields that are able to reproduce the intrinsic properties of a system is far from
trivial. A comprehensive discussion of the various forms of existing force fields
would go far beyond the scope of this course, only few examples of the most
widely used types of force fields, those used to describe water and biological
macromolecules will be discussed here.

5.2.1 Water Force Fields

Water is the most commonly used solvent and a variety of force field models
exist for H20. In the majority of water force fields, the single water molecules
are treated as rigid units, i.e. the O-H bond lengths and the HOH bond angle
are fixed. This eliminates the high frequency motions due to the OH stretching,
and HOH bending vibrations, which in turn enables the use of a larger time
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step. The rigid geometry is imposed using constraints on the OH and HH
distances as described in Chapter 4.3.

Fig.5.1 Geometry of a water molecule.
O 95.84 pm (picture taken from wikipedia).
4.45°

H-<e

The force field contains only non-bonded van der Waals and Coulomb terms as
in Eqg.(5.4). Furthermore, most water models only include van der Waals
interactions of the oxygen atoms, neglecting the much smaller contributions
from the hydrogen atoms. The van der Waals parameters are often chosen in
such a way that the denisty of liquid water at ambient conditions is reproduced.
The electrostatic interactions are modelled via effective point charges qi located
at nuclear positions (e.g. 3-site water models such as TIP3P and SPC) and
sometimes on additional off-atomic sites mimicking e.g. the effect of the
negative charge density due to lone pair orbitals). Water models of the latter
typ are TIP4P (4 interaction sites), TIP5P and TIP6P.

L /l_ L L
O O O _O-_

H H H H H” H H H
3-site 4-site 5-site 6-site

Figure 5.2 3-6 site water models (picture form wikipedia).

The atomic point charges could be chosen in such a way that the dipole moment
of an isolated water molecule in gas phase (1.85 Debeye) is described
correctly. However, such a choice would severly underestimate the significant
increase in dipole moment in the liquid phase (~ 3 Debye). Since water models
are almost exclusively used to model the liquid state, the effective point charges
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are chosen in such a way to account for this additional polarization. The force
field parameters of the most popular 3-site water models are given in Table 5.1

TIPS | spch! Trp3plo! spc/El’)
r(OH), A 09572 10 09572 10
HOH, deg 10452 (10947 10452 10947
A x 1073, kcal A12/mol|5800 6294 5820 6294

B,kcal A®mol 5250 6255 5950 6255

q(O) -080 082 -0.834 —0.8476
q(H) +040 +041 +0417 +04238

Table 5.1 Parameters of commonly used water models (from wikipedia).

The SPC/E model is an extension to the SPC water model that takes an
average polarization correction to the interaction energy into account and
results in a sligthly better density and self-diffusion constant.

5.2.2 Force Fields for Biological Macromolecules

Because of the large size of biological systems such as proteins, nucleic acids
or lipid membranes, force fields for these systems are in wide use. They usually
divide the interactions into so-called bonded terms (terms between interaction
sites that are linked via chemical bonds) and non-bonded terms (interactions
between particles that do not form direct chemcial bonds with each other).

HMM :H%ded +H}r‘tﬁr/t[—bonded (52)
1 1
Hbo”dedzsz 7 —b 2+27k 0., —6 2+sz |+ cos(n@m, —
g =2 b7 —bo) > 0Oy —0o) x> ,,[ (P goo] (5.3)
12 6
Hjgbonded - 5 _Wn_y g g || Tor || Top (5.4)
lm472'807']m op rop r()p

where ki, and k¢ are harmonic force constants for bond stretching and angle
bending potentials, rj and Oix refer to the instantaneous values of bonds and
angles, and bo and 6o are the corresponding equilibrium values. The third term
in Eq. (5.3) defines a torsional potential for twisting two adjacent planes of
atoms against each other. The terms in Eq. (5.4) describe non-bonded
interactions including electrostatic and van der Waals forces. Eqgs. (5.2-4) are
a generic form and many variations are possible. For instance, anharmonic
terms might be included in the bond and angle potentials. Furthermore, different
forms of the torsional potentials are in use and the van der Waals potential can
be diverse, e.g. an exponential form instead of the r'> dependence for the
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repulsive part. Different force fields also use varying exclusion rules that define
how the non-bonded interactions are handled for sites that already interact via
bonded terms. Moreover, explicit interaction sites can be included on all the
atoms (all atom force fields) or only on suitably defined pseudo atoms (e.g. a
single interaction sites representing nonpolar —CH, -CHz or -CHs groups, so-
called united atom force fields). In recent years, coarse-grain force fields such
as the MARTINI force field, in which groups of atoms (usually containing ~4
atoms) are described by one coarse-grain interaction site. Some popular force
fields of the type described in Egs. (5.2-4) are the AMBER, CHARMM,
GROMOS, or OPLS-AA force fields. They are used in combination with
available water models such as SPC, SPC/E and TIPnP.

All the force fields mentioned so far are based on pair potentials, in which many-
body terms in the nonbonded interactions are incorporated only in an implicit
way. Force fields with explicit higher order terms such as three-body or many-
body potentials have also been developed for specific systems.

Most of the current force fields are non-polarizable, i.e. charges that have been
initially assigned to the system remain constant throughout the simulation at
variance with the fact that the instantaneous chemical surrounding may
change. The development of more sophisticated polarizable models, in which
the point charges can fluctuate and adapt to changes in the environment is
presently an active field of research. Several polarizable force fields have been
published in the literature for water as well as for biological macromolecules.
Molecular dynamics simulations based on empirical force fields have been
remarkably successful in providing a microscopic picture of complex
biomolecular systems. This simple approach has however its limits. As we have
seen, the underlying electronic structure enters the construction of appropriate
interaction potentials only in an implicit way, and hence parameters that have
been determined for a specific chemical environment are often not transferable
to largely differing bonding conditions. Typical cases in which the transferability
of empirical force fields usually breaks down are situations in which the
electronic structure of the system experiences drastic changes, such as e.g.
during a chemical reaction. Most empirical potentials are therefore not suitable
to simulate directly the forming and breaking of chemical bonds. Another
notoriously difficult issue is the development of reliable force fields for transition
metals. For these tough cases, often the only possibility for an accurate
description is an explicit treatment of the electronic structure as employed in
first-principles molecular dynamics simulations (Chapter 6).

5.3 Few Tricks of the Trade

Modern molecular dynamics simulations have evolved over the years to a
sophisticated technique and there are many subtle ‘tricks of the trade’ of how
to setup the system and how to run and analyze the simulations.

5.3.1 Choice of Boundary Conditions

A first decision that has to be made when setting up a system for an MD
simulation, is the choice of appropriate boundary conditions. The natural choice
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for the simulation of crystalline solids is the use of periodic boundary conditions
that are chosen in such a way as to impose the infinite periodicity of the lattice.
A similar selection can be adopted for the simulation of an ‘infinite’ liquid for
which the system is put into a (rectangular) box and particles that go out of the
box on one side automatically re-enter the system again on the opposite side
(as illustrated in Fig.4.1 in the previous Chapter). However, in reality, a liquid is
not a periodic system and the introduction of such circular boundaries can
introduce artificial periodicity effects. The characteristic interaction length that
can be described is restricted to half of the box edge.

An alternative choice is to truncate explicit interparticle interactions beyond a
given spherical cutoff radius and to describe the longer-range interactions with
a dielectric continuum (reaction field) model. Also in this case, the results might
depend on the actual choice of the cutoff radius and dielectric constant for the
surrounding medium.

An even cruder description is provided by the introduction of spherical droplets
in which the solvent molecules on the surface are kept from evaporating into
the vacuum by a suitably chosen restraining potential. Naturally, if not handled
carefully, such a choice of boundary conditions can lead to strong spurious
surface effects.

5.3.2 Treatment of Long-Range Forces

The treatment of the non-bonded interactions, and in particular the long-range
electrostatic interactions are usually the computationally most demanding part
of a classical MD simulation. The way in which these interactions are treated
contributes in an important way to the overall quality of the simulation protocol.
Several different strategies with widely varying accuracy are currently in use.
The simplest (and crudest) way of treating the electrostatic interactions is the
straightforward introduction of a spherical cutoff radius beyond which no
interactions are taken into account. Another popular ad hoc solution is the
introduction of a high or distance-dependent dielectric constant. A recent more
rigorous approach replaces the electrostatic interactions outside a given cavity
with a dielectric continuum (reaction field) representation.

The correct treatment of the long-range electrostatic interaction in systems with
periodic boundary conditions is more involved as an exact calculation of the
total electrostatic energy implies an infinite sum over all possible pairs among
periodic replicas. A rigorous method to treat this problem has been introduced
in the form of the Ewald method. The full electrostatic interactions can be
separated into a short-range part that is easily calculated in real space and a
smooth long-range part that is conveniently determined in reciprocal space
through the application of discrete Fourier Transforms. Modifications of the
original Ewald scheme that expand the charge density of the system on a real
space mesh and make use of Fast Fourier Transform algorithms such as
particle-mesh Ewald (PME) have also been introduced in the last years.
Alternatively, schemes have been developed that are based on (hierarchical)
fast multipole expansions.
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5.3.2 Constant NVT and NPT Ensembles

The equations of motion in Egs.(4.1 and 4.3) are Hamiltonian, i.e. they have
the characteristic property that the total energy of the system is conserved
during the time evolution. This special feature also offers a stringent test for
new implementations, as inconsistencies between the calculated energy and
forces affect the energy conservation in a sensitive way. Due to this property,
time-averages over this type of trajectories can be related to ensemble
averages of the microcanonical ensemble. Unfortunately, the microcanonical
ensemble is not a very common ensemble for the measurement of macroscopic
properties. In order to make direct contact with experimental data, it would be
more desirable to perform simulations in a canonical (NVT) or even in a
constant NPT-ensemble. A straightforward way to obtain averages in the
canonical ensemble would be to perform a ‘macroscopic’ (i.e. very large)
number of independent Boltzmann-distributed microcanonical simulations.
Such an approach is quite impractical and molecular dynamics schemes have
been introduced to achieve the same goal within a single simulation. Most of
these schemes, couple the system to a thermal bath (thermostat) through which
additional ‘friction’ forces are introduced that are determined in such a way as
to keep the average kinetic energy of the system in accordance with the chosen
temperature. One of the most popular constant-temperature MD algorithms
is due to Nosé and Hoover. For some applications, it is also useful to thermostat
the thermostats themselves as in the so-called Nose-Hoover chain algorithm.
It can be shown that the Nose-Hoover(-chain) method generates averages in
the canonical ensemble. This is an important feature that is not valid for more
simplistic approaches such as a straightforward scaling of the velocities or the
use of a Berendsen-thermostat. Similar extended system methods, in which the
system is coupled to a heat and a pressure bath are also available. A special
form of constant pressure MD, that is especially powerful for the investigation
of phase transitions in the solid state, is the Parrinello-Rahman method. In this
elegant approach, the simulation cell itself is a dynamic variable that can
change shape and size during the simulation.
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Chapter 6

Advanced Molecular Dynamics
Techniques
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6.1 First-Principles MD Simulations with the Car-Parrinello Method

In first-principles or Car-Parrinello molecular dynamics simulations the
underlying interaction potential is calculated directly via a quantum mechanical
electronic structure method. This combination can in principle be achieved in a
straightforward way. For every set of nuclear coordinates, the electronic
structure problem is solved and the nuclear forces are calculated via the
Hellman-Feynman theorem. The nuclei are then moved to the next position
according to the laws of classical mechanics and the new forces are again
calculated from a full electronic structure calculation. This type of ab initio
molecular dynamics is often referred to as ‘Born-Oppenheimer dynamics’.

In 1985, Car and Parrinello have introduced an elegant alternative to this
approach in which the electronic degrees of freedom, as described by e.g. one-
electron wavefunctions| ¢i), are also treated as fictitious classical variables. The
system is described in terms of the extended classical Lagrangian Lex

Loy =Ky + Ko = Eppy (6.1)

where Ky is the kinetic energy of the nuclei, K. is the analogous term for the
electronic degrees of freedom and E, is the potential energy which depends
on both, nuclear positions {RI} and electronic variables | ¢i). Lex can be written

as:
| . * o o
Lo =S50, 54l = (o 90} + 5, [0, @, 175, (6.2)
1 LJ

where the A; are Lagrange multipliers that ensure orthonormality of the one-

electron wavefunctions | ¢i, p is a fictitious mass associated with the electronic
degrees of freedom and the potential energy is given by the expectation value
of the total (ground state) energy of the system e =(¥,|H|¥,). The Lagrangian in

Eq. (6.2) determines the time evolution of a fictitious classical system in which
nuclear positions as well as electronic degrees of freedom are treated as
dynamic variables. The classical equations of motion are given by the Euler-

Lagrange equations:
d [S_L] _ L (6.3)

dt| 3¢ i dq;

where q; corresponds to a set of generalized coordinates. With the Lagrangian
of Eq. (6.2), the equations of motion for the nuclear degrees of freedom become

M ﬁ =—— 6.4
e OR; 64)
and for the electronic ones
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no; =—Ho; +XA; ¢, (6.5)
J

where the term with the Lagrange multipliers A; describes the constraint forces

that are needed to keep the wavefunctions orthonormal during the dynamics.
The parameter p is a purely fictitious variable and can be assigned an arbitrary
value. In full analogy to the nuclear degrees of freedom, p determines the rate
at which the electronic variables evolve in time. In particular, the ratio of M; to
u characterizes the relative speed in which the electronic variables propagate
with respect to the nuclear positions. For u << M, the electronic degrees of
freedom adjust instantaneously to changes in the nuclear coordinates and the
resulting dynamics is adiabatic. Under this condition K. << Ky and the extended
Lagrangian in Eq. (6.2) becomes identical to the physical Lagrangian L of the
system

L=Ky —E,y (6.6)

For finite values of p, the system moves within a limited width, given by the
fictitious electronic kinetic energy, above the Born-Oppenheimer surface.

Adiabaticity is ensured if the highest frequency of the nuclear motion o™ is
well separated from the lowest frequency associated with the fictitious motion
of the electronic degrees of freedom ™" . It can be shown that o™" is
proportional to the gap E,, i.e. the difference between highest occupied and

lowest unoccupied energy levels
[E
u

For systems with a finite E,, the parameter u can be used to shift the electronic

frequency spectrum so that ™" >>™* and no energy transfer between

nuclear and electronic subsystem takes place. For metallic systems, special
variations of the original method have to be adopted. In practice, it is easy to
check if adiabatic conditions are fulfilled by monitoring the energy conservation
of the physical Lagrangian in Eq. (6.6).

Egs. (6.4) and (6.5) can be integrated simultaneously with one of the standard
MD integration algorithm mentioned in Chapter 4. In this way, one can generate
classical nuclear trajectories on a quantum mechanical potential energy
surface.

The Car-Parrinello method is similar in spirit to the extended system methods
for constant temperature or constant pressure dynamics. Extensions of the
original scheme to the canonical NVT-ensemble, the NPT-ensemble or to
variable cell constant pressure dynamics are hence in principle straightforward.
The treatment of quantum effects on the ionic motion is also easily included in
the framework of a path-integral formalism.

Most of the current implementations use the original Car-Parrinello scheme
based on density functional theory as the underlying electronic structure
method. The system is treated within periodic boundary conditions and the
Kohn-Sham (KS) one-electron orbitals | ¢iy are expanded in a basis set of plane
waves (with wave vectors G, )

52



S e’ On” (6.8)

1
\/ Veer - m

up to a given kinetic energy cutoff Ecut. Substituting Eq. (6.8) into the extended
Lagrangian of Eq. (6.2) gives
|2

1. = )
Lex:z—M]R]2+MZZ|C' —EKS‘4‘2/\&[263.k ij—Sij:| (69)
Ji 2 im ij m im

and the equation of motion for the electronic degrees of freedom in Eq. (6.5) is
replaced by analogous classical equations for the plane wave coefficients cim

.. OF
HCim =——— +IA;Cjn (6.10)
. .

im J

Typical plane wave expansions include impressive numbers of 10,000-100,000
plane wave coefficients. All of these have to be optimized or propagated
simultaneously using Eq. (6.10), which makes first-principles MD approaches
highly memory intensive.

Besides the traditional scheme, ab inito MD methods using semiempirical,
Hartree-Fock, generalized valence bond (GVB), complete active space
(CASSCF), and configuration interaction (Cl) electronic structure methods have
been realized. The Car-Parrinello scheme has also been extended into a mixed
quantum/ classical QM/MM approach.

6.2 Mixed Quantum Mechanical/Molecular Mechanical (QM/MM)
Simulations

An ideal simulation method just employs the computational effort that is
needed to describe a given problem with a desired accuracy. For many
systems, it is advantageous to apply a fast classical MD description based on
empirically determined interaction potentials whenever possible and a
computationally more demanding first-principles treatment where necessary. In
combined quantum/classical QM/MM methods the reactive part of the system
(e.g. the active site of an enzyme) is treated with a quantum chemical method
while the effects of the surrounding are taken into account within a classical
force field description.

This is an appealing idea but the quality of these techniques crucially depends
on a rigorous treatment of the interface between quantum and classical part of
the system. Significant progress has been made during the last years to
develop reliable ways of coupling both semiempirical and first-principles
quantum mechanical methods with a classical environment. This approach has
thus become a promising and powerful option to study extended systems in
which the crucial interactions are described at an advanced level.
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