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Chapter 5 
 
 
 
Molecular Dynamics Simulations (2) 
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5.1 Ensembles and Time Averages  
The classical equations of motions (in the Lagrangian (Eq. (4.1)), or in the 
Newtonian formulation (Eq. (4.3))) describe the dynamic evolution of a system 
in form of a discrete time trajectory over the potential energy surface. 
Equivalents to macroscopic properties such as for instance, temperature T and 
pressure P, can be defined on the microscopic level, e.g. as we have seen in 
Eq. (4.36), the temperature of the system can be related to the average kinetic 
energy per particle. If you perform an MD simulation of a finite size system, you 
will notice that the temperature fluctuates. In fact, the observed temperature 
fluctuations DT will be indirectly proportional to the square root of the number 
of particles N, DT ~ 1/(N1/2).  
The pressure can be defined using the (molecular or atomic) virial given in Eq. 
(4.37) as  
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This establishes connections between macroscopic observables of ensembles 
containing of the order of Avogadro’s number of particles and the microscopic 
time-dependent properties of a single molecule. Any given point that has been 
visited during the time evolution of the system is characterized not only by the 
set of nuclear coordinates but also by the velocities (momenta) of each particle. 
The space that is spanned by all the position and momenta coordinates of the 
system is called phase space. By creating MD trajectories, we thus sample 
different configurations in phase space.  
Lets assume we follow the system for an infinite time and all parts of phase 
space are accessible to us that should be reachable at this temperature 
(ergodic system). Then we sample all possible configurations during our time 
trajectory and furthermore, we visit all of them with the proper statistical weight. 
Under these circumstances the average of a given property along our time 
trajectory becomes equivalent to its macroscopic ensemble average. This link 
to statistical mechanics is a very powerful one because it enables the 
calculation of dynamic as well as thermodynamic properties as direct excerpts 
from an MD trajectory. Typical examples of properties that can be calculated in 
this way are for instance, diffusion coefficients, characteristic relaxation times, 
dielectric constants, and viscosities. We also gain access to a variety of space 
and time correlation functions such as e.g. radial distribution functions in liquids 
or Fourier Transforms of the velocity-velocity autocorrelation functions as 
fingerprints for vibrational spectra. The probably most important feature that 
becomes available in this way is the possibility of determining relative free 
energy differences.  
This is terrific! However, the accuracy of all the derived properties depends 
crucially on the quality of the underlying potential energy surface. Most of the 
time, the potential energy surface is described in terms of empirically 
parameterized interaction potentials (“force fields”) and the development of 
reliable force fields is therefore of crucial importance for the predictive power of 
molecular dynamics simulations. 
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5.2 Force Fields 
In principle, we know how to determine the underlying potential energy surface: 
we have to solve the time-independent Schrödinger equation on a dense 
enough mesh of points in configuration space {R}. Subsequently, we can fit the 
set of numerical values to an appropriate analytical form. However, it is easy to 
see that a procedure that attempts a full determination of the potential energy 
surface is impractical for most systems of more than a few atoms. Suppose that 
we discretize every internal degree of freedom with M points. Hence, we will 
have to perform of the order of M(3N-6) solutions of the Schrödinger equation. If 
we take e.g. M ~100, even for a system as small as a triatomic, we need of the 
order of a million quantum chemical calculations! Clearly, an evaluation of the 
entire potential energy surface is only feasible for very small molecules in the 
gas phase whereas we are also interested in extended systems in condensed 
phase. Unfortunately, it looks like we have to give up on the dream of an ab 
initio force field determined directly from quantum mechanics!  
In Chapter 6, we will see however that there is still a possibility to work with an 
interaction potential that is fully based on first-principles. In so-called ab initio 
or Car-Parrinello molecular dynamics simulations, all the interactions are 
calculated on the fly directly from a quantum mechanical method. In this way, 
instead of calculating the full 3N dimensional surface, the potential energy 
surface is only determined where it is needed, i.e. at the points where the 
system actually passes through.  
Most of the molecular dynamics simulations are however based on empirically 
parameterized potential energy surfaces (empirical “force fields”). For such a 
parameterization, the essential physics of the interactions has to be captured 
and condensed into a simple analytic form that then can be adjusted using 
experimental or quantum mechanical data. The art of designing smart force 
fields that are able to reproduce the intrinsic properties of a system is far from 
trivial. A comprehensive discussion of the various forms of existing force fields 
would go far beyond the scope of this course, only few examples of the most 
widely used types of force fields, those used to describe water and biological 
macromolecules will be discussed here. 
	
5.2.1 Water Force Fields 
Water is the most commonly used solvent and a variety of force field models 
exist for H2O. In the majority of water force fields, the single water molecules 
are treated as rigid units, i.e. the O-H bond lengths and the HOH bond angle 
are fixed. This eliminates the high frequency motions due to the OH stretching, 
and HOH bending vibrations, which in turn enables the use of a larger time 
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step. The rigid geometry is imposed using constraints on the OH and HH 
distances as described in Chapter 4.3. 
 

Fig.5.1 Geometry of a water molecule. 
(picture taken from wikipedia). 
 
 
 
 

The force field contains only non-bonded van der Waals and Coulomb terms as 
in Eq.(5.4). Furthermore, most water models only include van der Waals 
interactions of the oxygen atoms, neglecting the much smaller contributions 
from the hydrogen atoms. The van der Waals parameters are often chosen in 
such a way that the denisty of liquid water at ambient conditions is reproduced. 
The electrostatic interactions are modelled via effective point charges qi located 
at nuclear positions (e.g. 3-site water models such as TIP3P and SPC) and 
sometimes on additional off-atomic sites mimicking e.g. the effect of the 
negative charge density due to lone pair orbitals). Water models of the latter 
typ are TIP4P (4 interaction sites), TIP5P and TIP6P.  
 

 
Figure 5.2 3-6 site water models (picture form wikipedia). 
 
The atomic point charges could be chosen in such a way that the dipole moment 
of an isolated  water molecule in gas phase (1.85 Debeye) is described 
correctly. However, such a choice would severly underestimate the significant 
increase in dipole moment in the liquid phase (~ 3 Debye). Since water models 
are almost exclusively used to model the liquid state, the effective point charges 
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are chosen in such a way to account for this additional polarization. The force 
field parameters of the most popular 3-site water models are given in Table 5.1 

 
Table 5.1 Parameters of commonly used water models (from wikipedia). 
 
The SPC/E model is an extension to the SPC water model that takes an 
average polarization correction to the interaction energy into account and 
results in a sligthly better density and self-diffusion constant. 
 
5.2.2 Force Fields for Biological Macromolecules  
Because of the large size of biological systems such as proteins, nucleic acids 
or lipid membranes, force fields for these systems are in wide use. They usually 
divide the interactions into so-called bonded terms (terms between interaction 
sites that are linked via chemical bonds) and non-bonded terms (interactions 
between particles that do not form direct chemcial bonds with each other). 
 
                                                                                 (5.2) 

                                      (5.3) 

                                                         (5.4) 

 
where kb, and kq are harmonic force constants for bond stretching and angle 
bending potentials, rij and qijk refer to the instantaneous values of bonds and 
angles, and bo and q0 are the corresponding equilibrium values. The third term 
in Eq. (5.3) defines a torsional potential for twisting two adjacent planes of 
atoms against each other. The terms in Eq. (5.4) describe non-bonded 
interactions including electrostatic and van der Waals forces. Eqs. (5.2-4) are 
a generic form and many variations are possible. For instance, anharmonic 
terms might be included in the bond and angle potentials. Furthermore, different 
forms of the torsional potentials are in use and the van der Waals potential can 
be diverse, e.g. an exponential form instead of the r-12 dependence for the 
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repulsive part. Different force fields also use varying exclusion rules that define 
how the non-bonded interactions are handled for sites that already interact via 
bonded terms. Moreover, explicit interaction sites can be included on all the 
atoms (all atom force fields) or only on suitably defined pseudo atoms (e.g. a 
single interaction sites representing nonpolar –CH, -CH2 or -CH3 groups, so-
called united atom force fields). In recent years, coarse-grain force fields such 
as the MARTINI force field, in which groups of atoms (usually containing ~4 
atoms) are described by one coarse-grain interaction site. Some popular force 
fields of the type described in Eqs. (5.2-4) are the AMBER, CHARMM, 
GROMOS, or OPLS-AA force fields. They are used in combination with 
available water models such as SPC, SPC/E and TIPnP.  
 
All the force fields mentioned so far are based on pair potentials, in which many-
body terms in the nonbonded interactions are incorporated only in an implicit 
way. Force fields with explicit higher order terms such as three-body or many-
body potentials have also been developed for specific systems.  
Most of the current force fields are non-polarizable, i.e. charges that have been 
initially assigned to the system remain constant throughout the simulation at 
variance with the fact that the instantaneous chemical surrounding may 
change. The development of more sophisticated polarizable models, in which 
the point charges can fluctuate and adapt to changes in the environment is 
presently an active field of research. Several polarizable force fields have been 
published in the literature for water as well as for biological macromolecules. 
Molecular dynamics simulations based on empirical force fields have been 
remarkably successful in providing a microscopic picture of complex 
biomolecular systems. This simple approach has however its limits. As we have 
seen, the underlying electronic structure enters the construction of appropriate 
interaction potentials only in an implicit way, and hence parameters that have 
been determined for a specific chemical environment are often not transferable 
to largely differing bonding conditions. Typical cases in which the transferability 
of empirical force fields usually breaks down are situations in which the 
electronic structure of the system experiences drastic changes, such as e.g. 
during a chemical reaction. Most empirical potentials are therefore not suitable 
to simulate directly the forming and breaking of chemical bonds. Another 
notoriously difficult issue is the development of reliable force fields for transition 
metals. For these tough cases, often the only possibility for an accurate 
description is an explicit treatment of the electronic structure as employed in 
first-principles molecular dynamics simulations (Chapter 6).  
 
 
5.3 Few Tricks of the Trade 
Modern molecular dynamics simulations have evolved over the years to a 
sophisticated technique and there are many subtle ‘tricks of the trade’ of how 
to setup the system and how to run and analyze the simulations.  
 
5.3.1 Choice of Boundary Conditions 
A first decision that has to be made when setting up a system for an MD 
simulation, is the choice of appropriate boundary conditions. The natural choice 
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for the simulation of crystalline solids is the use of periodic boundary conditions 
that are chosen in such a way as to impose the infinite periodicity of the lattice. 
A similar selection can be adopted for the simulation of an ‘infinite’ liquid for 
which the system is put into a (rectangular) box and particles that go out of the 
box on one side automatically re-enter the system again on the opposite side 
(as illustrated in Fig.4.1 in the previous Chapter). However, in reality, a liquid is 
not a periodic system and the introduction of such circular boundaries can 
introduce artificial periodicity effects. The characteristic interaction length that 
can be described is restricted to half of the box edge.  
An alternative choice is to truncate explicit interparticle interactions beyond a 
given spherical cutoff radius and to describe the longer-range interactions with 
a dielectric continuum (reaction field) model. Also in this case, the results might 
depend on the actual choice of the cutoff radius and dielectric constant for the 
surrounding medium.  
An even cruder description is provided by the introduction of spherical droplets 
in which the solvent molecules on the surface are kept from evaporating into 
the vacuum by a suitably chosen restraining potential. Naturally, if not handled 
carefully, such a choice of boundary conditions can lead to strong spurious 
surface effects.  
 
5.3.2 Treatment of Long-Range Forces 
The treatment of the non-bonded interactions, and in particular the long-range 
electrostatic interactions are usually the computationally most demanding part 
of a classical MD simulation. The way in which these interactions are treated 
contributes in an important way to the overall quality of the simulation protocol. 
Several different strategies with widely varying accuracy are currently in use. 
The simplest (and crudest) way of treating the electrostatic interactions is the 
straightforward introduction of a spherical cutoff radius beyond which no 
interactions are taken into account. Another popular ad hoc solution is the 
introduction of a high or distance-dependent dielectric constant. A recent more 
rigorous approach replaces the electrostatic interactions outside a given cavity 
with a dielectric continuum (reaction field) representation. 
The correct treatment of the long-range electrostatic interaction in systems with 
periodic boundary conditions is more involved as an exact calculation of the 
total electrostatic energy implies an infinite sum over all possible pairs among 
periodic replicas. A rigorous method to treat this problem has been introduced 
in the form of the Ewald method. The full electrostatic interactions can be 
separated into a short-range part that is easily calculated in real space and a 
smooth long-range part that is conveniently determined in reciprocal space 
through the application of discrete Fourier Transforms. Modifications of the 
original Ewald scheme that expand the charge density of the system on a real 
space mesh and make use of Fast Fourier Transform algorithms such as 
particle-mesh Ewald (PME) have also been introduced in the last years. 
Alternatively, schemes have been developed that are based on (hierarchical) 
fast multipole expansions. 
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5.3.2 Constant NVT and NPT Ensembles  
The equations of motion in Eqs.(4.1 and 4.3) are Hamiltonian, i.e. they have 
the characteristic property that the total energy of the system is conserved 
during the time evolution. This special feature also offers a stringent test for 
new implementations, as inconsistencies between the calculated energy and 
forces affect the energy conservation in a sensitive way. Due to this property, 
time-averages over this type of trajectories can be related to ensemble 
averages of the microcanonical ensemble. Unfortunately, the microcanonical 
ensemble is not a very common ensemble for the measurement of macroscopic 
properties. In order to make direct contact with experimental data, it would be 
more desirable to perform simulations in a canonical (NVT) or even in a 
constant NPT-ensemble. A straightforward way to obtain averages in the 
canonical ensemble would be to perform a ‘macroscopic’ (i.e. very large) 
number of independent Boltzmann-distributed microcanonical simulations. 
Such an approach is quite impractical and molecular dynamics schemes have 
been introduced to achieve the same goal within a single simulation. Most of 
these schemes, couple the system to a thermal bath (thermostat) through which 
additional ‘friction’ forces are introduced that are determined in such a way as 
to keep the average kinetic energy of the system in accordance with the chosen 
temperature. One of the most popular constant-temperature MD algorithms 
is due to Nosé and Hoover. For some applications, it is also useful to thermostat 
the thermostats themselves as in the so-called Nose-Hoover chain algorithm. 
It can be shown that the Nose-Hoover(-chain) method generates averages in 
the canonical ensemble. This is an important feature that is not valid for more 
simplistic approaches such as a straightforward scaling of the velocities or the 
use of a Berendsen-thermostat. Similar extended system methods, in which the 
system is coupled to a heat and a pressure bath are also available. A special 
form of constant pressure MD, that is especially powerful for the investigation 
of phase transitions in the solid state, is the Parrinello-Rahman method. In this 
elegant approach, the simulation cell itself is a dynamic variable that can 
change shape and size during the simulation.  
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Chapter 6 
 
 
 
Advanced Molecular Dynamics 
Techniques 
 
 
 
  



	 51	

 
6.1 First-Principles MD Simulations with the Car-Parrinello Method  
 
In first-principles or Car-Parrinello molecular dynamics simulations the 
underlying interaction potential is calculated directly via a quantum mechanical 
electronic structure method. This combination can in principle be achieved in a 
straightforward way. For every set of nuclear coordinates, the electronic 
structure problem is solved and the nuclear forces are calculated via the 
Hellman-Feynman theorem. The nuclei are then moved to the next position 
according to the laws of classical mechanics and the new forces are again 
calculated from a full electronic structure calculation. This type of ab initio 
molecular dynamics is often referred to as ‘Born-Oppenheimer dynamics’. 
In 1985, Car and Parrinello have introduced an elegant alternative to this 
approach in which the electronic degrees of freedom, as described by e.g. one-
electron wavefunctions êjiñ, are also treated as fictitious classical variables. The 
system is described in terms of the extended classical Lagrangian Lex 
 
                                                                                     (6.1) 
 
where KN is the kinetic energy of the nuclei, Ke is the analogous term for the 
electronic degrees of freedom and Epot is the potential energy which depends 
on both, nuclear positions  and electronic variables êjiñ. Lex can be written 
as: 
 
                         (6.2) 

 
where the  are Lagrange multipliers that ensure orthonormality of the one-
electron wavefunctions êjiñ, µ is a fictitious mass associated with the electronic 
degrees of freedom and the potential energy is given by the expectation value 
of the total (ground state) energy of the system . The Lagrangian in 
Eq. (6.2) determines the time evolution of a fictitious classical system in which 
nuclear positions as well as electronic degrees of freedom are treated as 
dynamic variables. The classical equations of motion are given by the Euler-
Lagrange equations: 

                                                                                              (6.3) 

 
where corresponds to a set of generalized coordinates. With the Lagrangian 
of Eq. (6.2), the equations of motion for the nuclear degrees of freedom become 
 
                                                                                                 (6.4) 

and for the electronic ones 
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                                                                                       (6.5) 

where the term with the Lagrange multipliers  describes the constraint forces 
that are needed to keep the wavefunctions orthonormal during the dynamics. 
The parameter µ is a purely fictitious variable and can be assigned an arbitrary 
value. In full analogy to the nuclear degrees of freedom, µ determines the rate 
at which the electronic variables evolve in time. In particular, the ratio of MI to 
µ characterizes the relative speed in which the electronic variables propagate 
with respect to the nuclear positions. For µ << MI, the electronic degrees of 
freedom adjust instantaneously to changes in the nuclear coordinates and the 
resulting dynamics is adiabatic. Under this condition Ke << KN and the extended 
Lagrangian in Eq. (6.2) becomes identical to the physical Lagrangian L of the 
system 
 
                                                                                                 (6.6) 
 
For finite values of µ, the system moves within a limited width, given by the 
fictitious electronic kinetic energy, above the Born-Oppenheimer surface. 
Adiabaticity is ensured if the highest frequency of the nuclear motion  is 
well separated from the lowest frequency associated with the fictitious motion 
of the electronic degrees of freedom . It can be shown that  is 
proportional to the gap Eg, i.e. the difference between highest occupied and 
lowest unoccupied energy levels 

                                                                                                       (6.7) 

For systems with a finite Eg, the parameter µ can be used to shift the electronic 
frequency spectrum so that >>  and no energy transfer between 
nuclear and electronic subsystem takes place. For metallic systems, special 
variations of the original method have to be adopted. In practice, it is easy to 
check if adiabatic conditions are fulfilled by monitoring the energy conservation 
of the physical Lagrangian in Eq. (6.6).  
Eqs. (6.4) and (6.5) can be integrated simultaneously with one of the standard 
MD integration algorithm mentioned in Chapter 4. In this way, one can generate 
classical nuclear trajectories on a quantum mechanical potential energy 
surface.  
The Car-Parrinello method is similar in spirit to the extended system methods 
for constant temperature or constant pressure dynamics. Extensions of the 
original scheme to the canonical NVT-ensemble, the NPT-ensemble or to 
variable cell constant pressure dynamics are hence in principle straightforward. 
The treatment of quantum effects on the ionic motion is also easily included in 
the framework of a path-integral formalism. 
Most of the current implementations use the original Car-Parrinello scheme 
based on density functional theory as the underlying electronic structure 
method. The system is treated within periodic boundary conditions and the 
Kohn-Sham (KS) one-electron orbitals êjiñ are expanded in a basis set of plane 
waves (with wave vectors ) 
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                                                                                 (6.8) 

 
up to a given kinetic energy cutoff Ecut. Substituting Eq. (6.8) into the extended 
Lagrangian of Eq. (6.2) gives 
 
                                       (6.9) 

 
and the equation of motion for the electronic degrees of freedom in Eq. (6.5) is 
replaced by analogous classical equations for the plane wave coefficients cim 

 

                                                                               (6.10) 

 
Typical plane wave expansions include impressive numbers of 10,000-100,000 
plane wave coefficients. All of these have to be optimized or propagated 
simultaneously using Eq. (6.10), which makes first-principles MD approaches 
highly memory intensive. 
Besides the traditional scheme, ab inito MD methods using semiempirical, 
Hartree-Fock, generalized valence bond (GVB), complete active space 
(CASSCF), and configuration interaction (CI) electronic structure methods have 
been realized. The Car-Parrinello scheme has also been extended into a mixed 
quantum/ classical QM/MM approach. 
 
 
6.2 Mixed Quantum Mechanical/Molecular Mechanical (QM/MM) 
Simulations  
 
 An ideal simulation method just employs the computational effort that is 
needed to describe a given problem with a desired accuracy. For many 
systems, it is advantageous to apply a fast classical MD description based on 
empirically determined interaction potentials whenever possible and a 
computationally more demanding first-principles treatment where necessary. In 
combined quantum/classical QM/MM methods the reactive part of the system 
(e.g. the active site of an enzyme) is treated with a quantum chemical method 
while the effects of the surrounding are taken into account within a classical 
force field description.  
This is an appealing idea but the quality of these techniques crucially depends 
on a rigorous treatment of the interface between quantum and classical part of 
the system. Significant progress has been made during the last years to 
develop reliable ways of coupling both semiempirical and first-principles 
quantum mechanical methods with a classical environment. This approach has 
thus become a promising and powerful option to study extended systems in 
which the crucial interactions are described at an advanced level.  
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