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2.1 Introduction

In this course, we will treat computer simulations methods that are able to
describe the properties of thermodynamic ensembles of molecules. Computer
simulations allow us to study properties of many-particle systems. However,
not all properties can be directly measured in a simulation. Conversely, most of
the quantities that can be measured in a simulation do not correspond to
properties that are measured in real experiments. To give a specific example:
in a molecular dynamics simulation of liquid water, we could measure the
instantaneous positions and velocities of all molecules in the liquid. However,
this kind of information cannot be compared to experimental data because no
real experiment provides us with such detailed information. Rather, a typical
experiment measures an average property, averaged over a large number of
particles and, usually, also averaged over the time of the measurement. If we
wish to use computer simulations as the numerical counterpart of experiments,
we must know what kind of averages we should aim to compute in order to
explain this, we need to introduce the language of statistical mechanics.

This we shall do here. We will follow a quick (and slightly dirty) derivation of the
basic expressions of statistical mechanics. The aim of these derivations is only
to show that there is nothing mysterious about concepts such as phase space,
temperature and entropy and many of the other statistical mechanical objects
that will appear time and again in the remainder of this course.

2.2 Entropy and Temperature

Most of the computer simulations that we discuss are based on the assumption
that classical mechanics can be used to describe the motions of atoms and
molecules (and a derivation of this classical limit was given in Chapter 1 of the
course). This assumption leads to a great simplification in almost all
calculations, and it is therefore most fortunate that it is justified in many cases
of practical interest. Surprisingly, it turns out to be easier to derive the basic
laws of statistical mechanics using the language of quantum mechanics.

We will follow here this route of least resistance. In fact, for our derivation, we
need only little quantum mechanics. Specifically, we need the fact that a
quantum mechanical system can be found in different states. For the time
being, we limit ourselves to quantum states that are eigenvectors of the
Hamiltonian 7 of the system (i.e., energy eigenstates). For any such state |i),
we have that H'|i) = E;|i), where E; is the energy of state |i). Most examples
discussed in quantum mechanics textbooks concern systems with only a few
degrees of freedom (e.g., the one-dimensional harmonic oscillator or a particle
in a box). For such systems, the degeneracy of energy levels will be small.
However, for the systems that are of interest to statistical mechanics (i.e.
systems with O (10%3) particles), the degeneracy of energy levels is
astronomically large. In what follows, we denote by In Q(E,V, N) the number of
eigenstates with energy E of a system of N particles in a volume V. We now
express the basic postulate of statistical mechanics:
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Basic Postulate of Statistical Mechanics:
A system with fixed N, V and E is equally likely to be found in any of its Q(E)
eigenstates.

Much of statistical mechanics follows from this simple (but highly nontrivial)
assumption.

To see this, let us first consider a system with total energy E that consists of
two weakly interacting subsystems. In this context, weakly interacting means
that the subsystems can exchange energy but that we can write the total energy
of the system as the sum of the energies E1 and E2 of the subsystems.

There are many ways in which we can distribute the total energy over the two
subsystems such that E; + E, = E. For a given choice of Ei, the total number
of degenerate states of the system is Q1(E;,) x Q2(E,). Note that the total
number of states is not the sum but the product of the number of states in the
individual systems (since for every possible state Q1(E;,) there are Q2(E;)
possibilities that subsystem 2 can assume). In what follows, it is convenient to
have a measure of the degeneracy of the subsystems that is additive. A logical
choice is to take the (natural) logarithm of the degeneracy. Hence:

We assume that subsystems 1 and 2 can exchange energy. What is the most
likely distribution of the energy? We know that every energy state of the total
system is equally likely. But the number of eigenstates that correspond to a
given distribution of the energy over the subsystems depends very strongly on
the value of E;. We wish to know the most likely value of E;, that is, the one
that maximizes In Q(E,, E — E;). The condition for this maximum is that

(aan(E1,E—E1)> _5 (2.2)
N,V.E

ok,

or, in other words,

(6]11.()1(151)) - (alnﬂz(Ez))
ok, Ny, V, ) N2,V2 &39)

We introduce the shorthand notation

_ (0InQ(E,V,N)
B(E»V,N): ( OF )Nv (2_4)
With this definition, we can write equation (2.3) as
B(Eq, V1, Ny) = B(E2,V2,Nz) (2.5)

Clearly, if initially we put all energy in system 1 (say), there will be energy
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transfer from system 1 to system 2 until equation (2.3) is satisfied. From that
moment on, no net energy flows from one subsystem to the other, and we say
that the two subsystems are in (thermal) equilibrium. When this equilibrium is
reached, In Q of the total system is at a maximum. This suggests that InQ is
somehow related to the thermodynamic entropy S of the system. After all, the
second law of thermodynamics states that the entropy of a system N, V, and E
is at its maximum when the system is in thermal equilibrium. There are many
ways in which the relation between In Q) and entropy can be established. Here
we take the simplest route; we simply define the entropy to be equal to In Q. In
fact, for (unfortunate) historical reasons, entropy is not simply equal to In Q;
rather we have

S(N,V,E) = kg InQ(N, V,E) (2.6)

where kg is Boltzmann's constant, which in S.1. units has the value 1.38066x10-
23 J/K. With this identification, we see that our assumption that all degenerate
eigenstates of a quantum system are equally likely immediately implies that, in
thermal equilibrium, the entropy of a composite system is at a maximum. It
would be a bit premature to refer to this statement as the second law of
thermodynamics, as we have not yet demonstrated that the present definition
of entropy is, indeed, equivalent to the thermodynamic definition. We simply
take an advance on this result.

The next thing to note is that thermal equilibrium between subsystems 1 and 2
implies that 8, = f5,. In everyday life, we have another way to express the same
thing: we say that two bodies brought into thermal contact are in equilibrium if
their temperatures are the same. This suggests that f must be related to the
absolute temperature. The thermodynamic definition of temperature is

(08 (2.7)
V= <é€> V.N

If we use the same definition here, we find that

B =1/(ksT) (2.8)

Now that we have defined temperature, we can consider what happens if we
have a system (denoted by A) that is in thermal equilibrium with a large heat
bath (B). The total system is closed; that is, the total energy E = Eg + Ea is fixed
(we assume that the system and the bath are weakly coupled, so that we may
ignore their interaction energy). Now suppose that the system A is prepared in
one specific quantum state i with energy E;. The bath then has an energy
Ep = E — E; and the degeneracy of the bath is given by Q3 (E — E;). Clearly, the
degeneracy of the bath determines the probability P; to find system A in state i:

Qp(E—E;)

B = Zj Qs(E—E) (2.9)
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anB(E—Ei):anB(E)—Eiﬂn—%(—E—)+O(1/E) (210)
or, using equations (2.6) and (2.7),
]IIQB(E—Ei):anB(E)—Ei/kBT—I—O(]/E) (2.11)
If we insert this result in equation (2.9), we get

exp(—Ei/kgT) (2.12)

P, =

>_;exp(—E;/ksT)

This is the well-known Boltzmann distribution for a system at temperature T.
Knowledge of the energy distribution allows us to compute the average energy
(E) of the system at the given temperature T:

By =" EP;

(2.13)
> i Eiexp(—Ei/kgT)
2_; exp(—E;/ksT)
_a l_I'IZ1 exp(—Ei/kBT)
01/kgT
~0lnQ (2.14)
o1/kgT

where, in the last line, we have defined the partition function Q. If we compare
equation (2.13) with the thermodynamic relation

oF/T
E= o1/T

where F is the Helmholiz free energy, we see that F is related to the partition
function Q:

F=—-kgTInQ = —kgTIn (Z exp(_Ei/kBT)> (2.15)

Strictly speaking, F is fixed only up to a constant. Or, what amounts to the
same thing, the reference point of the energy can be chosen arbitrarily. In what
follows, we can use equation (2.15) without loss of generality. The relation
between the Helmholtz free energy and the partition function is often more
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convenient to use than the relation between InQ) and the entropy. As
consequence, equation (2.15) is the workhorse of equilibrium statistical
mechanics.

2.3 Classical Statistical Mechanics

Thus far, we have formulated statistical mechanics in purely quantum
mechanical terms. The entropy is related to the density of states of a system
with E, volume V, and number of particles N. Similarly, the Helmholtz energy is
related to the partition function Q, a sum over all quantum states i of the
Boltzmann factor exp (— kE—lT) To be specific, let us consider the average value

B

of some observable A. We know the probability that a system at temperature T
will be found in an energy eigenstate with energy E; and we can therefore

compute the thermal average of A as

Y . exp(—Ei/kgT) < i|Ali >

A =y Pt ks T)

(2.16)

(i]Ali) denotes the expectation value of the operator A in quantum state i.
This equation suggests how we should go about computing averages: first we
solve the Schrodinger equation for the (many-body system of interest, and next
we compute the expectation value of A for all those quantum states that have
a nonnegligible statistical weight. Unfortunately, this approach is doomed for all
but the simplest systems. First of all, we cannot hope to solve the Schrodinger
equation for arbitrary many-body systems. And second, even if we could, the
number of quantum states that contribute to the average in equation (2.16)
would be so astronomically large 0(10'°°*) that a numerical evaluation of all
expectation values would be unfeasible. Fortunately, equation (2.16) can be
simplified to a more workable expression in the classical limit. To this end, we
first rewrite equation (2.16) in a form that is independent of the specific basis

set. We note that exp (— k%) = (ilexp (—H /kgT|i), where H is Hamiltonian of
the system. Using this relation, we can write
> <ilexp(—H/ksT)AlL>
2 <jlexp(—H/kgT)lj >
Trexp(—H/kgT)A (2.17)
Trexp(—H/kgT)

(A)

where Tr denotes the trace of the operator. As the value of the trace of an
operator does not depend on the choice of the basis set, we can compute
thermal averages using any basis set we like. Preferably, we use simple basis
sets, such as the set of eigenfunctions of the position or the momentum
operator. Next, we use the fact that the Hamiltonian H is the sum of a kinetic
part X and a potential part U. The kinetic energy operator is a quadratic
function of the momenta of all particles. As a consequence, momentum
eigenstates are also eigenfunctions of the kinetic energy operator. Similarly,
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the potential energy operator is a function of the particle coordinates. Matrix
elements of U therefore are most conveniently computed in a basis set of
position eigenfunctions. However, H = K + U itself is not diagonal in either
basis set nor is exp [-f (X + U)]. However, if we could replace exp(—SH) by
exp(—pXK) exp(—LU), then we could simplify equation (2.17) considerably. In
general, we cannot make this replacement because

exp(—BK) exp(—BU) = exp{—BIK + U + O(IK,Ul)]} (2.18)

where [K,U] is the commutator of the kinetic and potential energy operators
while O([%,U]) is meant to note all terms containing commutators and higher-
order commutators of X and U. It is easy to verify that the commutator [%, U]
is of order h = h/2m, where h is Planck's constant. Hence, in limit A — 0, we
may ignore the terms of order O([X,U]). In that case, we can write

Trexp(—PH) = Trexp(—BU) exp(—BK) (2.19)

If we use the notation |r) for eigenvectors of the position operator and |k) for
eigenvectors of the momentum operator, we can express equation (2.19) as

Trexp(—BH) = Z < 1le”BYr >< 1k >< kle PR [k >< kr > (2.20)
.k

All matrix elements can be evaluated directly:

< rlexp(—pU)|r >=exp [—ﬁL((rN )] (2.21)

where U(rN) on the right-hand side is no longer an operator but a function
of the coordinates of all N particles. Similarly,

N
< klexp(—BK)k >=exp [—[3 Zpiz/(Zmi]jl (2.22)
i=1
where p; = hk; and

< 1k >< kjr >=1/vN (2.23)

where V is the volume of the system and N the number of particles. Finally, we
can replace the sum over states by an integration over all coordinates and
momenta. The final result is

Taxp(—BH) = hd—‘LN!-JdPNdrN exp {—[3 [pr/(Zmi) +U(rN)] }
' (2.24)

= Q classical

where d is the dimensionality of the system and the last line defines the
classical partition function. The factor 1/N! has been inserted afterward to take
the indistinguishability of identical particles into account. Every N-particle
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quantum state corresponds to a volume hdN in classical phase space, but not
all such volumes correspond to distinct quantum states. In particular, all points
in phase space that only differ in the labeling of the particles correspond to the
same quantum state.

Similarly, we can derive the classical limit for Tr exp(—fH A), and finally, we
can write the classical expression for the thermal average of the observable A
as

. [dpNdr™ exp {—B [X; p#/2mi) +U(x™)] } A(pN, qN)
A) = } (2.25)

(
[ dpNdr™ exp {~B | X; p3/(2my) +U(N)]

Equations (2.24) and (2.25) are the starting point for virtually all classical
simulations of many-body systems.

2.4 Ergodicity

So far, we have discussed the average behavior of many-body systems in a
purely static sense: we introduced only the assumption that every quantum
state of a many-body system with energy E is equally likely to be occupied.
Such an average over all possible quantum states of a system is an ensemble
average. However, this is not the way we usually think about the average
behavior of a system. In most experiments we perform a series of
measurements during a certain time interval and then determine the average
of these measurements. In fact, the idea behind molecular dynamics
simulations is precisely that we can study the average behavior of a many-
particle system simply by computing the natural time evolution of that system
numerically and averaging the quantity of interest over a sufficiently long time.
To take a specific example, let us consider a liquid consisting of atoms.
Suppose that we wish to compute the average density of the liquid at a distance
r from a given atom i, pi(r). Clearly, the instantaneous density depends on the
coordinates rj of all particles j in the system. As time progresses, the atomic
coordinates will change (according to Newton’s equations of motion), and
hence the density around atom i will change.

Provided that we have specified the initial coordinates and momenta of all
atoms (r’V(O),pN(O)), we know, at least in principle, the time evolution of
p;(r, vV (0),p"(0),t). In a molecular dynamics simulation, we measure the time-
averaged density p,(r) of a system of N atoms, in a volume V, at a constant
total energy E:

it
pi(r) = lim % L dt’ pi(r;t’) (2.26)
Note that, in writing down this equation, we have implicitly assumed that, for t
sufficiently long, the time average does not depend on the initial conditions.
This is, in fact, a subtle assumption that is not true in general. However, we
shall disregard subtleties and simply assume that, once we have specified N,
V, and E, time averages do not depend on the initial coordinates and momenta.
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If that is so, then we would not change our result for p,(r) if we average over
many different initial conditions; that is, we consider the hypothetical situation
where we run a large number of molecular dynamics simulations at the same
values for N, V, and E, but with different initial coordinates and momenta,

: 1 ¢ ! N N !
initial conditions
number of initial conditions

pi(r) =

We now consider the limiting case where we average over all initial conditions
compatible with the imposed values of N, V, and E. In that case, we can replace
the sum over initial conditions by an integral:

f(x™N(0),p™(0))
initial %ditions = Jg drNdp™ (N (0),p™N(0)) (2.28)

number of initial conditions Q(N,V,E)

where f denotes an arbitrary function of the initial coordinates and momenta
rV(0),pV(0) , while Q(N,V,E) = [“drdp" (we have ignored a constant
factor).

The subscript E on the integral indicates that the integration is restricted to a
shell of constant energy E. Such a "phase space" average corresponds to the
classical limit of the ensemble average discussed in the previous sections?. We
denote an ensemble average by < --- > to distinguish it from a time average,
denoted by a bar. If we switch the order of the time averaging and the averaging
over initial conditions, we find

- 2.29
oe(7] = fim 1 [ (ou(re(0),p(0), v 229
t—oo T
However, the ensemble average in this equation does not depend on the time
t'. This is so, because there is a one-to-one correspondence between the initial
phase space coordinates of a system and those that specify the state of the
system at a later time t'. Hence, averaging over all initial phase space
coordinates is equivalent to averaging over the time evolved phase space
coordinates. For this reason, we can leave out the time averaging in equation

L If we consider a quantum mechanical system, then Q(N, V, E) is simply the number of quantum states
of that system, for given N, V, and E. In the classical limit, the number of quantum states of a d-
dimensional system of N distinguishable, structureless particles is given by Q(N, V,E)=( dp™dr™)/hdN,
For N indistinguishable particles, we should divide the latter expression by a factor N!.

2 Here we consider the classical equivalent of the so-called microcanonical ensemble, i.e., the ensemble
of systems with fixed N, V, and E. The classical expression for phase space integrals in the
microcanonical ensemble can be derived from the quantum mechanical expression involving a sum over
quantum states in much the same way that we used to derive the classical constant N, V, T ("canonical")
ensemble from the corresponding quantum mechanical expression.
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(2.29), and we find
(2.30)
Pi(1) = (pi(T))NvE This equation states that, if we wish to compute the
average of a function of the coordinates and
momenta of a many-particle system, we can either compute that quantity by
time averaging (the "MD" approach) or by ensemble averaging (the "MC"
approach). It should be stressed that the preceding paragraphs are meant only
to make equation (2.30) plausible, not as a proof.
In fact, that would have been quite impossible because equation (2.30) is not
true in general. However, in what follows, we shall simply assume that the
"ergodic hypothesis", as equation (2.30) is usually referred to, applies to the
systems that we study in computer simulations. However, you should be aware
that many examples of systems are not ergodic in practice, such as glasses
and metastable phases, or even in principle, such as nearly harmonic solids.
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