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2.1 Introduction  
 
In this course, we will treat computer simulations methods that are able to 
describe the properties of thermodynamic ensembles of molecules. Computer 
simulations allow us to study properties of many-particle systems. However, 
not all properties can be directly measured in a simulation. Conversely, most of 
the quantities that can be measured in a simulation do not correspond to 
properties that are measured in real experiments. To give a specific example: 
in a molecular dynamics simulation of liquid water, we could measure the 
instantaneous positions and velocities of all molecules in the liquid. However, 
this kind of information cannot be compared to experimental data because no 
real experiment provides us with such detailed information. Rather, a typical 
experiment measures an average property, averaged over a large number of 
particles and, usually, also averaged over the time of the measurement. If we 
wish to use computer simulations as the numerical counterpart of experiments, 
we must know what kind of averages we should aim to compute in order to 
explain this, we need to introduce the language of statistical mechanics. 
This we shall do here. We will follow a quick (and slightly dirty) derivation of the 
basic expressions of statistical mechanics. The aim of these derivations is only 
to show that there is nothing mysterious about concepts such as phase space, 
temperature and entropy and many of the other statistical mechanical objects 
that will appear time and again in the remainder of this course. 
 
2.2 Entropy and Temperature   
 
Most of the computer simulations that we discuss are based on the assumption 
that classical mechanics can be used to describe the motions of atoms and 
molecules (and a derivation of this classical limit was given in Chapter 1 of the 
course). This assumption leads to a great simplification in almost all 
calculations, and it is therefore most fortunate that it is justified in many cases 
of practical interest. Surprisingly, it turns out to be easier to derive the basic 
laws of statistical mechanics using the language of quantum mechanics. 
We will follow here this route of least resistance. In fact, for our derivation, we 
need only little quantum mechanics. Specifically, we need the fact that a 
quantum mechanical system can be found in different states. For the time 
being, we limit ourselves to quantum states that are eigenvectors of the 
Hamiltonian H of the system (i.e., energy eigenstates). For any such state |𝑖⟩, 
we have that ℋ|𝑖⟩ = 𝐸!|𝑖⟩, where 𝐸! is the energy of state |𝑖⟩. Most examples 
discussed in quantum mechanics textbooks concern systems with only a few 
degrees of freedom (e.g., the one-dimensional harmonic oscillator or a particle 
in a box). For such systems, the degeneracy of energy levels will be small. 
However, for the systems that are of interest to statistical mechanics (i.e. 
systems with 𝒪 (1023) particles), the degeneracy of energy levels is 
astronomically large. In what follows, we denote by ln Ω(𝐸, 𝑉, 𝑁) the number of 
eigenstates with energy E of a system of N particles in a volume V. We now 
express the basic postulate of statistical mechanics:  
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Much of statistical mechanics follows from this simple (but highly nontrivial) 
assumption. 
To see this, let us first consider a system with total energy E that consists of 
two weakly interacting subsystems. In this context, weakly interacting means 
that the subsystems can exchange energy but that we can write the total energy 
of the system as the sum of the energies E1 and E2 of the subsystems. 
There are many ways in which we can distribute the total energy over the two 
subsystems such that 𝐸" + 𝐸# = 𝐸. For a given choice of E1, the total number 
of degenerate states of the system is Ω1(𝐸",) x Ω2(𝐸# ). Note that the total 
number of states is not the sum but the product of the number of states in the 
individual systems (since for every possible state Ω1(𝐸",) there are Ω2(𝐸# ) 
possibilities that subsystem 2 can assume). In what follows, it is convenient to 
have a measure of the degeneracy of the subsystems that is additive. A logical 
choice is to take the (natural) logarithm of the degeneracy. Hence: 
 

ln Ω(𝐸", 𝐸 − 𝐸") = lnΩ"(𝐸") + lnΩ#(𝐸 − 𝐸")																				 (2.1) 
 
We assume that subsystems 1 and 2 can exchange energy. What is the most 
likely distribution of the energy? We know that every energy state of the total 
system is equally likely. But the number of eigenstates that correspond to a 
given distribution of the energy over the subsystems depends very strongly on 
the value of 𝐸". We wish to know the most likely value of 𝐸", that is, the one         
that maximizes ln Ω(𝐸", 𝐸 − 𝐸"). The condition for this maximum is that 

 
                    (2.2) 

 
 

or, in other words, 
 

 
(2.3) 

 
 
We introduce the shorthand notation 
 

 
(2.4) 

 
With this definition, we can write equation (2.3) as 
 

(2.5) 
 

Clearly, if initially we put all energy in system 1 (say), there will be energy 

Basic Postulate of Statistical Mechanics: 
A system with fixed N, V and E is equally likely to be found in any of its W(E) 
eigenstates.  
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transfer from system 1 to system 2 until equation (2.3) is satisfied. From that 
moment on, no net energy flows from one subsystem to the other, and we say 
that the two subsystems are in (thermal) equilibrium. When this equilibrium is 
reached, ln W of the total system is at a maximum. This suggests that ln Ω	 is 
somehow related to the thermodynamic entropy S of the system. After all, the 
second law of thermodynamics states that the entropy of a system 𝑁, V, and E	
is at its maximum when the system is in thermal equilibrium. There are many 
ways in which the relation between ln Ω and entropy can be established. Here 
we take the simplest route; we simply define the entropy to be equal to ln Ω. In 
fact, for (unfortunate) historical reasons, entropy is not simply equal to ln Ω; 
rather we have 

 
(2.6) 

 
where kB is Boltzmann's constant, which in S.I. units has the value 1.38066x10-

23 J/K. With this identification, we see that our assumption that all degenerate 
eigenstates of a quantum system are equally likely immediately implies that, in 
thermal equilibrium, the entropy of a composite system is at a maximum. It 
would be a bit premature to refer to this statement as the second law of 
thermodynamics, as we have not yet demonstrated that the present definition 
of entropy is, indeed, equivalent to the thermodynamic definition. We simply 
take an advance on this result. 
The next thing to note is that thermal equilibrium between subsystems 1 and 2 
implies that 𝛽" = 𝛽#. In everyday life, we have another way to express the same 
thing: we say that two bodies brought into thermal contact are in equilibrium if 
their temperatures are the same. This suggests that b must be related to the 
absolute temperature. The thermodynamic definition of temperature is 
 

(2.7) 
 
 

 
If we use the same definition here, we find that 
 

																																𝛽 = 1/(𝑘$𝑇)																																																																															(2.8) 
 
Now that we have defined temperature, we can consider what happens if we 
have a system (denoted by A) that is in thermal equilibrium with a large heat 
bath (B). The total system is closed; that is, the total energy E	=	EB	+	EA is fixed 
(we assume that the system and the bath are weakly coupled, so that we may 
ignore their interaction energy). Now suppose that the system A is prepared in 
one specific quantum state 𝑖	with energy 𝐸! . The bath then has an energy 
𝐸$ = 𝐸 − 𝐸! and the degeneracy of the bath is given by Ω$(𝐸 − 𝐸!). Clearly, the 
degeneracy of the bath determines the probability 𝑃! to find system 𝐴 in state 𝑖: 
 

 
(2.9) 
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To compute Ω$(𝐸 − 𝐸!), we expand ln Ω$(𝐸 − 𝐸!)	⬚around 𝐸! = 0: 
 

(2.10) 
 
 

or, using equations (2.6) and (2.7), 
 

(2.11) 
 

If we insert this result in equation (2.9), we get 
 

 
(2.12) 

 
 

 
This is the well-known Boltzmann distribution for a system at temperature 𝑇. 
Knowledge of the energy distribution allows us to compute the average energy 
〈𝐸〉	of the system at the given temperature 𝑇: 
 

                                                                              (2.13) 
 
 
 
 
 
 

(2.14) 
 
 
where, in the last line, we have defined the partition function 𝑄. If we compare 
equation (2.13) with the thermodynamic relation 

                      
 
      
 
where 𝐹 is the Helmholtz free energy, we see that 𝐹 is related to the partition 
function 𝑄: 

 
(2.15) 

 
 

Strictly speaking, 	𝐹 is fixed only up to a constant. Or, what amounts to the 
same thing, the reference point of the energy can be chosen arbitrarily. In what 
follows, we can use equation (2.15) without loss of generality. The relation 
between the Helmholtz free energy and the partition function is often more 
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convenient to use than the relation between ln Ω  and the entropy. As 
consequence, equation (2.15) is the workhorse of equilibrium statistical 
mechanics.  
 
 
2.3 Classical Statistical Mechanics   
Thus far, we have formulated statistical mechanics in purely quantum 
mechanical terms. The entropy is related to the density of states of a system 
with 𝐸, volume 𝑉, and number of particles	𝑁. Similarly, the Helmholtz energy is 
related to the partition function 𝑄 , a sum over all quantum states 𝑖  of the 
Boltzmann factor exp H− &!

'!(
I. To be specific, let us consider the average value 

of some observable 𝐴. We know the probability that a system at temperature	𝑇 
will be found in an energy eigenstate with energy 𝐸!  and we can therefore 
compute the thermal average of 𝐴 as 
 

 
(2.16) 

 
 
 ⟨𝑖|𝐴|𝑖⟩ denotes the expectation value of the operator 𝒜 in quantum state 𝑖. 
This equation suggests how we should go about computing averages: first we 
solve the Schrodinger equation for the (many-body system of interest, and next 
we compute the expectation value of 𝒜 for all those quantum states that have 
a nonnegligible statistical weight. Unfortunately, this approach is doomed for all 
but the simplest systems. First of all, we cannot hope to solve the Schrodinger 
equation for arbitrary many-body systems. And second, even if we could, the 
number of quantum states that contribute to the average in equation (2.16) 
would be so astronomically large 𝒪L10")"#M	that a numerical evaluation of all 
expectation values would be unfeasible. Fortunately, equation (2.16) can be 
simplified to a more workable expression in the classical limit. To this end, we 
first rewrite equation (2.16) in a form that is independent of the specific basis 
set. We note that exp H− &

'!(
I = ⟨𝑖|exp	(−ℋ/𝑘$𝑇|𝑖⟩, where ℋ is Hamiltonian of 

the system. Using this relation, we can write 
 
 
 

 (2.17) 
 
 
where 𝑇𝑟 denotes the trace of the operator. As the value of the trace of an 
operator does not depend on the choice of the basis set, we can compute 
thermal averages using any basis set we like. Preferably, we use simple basis 
sets, such as the set of eigenfunctions of the position or the momentum 
operator. Next, we use the fact that the Hamiltonian ℋ is the sum of a kinetic 
part 𝒦	and a potential part 𝒰 . The kinetic energy operator is a quadratic 
function of the momenta of all particles. As a consequence, momentum 
eigenstates are also eigenfunctions of the kinetic energy operator. Similarly, 
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the potential energy operator is a function of the particle coordinates. Matrix 
elements of 𝒰 therefore are most conveniently computed in a basis set of 
position eigenfunctions. However, ℋ = 𝒦 +𝒰 itself is not diagonal in either 
basis set nor is exp	[−𝛽(𝒦 +𝒰)]. However, if we could replace exp(−𝛽ℋ)	by 
exp(−𝛽𝒦)	exp(−𝛽𝒰), then we could simplify equation (2.17) considerably. In 
general, we cannot make this replacement because 
 

(2.18) 
 

where [𝒦,𝒰] is the commutator of the kinetic and potential energy operators 
while 𝒪([𝒦,𝒰]) is meant to note all terms containing commutators and higher-
order commutators of 𝒦 and 𝒰. It is easy to verify that the commutator [𝒦,𝒰] 
is of order ℏ = ℎ/2𝜋, where ℎ is Planck's constant. Hence, in limit ℏ → 0, we 
may ignore the terms of order 𝒪([𝒦,𝒰]). In that case, we can write 
 

(2.19) 
 

If we use the notation |𝒓⟩ for eigenvectors of the position operator and |𝒌⟩ for 
eigenvectors of the momentum operator, we can express equation (2.19) as 

 
(2.20) 

 
 

All matrix elements can be evaluated directly: 
 

(2.21) 
 

where 𝒰(𝒓𝑵) on the right-hand side is no longer an operator but a function 
of the coordinates of all N	particles. Similarly, 
 

 
(2.22) 

 
where 𝑝! = ℏ𝑘! and  

 (2.23) 
 

where V is the volume of the system and N the number of particles. Finally, we 
can replace the sum over states by an integration over all coordinates and 
momenta. The final result is 

 
  

(2.24) 
 
 
 
where d is the dimensionality of the system and the last line defines the 
classical partition function. The factor 1/N! has been inserted afterward to take 
the indistinguishability of identical particles into account. Every N-particle 
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quantum state corresponds to a volume hdN in classical phase space, but not 
all such volumes correspond to distinct quantum states. In particular, all points 
in phase space that only differ in the labeling of the particles correspond to the 
same quantum state. 
Similarly, we can derive the classical limit for 𝑇𝑟	𝑒𝑥𝑝(−𝛽ℋ𝒜), and finally, we 
can write the classical expression for the thermal average of the observable A 
as 
 

 
(2.25) 

 
 

Equations (2.24) and (2.25) are the starting point for virtually all classical 
simulations of many-body systems. 
 
2.4 Ergodicity    
 
So far, we have discussed the average behavior of many-body systems in a 
purely static sense: we introduced only the assumption that every quantum 
state of a many-body system with energy E is equally likely to be occupied. 
Such an average over all possible quantum states of a system is an ensemble 
average. However, this is not the way we usually think about the average 
behavior of a system. In most experiments we perform a series of 
measurements during a certain time interval and then determine the average 
of these measurements. In fact, the idea behind molecular dynamics 
simulations is precisely that we can study the average behavior of a many-
particle system simply by computing the natural time evolution of that system 
numerically and averaging the quantity of interest over a sufficiently long time. 
To take a specific example, let us consider a liquid consisting of atoms. 
Suppose that we wish to compute the average density of the liquid at a distance 
r from a given atom i, ri(r). Clearly, the instantaneous density depends on the 
coordinates rj of all particles j in the system. As time progresses, the atomic 
coordinates will change (according to Newton’s equations of motion), and 
hence the density around atom i will change. 
Provided that we have specified the initial coordinates and momenta of all 
atoms L𝒓+(0), 𝒑+(0)M , we know, at least in principle, the time evolution of 
𝜌!(𝑟, 𝒓+(0), 𝒑+(0), 𝑡). In a molecular dynamics simulation, we measure the time-
averaged density 𝜌,(𝑟)fffffff of a system of N atoms, in a volume V, at a constant 
total energy E: 
 

 
(2.26) 

 
Note that, in writing down this equation, we have implicitly assumed that, for t 
sufficiently long, the time average does not depend on the initial conditions. 
This is, in fact, a subtle assumption that is not true in general. However, we 
shall disregard subtleties and simply assume that, once we have specified N, 
V, and E, time averages do not depend on the initial coordinates and momenta. 
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If that is so, then we would not change our result for	𝜌,(𝑟)fffffff	if we average over 
many different initial conditions; that is, we consider the hypothetical situation 
where we run a large number of molecular dynamics simulations at the same 
values for N, V, and E, but with different initial coordinates and momenta, 
 

 
(2.27) 

 
 

 
We now consider the limiting case where we average over all initial conditions 
compatible with the imposed values of N, V, and E. In that case, we can replace 
the sum over initial conditions by an integral: 
 

 
(2.28) 

 
 

 
where f denotes an arbitrary function of the initial coordinates and momenta 
𝒓+(0), 𝒑+(0) , while Ω(𝑁, 𝑉, 𝐸) = ∫ 𝑑𝑟+𝑑𝑝+⬚

&  (we have ignored a constant 
factor1).  
The subscript E on the integral indicates that the integration is restricted to a 
shell of constant energy E. Such a "phase space" average corresponds to the 
classical limit of the ensemble average discussed in the previous sections2. We 
denote an ensemble average by < ··· > to distinguish it from a time average, 
denoted by a bar. If we switch the order of the time averaging and the averaging 
over initial conditions, we find 
 

(2.29) 
 
 

However, the ensemble average in this equation does not depend on the time 
t'. This is so, because there is a one-to-one correspondence between the initial 
phase space coordinates of a system and those that specify the state of the 
system at a later time t'. Hence, averaging over all initial phase space 
coordinates is equivalent to averaging over the time evolved phase space 
coordinates. For this reason, we can leave out the time averaging in equation 

	
1	If we consider a quantum mechanical system, then W(N,	V,	E) is simply the number of quantum states 
of that system, for given N,	V, and E. In the classical limit, the number of quantum states of a d-
dimensional system of N distinguishable, structureless particles is given by . 
For N indistinguishable particles, we should divide the latter expression by a factor N!. 
2	Here we consider the classical equivalent of the so-called microcanonical ensemble, i.e., the ensemble 
of systems with fixed N, V, and E. The classical expression for phase space integrals in the 
microcanonical ensemble can be derived from the quantum mechanical expression involving a sum over 
quantum states in much the same way that we used to derive the classical constant N, V, T ("canonical") 
ensemble from the corresponding quantum mechanical expression. 
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(2.29), and we find 
                                                      (2.30) 

This equation states that, if we wish to compute the 
average of a function of the coordinates and 

momenta of a many-particle system, we can either compute that quantity by 
time averaging (the "MD" approach) or by ensemble averaging (the "MC" 
approach). It should be stressed that the preceding paragraphs are meant only 
to make equation (2.30) plausible, not as a proof. 
In fact, that would have been quite impossible because equation (2.30) is not 
true in general. However, in what follows, we shall simply assume that the 
"ergodic hypothesis", as equation (2.30) is usually referred to, applies to the 
systems that we study in computer simulations. However, you should be aware 
that many examples of systems are not ergodic in practice, such as glasses 
and metastable phases, or even in principle, such as nearly harmonic solids. 
 


