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Monte Carlo methods ChE210D 

Today's lecture: basic principles of stochastic Markov processes and Monte Carlo 

simulations. 

Overview 
In the previous lectures, we saw that the molecular dynamics (MD) approach generates a deter-

ministic trajectory of atomic positions as a function of time, by way of solving Newton’s equations 

of motion.  In doing so, it allows us to extract both thermodynamic and kinetic property averages 

from the simulations. 

In this lecture, we cover the other major method for generating atomic trajectories: the Monte 

Carlo (MC) approach.  Unlike MD, Monte Carlo methods are stochastic in nature—the time pro-

gression of the atomic positions proceeds randomly and is not predictable given a set of initial 

conditions.  The dynamic principles by which we evolve the atomic positions incorporate random 

moves or perturbations of our own design; as such, the dynamics of Monte Carlo trajectories are 

not representative of the true system dynamics and instead depend on the kinds of random 

moves that we perform.  However, Monte Carlo methods rigorously generate correct thermody-

namic properties as they are designed by construction to do so. 

MC and MD approaches are complementary.  If we are interested in kinetic properties, MD is a 

natural choice.  On the other hand, MC methods offer several attractive features: 

• MC methods naturally and easily treat different thermodynamic ensembles.  For exam-

ple, it is quite simple to perform (rigorously) a constant temperature simulation using MC 

methods.  This contrasts with the special thermostat techniques often required with mo-

lecular dynamics simulations. 

• MC methods offer great flexibility in choosing the random moves by which the system 

evolves.  This can often greatly speed equilibration in complex systems, e.g., in dense pol-

ymeric systems. 

• MC methods are not subject to inaccuracies due to discrete-time approximations of the 

equations of motion. 

• MC methods require only energies in order to generate the atomic trajectories.  These 

approaches, therefore, do not require expensive force calculation and can handle contin-

uous and discrete intermolecular potentials in an equivalent way. 
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The MC approach was first developed in the 1940s and 50s by researchers at Los Alamos working 

on nuclear weapons projects.  It was later applied extensively to model atomic systems, most 

notably the hard-sphere system, and has since become widely employed as a modern tool in 

molecular simulation and many other fields (e.g., statistics and finance).  Notably, the MC method 

was one of the earliest algorithms to be used on the first computers.   

Our discussion here will center on the use of the Monte Carlo method in computing thermody-

namic properties of atomic systems in the canonical ensemble. 

Simple example of canonical Monte Carlo 
Before diving into the details of the method, let’s consider a simple example.  We will examine a 

Monte Carlo simulation of the Lennard-Jones liquid, whose energy function is given in dimen-

sionless units by: 

𝑈(𝐫𝑁) =∑4(𝑟𝑖𝑗
−12 − 𝑟𝑖𝑗

−6)

𝑖<𝑗

 

The simulation will be performed at reduced temperature 𝑇.  Our simulation progresses through 

iterations of the following basic Monte Carlo step: 

1. Randomly pick one of 𝑁 particles. 

2. Perturb each of the 𝑥, 𝑦, 𝑧 coordinates separately by three random values taken from the 

uniform distribution on the interval [– δ𝑟max, 𝛿𝑟max].  Here, δrmax is the maximum dis-

placement. 

3. Compute the change in potential energy due to the particle move, Δ𝑈 = 𝑈2 − 𝑈1. 

4. Use the following rule, called the Metropolis criterion, to decide whether or not to keep 

the move or instead revert back to the original configuration before step 2: 

• If Δ𝑈 < 0, accept the move.   

• If Δ𝑈 > 0, compute 𝑃acc = 𝑒−Δ𝑈 𝑇⁄ .  Draw a random number 𝑟 on the interval 

[0.0, 1.0) and accept the move if and only if 𝑃acc > 𝑟. 

5. If the move is accepted, keep the new configuration and update any running averages 

with it (e.g., the potential energy).  If the move is rejected, discard the new configuration 

and update any running averages with the original state.   

Ultimately, aggregated over many MC steps, our simulation produces configurations that obey 

the canonical distribution at 𝑇.  In other words, configurations appear with probability 
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℘(𝐫𝑁) ∝ 𝑒−
𝑈(𝐫𝑁)
𝑇  

Any property of interest, such as the average potential energy or pressure (via the virial), can 

then be computed as a “time”-average over the sequence of configurations produced during the 

Monte Carlo steps. 

The perturbation that we apply in each step to the coordinates of an atom is called a single-

particle displacement and it one of many possible kinds of Monte Carlo moves.  A single-particle 

displacement move looks something like the following: 

 

Notice that we have a free parameter in our approach: the maximum displacement 𝛿𝑟max.  This 

is a parameter that we can tune to adjust the efficiency of our moves.  If it is too large, particles 

will be displaced far from their original positions and will likely have core overlaps with other 

particles in the system, resulting in a rejection of the move.  If it is too small, the evolution of the 

system with MC steps will be very slow.  Generally, maximum displacements are adjusted such 

that the average acceptance rate of proposed moves is 30-50%. 

In step 4, we compute the acceptance probability and draw a random number to determine 

whether or not we accept the proposed move.  Aside from the random move proposals, this is 

the stochastic element in our simulation.  We can draw random numbers in the computer using 

pseudorandom number generators, discussed more below.   

Statistical mechanics in the canonical ensemble (constant 𝑵,𝑽, 𝑻)  
Before we proceed with a detailed treatment of the Monte Carlo method, we review some sta-

tistical mechanical concepts.  If one connects a system to a very large heat bath and allows ex-

change of energy, the total energy of the system is no longer constant, but fluctuates.  Instead, 

the system temperature is held constant, equal to that of the heat bath.  Such conditions give 

rise to the canonical ensemble, perhaps the most common ensemble of physical interest. 

δ𝑟max 
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In the canonical ensemble for a classical system, the microstate distribution is proportional to 

the Boltzmann factor: 

℘(𝐩𝑁 , 𝐫𝑁) ∝ 𝑒−𝛽𝐻(𝐩
𝑁,𝐫𝑁) 

where 𝛽 = 1/𝑘𝐵𝑇.  The normalizing factor for the probabilities is the canonical partition func-

tion: 

𝑄(𝑇, 𝑉, 𝑁) =
1

ℎ3𝑁𝑁!
∫𝑒−𝛽𝐻(𝐩

𝑁,𝐫𝑁)𝑑𝐩𝑁𝑑𝐫𝑁 

Since the Hamiltonian is additive in kinetic and potential energies, the integral over momenta 

can be performed analytically.  For spherically-symmetric particles, 

𝑄(𝑇, 𝑉, 𝑁) =
𝑍(𝑇, 𝑉, 𝑁)

Λ(𝑇)3𝑁𝑁!
          where 𝑍 ≡ ∫𝑒−𝛽𝑈(𝐫

𝑁) 𝑑𝐫𝑁 , Λ(𝑇) ≡ (
ℎ2

2𝜋𝑚𝑘𝐵𝑇
)

1
2

 

𝑍(𝑇, 𝑉, 𝑁) is called the configurational integral, and it only depends on the potential energy 

function for the particles.  Λ(𝑇) is the thermal de Broglie wavelength. For heteroatomic systems, 

we have to account for the different atomic masses and employ multiple de Broglie wavelengths 

in this expression, one for each atom type. 

In the canonical ensemble, the distribution of particle positions (configurations) is separable from 

the momentum degrees of freedom.  One can write, 

℘(𝐩𝑁, 𝐫𝑁) = ℘(𝐩𝑁)℘(𝐫𝑁) 

℘(𝐩𝑁) =
𝑒−𝛽𝐾(𝐩

𝑁)

ℎ3𝑁Λ(𝑇)−3𝑁
 

℘(𝐫𝑁) =
𝑒−𝛽𝑈(𝐫

𝑁)

𝑍(𝑇, 𝑉, 𝑁)
 

Note that the momenta distribution is known analytically, but the configurational distribution 

requires solution of the integral 𝑍(𝑇, 𝑉, 𝑁), which depends on the specific form of the potential 

energy function.  Also notice that, by construction, 

∫℘(𝐫𝑁)𝑑𝐫𝑁 = 1        ∫℘(𝐩𝑁)𝑑𝐩𝑁 = 1 

The canonical partition function can also be written as a sum over energies using the microca-

nonical partition function or density of states, 
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𝑄(𝑇, 𝑉, 𝑁) = ∫Ω(𝐸, 𝑉, 𝑁)𝑒−𝛽𝐸𝑑𝐸 

The distribution of total energies in the canonical ensemble is: 

℘(𝐸) =
Ω(𝐸, 𝑉, 𝑁)𝑒−𝛽𝐸

𝑄(𝑇, 𝑉, 𝑁)
 

The mean energy is given by both 

〈𝐸〉 = ∫𝐸℘(𝐸)𝑑𝐸 

= ∫𝐻(𝐩𝑁 , 𝐫𝑁)℘(𝐩𝑁 , 𝐫𝑁)𝑑𝐩𝑁𝑑𝐫𝑁 

Because the partition function is separable, this can be split into kinetic and configurational parts: 

〈𝐸〉 = ∫𝐾(𝐩𝑁)℘(𝐩𝑁)𝑑𝐩𝑁 +∫𝑈(𝐫𝑁)℘(𝐫𝑁)𝑑𝐫𝑁 

= ⟨𝐾⟩ + ⟨𝑈⟩ 

=
3𝑁𝑘𝐵𝑇

2
+ ⟨𝑈⟩ 

At a macroscopic level, the canonical partition function relates to the Helmholtz free energy, 

𝐴(𝑇, 𝑉, 𝑁) = −𝑘𝐵𝑇 ln𝑄(𝑇, 𝑉, 𝑁) 

whose macroscopic differential form is given by, 

𝑑𝐴 = −𝑆𝑑𝑇 − 𝑃𝑑𝑉 + 𝜇𝑑𝑁 

Monte Carlo simulation in the canonical ensemble 

Problem formulation 

Once we know the microstate distribution ℘(𝐩𝑁 , 𝐫𝑁), we can compute virtually any property of 

interest.  Consider a generic property 𝐴(𝐩𝑁 , 𝐫𝑁), which could be the potential energy, kinetic 

energy, local density, coordination number, radius of gyration, etc.  The average value of 𝐴 in any 

ensemble is given by: 

⟨𝐴⟩ = ∫𝐴(𝐩𝑁 , 𝐫𝑁)℘(𝐩𝑁, 𝐫𝑁)𝑑𝐩𝑁𝑑𝐫𝑁 

In other words, we simply average 𝐴 over every microstate using the microstate distribution 

function.  This general expression applies to any equilibrium property, i.e., to any property that 
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is time-independent.  This does not include kinetic transport coefficients, which depend on inte-

grals of time. 

How might we compute averages of this sort?  We need a way to determine ℘(𝐩𝑁 , 𝐫𝑁). 

Our earlier considerations show that the microstate probability in the canonical ensemble is sep-

arable, and that the kinetic part is analytic.  For example, to compute the average total energy: 

⟨𝐸⟩ = ⟨𝐾⟩ + ⟨𝑈⟩ 

=
3𝑁𝑘𝐵𝑇

2
+ ∫℘(𝐫𝑁)𝑈(𝐫𝑁)𝑑𝐫𝑁 

Therefore, the real challenge is to develop an expression for the configurational distribution 

℘(𝐫𝑁).  In any case, many bulk properties depend only on the configurational coordinates, and 

not on the momenta, so we will take as our baseline problem the computation an average of the 

form: 

⟨𝐴⟩ = ∫𝐴(𝐫𝑁)℘(𝐫𝑁)𝑑𝐫𝑁 

=
∫𝐴(𝐫𝑁)𝑒−𝛽𝑈(𝐫

𝑁)𝑑𝐫𝑁

∫ 𝑒−𝛽𝑈(𝐫
𝑁)𝑑𝐫𝑁

 

We might think about how we would compute this configurational average.  We can certainly 

compute the exponential involving the potential energy, since this simply requires numerical 

evaluation of the force field for a given configuration 𝐫𝑁.  On the other hand, the integrals are 

problematic: 

• There are 3𝑁 integrand variables, each of which varies between 0 and 𝐿 (for a cubic vol-

ume). 

• There are certainly numerical approaches for evaluating integrals, such as the trapezoidal 

or Simpson methods.  However, we have far too many integrand variables for such meth-

ods to be practical.  We would need to discretize each variable into a finite number of 

steps between 0 and 𝐿.  If we only chose the three values for each, {0, 𝐿 2⁄ , 𝐿}, we would 

have to evaluate the potential energy 33𝑁 times.  For 𝑁 = 100, this would mean ≈ 10143 

evaluations, far exceeding what we can realistically perform. 

• It further turns out that these integrals are sharply peaked: there are very small regions 

of phase space where the energies are very low and the exponential very large.  Thus, 

discrete approximations to these integrals are bound to fail unless we use a very large 

number of steps. 
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We seem to be at a statistical deadlock because we cannot evaluate the integrals accurately using 

a numerical quadrature approach of the form 

⟨𝐴⟩ =
∑ ∑ …𝑦1𝑥1

∑ 𝐴(𝐫𝑁)𝑒−𝛽𝑈(𝐫
𝑁)

𝑧𝑁

∑ ∑ …𝑦1𝑥1
∑ 𝑒−𝛽𝑈(𝐫

𝑁)
𝑧𝑁

 

The underlying challenge with this approach is that we must systematically discretize configura-

tion space, an extremely high-dimensional space. 

Monte Carlo integration and importance sampling 

The basic problem with evaluating a configurational average is that we must perform high-di-

mensional integrals.  For such integrals, the Monte Carlo method provides a way to compute 

these averages and hence is often termed Monte Carlo integration. 

The idea is the following: rather than discretize all of the integrand coordinates and systemati-

cally iterate through different configurations, we instead generate a finite number of configura-

tions according to the probability ℘(𝐫𝑁): 

⟨𝐴⟩ =
1

𝑛
∑𝐴(𝐫𝑖

𝑁)

𝑛

𝑖=1

              𝐫𝑖
𝑁 generated according to ℘(𝐫𝑁) 

That is, we pick 𝒏 random configurations according to ℘(𝐫𝑁) and from this finite set of config-

urations take the average (unweighted) value of 𝐴.  In this way, the probability weight ℘(𝐫𝑁) is 

included in the average implicitly, by virtue of the fact that we have picked representative con-

formations according to that probability. 

Here is an example that illustrates the difference between the importance sampling approach 

and systematic discretization.  Imagine we have one particle in one dimension whose potential 

energy function is described by a harmonic potential tethering the particle to the origin: 

𝑈(𝑥) = 𝑘𝑥2 

The distribution of particle positions in the canonical ensemble is then Gaussian: 

℘(𝑥) = √
𝑘𝛽

𝜋
𝑒−𝛽𝑘𝑥

2
 

We want to compute the average squared distance from the origin, ⟨𝑥2⟩.  If we were to system-

atically discretize 𝑥 into 12 values, we would take 12 configurations similar to the following: 
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Then we would compute the average squared distance as 

⟨𝑥2⟩ =
∑ 𝑥𝑖

2𝑒−𝛽𝑘𝑥𝑖
2

𝑖

∑ 𝑒−𝛽𝑘𝑥𝑖
2

𝑖

 

On the other hand, we could pick 12 configurations randomly with probabilities according to the 

distribution: 

℘(𝑥) ∝ 𝑒−𝛽𝑘𝑥
2
 

This might look something like: 

 

Notice that the configurations are not evenly spaced for two reasons: 

• Configurations where ℘(𝑥) is larger are more likely to be chosen. 

• Configurations are chosen randomly, and not systematically.  Thus, we would expect a 

different collection of configurations each time we performed this procedure. 

𝑥 

℘(𝑥) 

𝑥 

℘(𝑥) 
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In this case, our estimated value of ⟨𝑥2⟩ is 

⟨𝑥2⟩ =
1

12
∑𝑥𝑖

2

12

𝑖=1

 

You may be concerned that our estimate for ⟨𝐴⟩ now involves a stochastic element, in that we 

could arrive at different results each time we averaged in this way.  We can be confident, how-

ever, that as we pick more representative configurations, the two methods converge to the same 

average.  For low-dimensional integrals (including this simple example), stochastic integration 

typically converges slower compared to systematic discretization.  However, for high-dimen-

sional integrals of the kind we normally encounter in many-atom systems, stochastic integration 

typically converges much faster than systematic discretization. 

Monte Carlo integration provides us with a way to compute thermodynamic property averages 

of molecular systems: we take a set of configurations generated according to ℘(𝐫𝑁) and simply 

compute the averages from a simple unweighted mean over them.  The generation of configura-

tions according to a distribution is called importance sampling. 

Markov chains 

We now have a new challenge: in importance sampling, how do we generate configurations ran-

domly according to ℘(𝐫𝑁)? 

It turns out that we can importance-sample configurations using a statistical construct called a 

Markov chain of states.  A Markov chain describes a stochastic process in which the state of a 

system (here, the instantaneous atomic configuration) changes randomly with time and has no 

memory of previous states.  At each step in time, the system can move randomly to another state 

(another configuration).   

In the context of a Monte Carlo simulation, a Markov chain can be generated using the following 

basic procedure: 

1. At some step 𝑖, the system has an atomic configuration (state A). 

2. The configuration is randomly perturbed to generate a new atomic configuration (state 

B).  A typical perturbation might be a single-particle displacement: randomly pick an atom 

and displace it’s 𝑥, 𝑦, and 𝑧 location variables by small random amounts.  In general, these 

perturbations are termed Monte Carlo moves.   

3. The new configuration is considered a proposed or attempted new state of the system.  

Either the proposal is accepted (the system moves to the new state) or rejected (the sys-

tem stays where it was before the proposed move is generated).  The configuration at 
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step 𝑖 + 1 is then either the proposed configuration if accepted or the original configura-

tion if rejected. 

4. The acceptance or rejection of the proposed moves is performed in such a way that con-

figurations are generated according to ℘(𝐫𝑁) in the long-time limit. 

5. The process is repeated over and over again to generate a trajectory of configurations. 

6. The trajectory includes the states of the system after each acceptance or rejection.  That 

is, if the proposed move was rejected at step 𝑖, then the configuration appearing at step 

𝑖 is also the same as the one at step 𝑖 − 1, i.e., it does not include the proposed configu-

ration at step 𝑖. 

In this way, Monte Carlo moves can be considered as methods for imposing artificial, random 

dynamics on the system that propagate it in time according to pre-specified configurational prob-

abilities.  Then, using the computed trajectory, one can perform averages according to the im-

portance-sampling formula: 

⟨𝐴⟩ =
1

𝑛tot
∑𝐴(𝐫𝑖

𝑁)

𝑛tot

𝑖=1

 

Here, 𝑛tot is the total number of MC steps in the simulation and 𝐫𝑖
𝑁 are the generated configura-

tions. 

One might compare a Monte Carlo trajectory of configurations to that generated from a molec-

ular dynamics trajectory: 

• Both simulation approaches examine discrete-time trajectories.  That is, the changes from 

state to state in a Markov chain occur at pre-determined discrete intervals.  We call the 

smallest basic interval at which the state can change (or stay the same) to be a step or 

Monte Carlo step in the simulation. 

• Unlike an MD trajectory, a Markov chain is stochastic and is not deterministic.  

• Also unlike MD, we do not consider velocities in the Markov chain; we only consider con-

figurational degrees of freedom.  The main reason we ignore the velocities (and mo-

menta) is that these contributions to the total partition function are known analytically, 

and thus we do not need to evaluate them via simulation. 

An important property of Markov processes is that the future state of a system after one step 

only depends on the current state, and no previous state.  That is, it doesn’t matter how our 
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system arrived to its current state; the probabilities that it will move at the next time step to any 

other state in the future only depend on where it currently is.  This is called the Markov property. 

Detailed balance 

In order for this approach to work, we need a way to decide how to accept or reject proposed 

configurations in our simulations.  We need to choose the acceptance criterion in such a way 

that our long-time trajectory correctly generates configurations according to the canonical prob-

abilities ℘(𝐫𝑁).  We can do this by considering the evolution of state probabilities in our simula-

tion. 

For simplicity of notation, let’s make the following definitions: 

• ℘𝑚(𝑖) – probability that an instantaneous snapshot of our simulation at step 𝑖 will be in 

state / configuration 𝑚 

• 𝜋𝑚𝑛 – probability that, given the system is currently in state 𝑚, it will move to state 𝑛.  

This is called the transition probability.   

Although we know that our classical system actually has access to an infinite number of molecular 

configurations 𝑚 and 𝑛, we will assume for convenience that their number is actually finite and 

that we can count them.  This will not affect our final conclusions and, moreover, the number of 

configurations is actually finite since computers have finite precision. 

Since the above quantities are probabilities, we have at any point in time 

∑℘𝑚

𝑚

= 1 

∑𝜋𝑚𝑛
𝑛

= 1 

Here, the sums are performed over all states / configurations available to the system. 

Imagine that our system has evolved for some time, randomly according to the Markov chain.  

Knowing only the initial configuration, we cannot specify the configuration to which the system 

has since evolved because the dynamics are not deterministic.  However, we can characterize the 

probabilities that we would be in each configuration after many steps.  This is the set {℘𝑚}.  Ul-

timately we want 

lim
𝑖→∞

℘𝑚(𝑖) =
𝑒−𝛽𝑈𝑚

𝑍
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That is, we want these probabilities to converge to a stationary distribution, independent of 

time, that is equal to the equilibrium distribution in the canonical ensemble. 

Now imagine we move one step forward in the Markov chain from 𝑖 to 𝑖 + 1.  How do the prob-

abilities ℘𝑚 change?  For a given state 𝑚, we have to consider both the decrease in probability 

associated with the system transitioning out from 𝑚 to other states 𝑛 and the increase in prob-

ability associated with the system transitioning from other states 𝑛 into 𝑚: 

℘𝑚(𝑖 + 1) = ℘𝑚(𝑖) −∑𝜋𝑚𝑛℘𝑚(𝑖)

𝑛

+∑𝜋𝑛𝑚℘𝑛(𝑖)

𝑛

 

If we are at equilibrium, the probabilities cannot change with time and we therefore must have: 

∑𝜋𝑚𝑛℘𝑚

𝑛

=∑𝜋𝑛𝑚℘𝑛

𝑛

       for all 𝑚 

Here, we have omitted the step dependence to signify that these are equilibrium, time-independ-

ent probabilities. This equation is termed the balance equation.  If our transition and state prob-

abilities obey this equation, then we will be at equilibrium. 

One way in which the balance equation can be satisfied is through the detailed balance condi-

tion: 

𝜋𝑚𝑛℘𝑚 = 𝜋𝑛𝑚℘𝑛       for all 𝑚, 𝑛 

That is, detailed balance applies a constraint to the transition and state probabilities for every 

pair of states.  It is more specific than the general balance equation.  All Markov processes that 

obey the detailed balance condition automatically obey general balance; however, the reverse is 

not true. 

The detailed balance equation provides us with a way to determine the acceptance criterion in 

our Monte Carlo simulation.  We can write the transition probability as the product of two quan-

tities: 

𝜋𝑚𝑛 = 𝛼𝑚𝑛𝑃𝑚𝑛
acc 

Here, 𝛼𝑚𝑛 is a move proposal probability.  It gives the probability that we will propose a random 

move from state 𝑚 to 𝑛.  It depends entirely on the kind of Monte Carlo move that we perform.  

Once we pick a kind of MC move, such as a single particle displacement, this probability is deter-

mined. 

The quantity 𝑃𝑚𝑛
acc is the acceptance probability.  It gives the probability that we should accept a 

proposed move.  This is the critical quantity of interest in MC simulations. We must determine 
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what acceptance probability to use so that we reproduce the correct importance sampling prob-

abilities.  If we impose the detailed balance condition, the acceptance probability should obey: 

𝑃𝑚𝑛
acc

𝑃𝑛𝑚
acc =

𝛼𝑛𝑚℘𝑛

𝛼𝑚𝑛℘𝑚
 

This equation now gives us a starting point for correctly performing our Monte Carlo simulation.  

We imposed detailed balance to arrive at it.  Detailed balance is not required, but it gives a con-

venient way to obey general balance in order to reach a stationary distribution. 

We can impose this equation at any moment in time in our Markov chain as a way to guarantee 

that we converge to an equilibrium distribution.  Let us be at state 𝑚 = 1 initially.  A move is 

proposed to state 𝑛 = 2.  We can then write this expression as: 

𝑃12
acc

𝑃21
acc =

𝛼21℘2

𝛼12℘1
 

Keep in mind that 1 and 2 correspond to two atomic configurations 𝐫1
𝑁 and 𝐫2

𝑁, respectively.  This 

equation provides us with a way to determine the acceptance criterion given the move type (and 

hence the 𝛼’s) and the ensemble (hence the ℘’s). 

Symmetric moves and the Metropolis criterion 

So-called symmetric Monte Carlo moves have move proposal probabilities that are equal in the 

forward and reverse directions.  In other words, 

𝛼12 = 𝛼21 

Such is the case for single-particle displacements: the probability for moving from one state to 

another is either a uniform constant or zero.  That is, either we can get from configuration 1 to 2 

and vice versa by moving one particle within δ𝑟max in each of its position components or we can-

not get there at all.  There are many kinds of move types in Monte Carlo, and not all of them are 

symmetric. 

If moves are symmetric, we have 

𝑃12
acc

𝑃21
acc =

℘2

℘1
 

We can also use the fact that the microstate probabilities in the canonical ensemble are 

℘𝑚 = ℘(𝐫𝑁)𝑑𝐫𝑁 

=
𝑒−𝛽𝑈(𝐫

𝑁)𝑑𝐫𝑁

𝑍(𝑇, 𝑉, 𝑁)
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Here, we need to include the differential configurational volume element because the ℘𝑚 are 

dimensionless state probabilities.  Using this result, 

𝑃12
acc

𝑃21
acc =

𝑒−𝛽𝑈2𝑑𝐫𝑁 𝑍(𝑇, 𝑉, 𝑁)⁄

𝑒−𝛽𝑈1𝑑𝐫𝑁 𝑍(𝑇, 𝑉, 𝑁)⁄
 

= 𝑒−𝛽(𝑈2−𝑈1) 

In the last line, notice that the partition functions cancel since we incur the same probability 

normalization constant for each configuration in the canonical ensemble.  If we had wanted to 

simulate in another ensemble, we would have used a different expression for the microscopic 

probability distribution ℘. 

We still have flexibility in choosing the acceptance criterion.  We can choose any procedure that 

satisfies the above equation.  The most frequently used criterion, and typically the most efficient 

in simulation, is the Metropolis criterion: 

𝑃12
acc = min[1, 𝑒−𝛽(𝑈2−𝑈1)] 

The min function is incorporated into this criterion.  If 𝑈2 < 𝑈1, the acceptance probability is 

always one.  Otherwise, it is less than one.  Thus, this move specifies that we should always move 

downhill in energy if we can, an aspect which helps reach equilibration faster in Monte Carlo 

simulations than alternative criteria. 

The rule above must be applied equally to the reverse move.  We can thus show that this ac-

ceptance criterion satisfies the detailed balance equation: 

𝑃12
acc

𝑃21
acc =

min[1, 𝑒−𝛽(𝑈2−𝑈1)]

min[1, 𝑒−𝛽(𝑈1−𝑈2)]
 

=

{
 

 
𝑒−𝛽(𝑈2−𝑈1)

1
if 𝑈2 > 𝑈1

1

𝑒−𝛽(𝑈1−𝑈2)
if 𝑈1 > 𝑈2

 

= 𝑒−𝛽(𝑈2−𝑈1) 

The Metropolis criterion is not a unique solution for the acceptance criterion.  One can also use 

the so-called symmetric criterion, although this is not frequently employed because it typically 

results in longer correlation times and slower equilibration: 

𝑃12
acc =

𝑒−𝛽𝑈2

𝑒−𝛽𝑈1 + 𝑒−𝛽𝑈2
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Practical aspects  
The above considerations describe the principles underlying the simple Monte Carlo example 

presented at the beginning of this lecture.  Practical considerations are described below. 

Computing potential energy and virial changes 

In computing the change in potential energy Δ𝑈 = 𝑈2 − 𝑈1, we don’t actually need to compute 

the total potential energy.  Since this is a system of pairwise interactions and since we only moved 

one particle, we only need to compute the 𝑁 − 1 interactions of the moved particle with all other 

particles.  This is an important time savings because it means the interaction loop expense scales 

as 𝑁 rather than 𝑁2.  The general procedure for each MC step is: 

1. Pick a random particle 𝑖. 

2. Compute the current energy of 𝑖 with all other particles, 𝑈1,𝑖 = ∑ 𝑢𝑖𝑗𝑗≠𝑖 . 

3. Make a random move proposal. 

4. Compute the new energy of 𝑖 with all other particles, 𝑈2,𝑖 = ∑ 𝑢𝑖𝑗𝑗≠𝑖  . 

5. Compute the change in potential energy Δ𝑈 = 𝑈2,𝑖 −𝑈1,𝑖. 

One can maintain the total potential energy by doing updates for accepted moves of the form 

𝑈 ← 𝑈 + Δ𝑈.  Due to precision issues, however, it is a good idea to do a full update of the energy 

(the entire pairwise loop) once in a while, say every 10-100 or so moves per particle (e.g., every 

1000-10000 moves for a 100 particle system).  Moreover, it is important not to do the update 

𝑈 ← 𝑈 + Δ𝑈 until after a move has been accepted; otherwise, a high-energy Δ𝑈 from a rejected 

move could overwhelm 𝑈 and cause precision errors. 

If the pressure is being calculated, the approach above can also be used to compute the change 

in the virial upon displacement Δ𝑊, which can then be used to update 𝑊 ← 𝑊 + Δ𝑊.  

At first, the scaling of the expense with 𝑁 rather than 𝑁2 may seem to make MC methods much 

more efficient than the MD approach.  However, one must keep in mind that every particle moves 

at each time step in a MD simulation.  In MC, only one particle moves with each step.  If we 

compare the expense of one move per atom in a MC simulation, we find that it actually scales as 

𝑁2, just like MD methods.  Therefore there is no particular gain in efficiency.  The flexibility to 

impose MC moves of various kinds, however, may result in faster equilibration than MD tech-

niques. 
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Equilibration and production periods 

Like MD simulations, MC runs require separate equilibration and production periods of simula-

tion.  Initial structures can be chosen in a variety of ways, but it is important to allow the system 

to lose memory of them as it approaches equilibrium.  This corresponds to the Markov chain 

approaching long-time behavior where it reaches the imposed, canonical stationary distribution 

of states. 

What constitutes the MC trajectory 

Keep in mind that every step should be included in running averages, not just the accepted steps.  

This is because there is a finite Markov chain probability that we will remain in the same state, 

i.e., 𝜋𝑚𝑚 > 0.   

What constitutes the trajectory are the configurations remaining at each step after acceptance 

or rejection.  Consider the following scenario.  We start at state 1 and moves are proposed and 

rejected nine times before finally moving to state 2.  For property averages over these ten MC 

time steps, we should include state 1 nine times and state 2 one time such that state 1 makes a 

90% contribution to the average.  It would be a mistake to only include state 1 once, such that it 

made a 50% contribution. 

Property averages 

As with molecular dynamics techniques, the average of any quantity from a MC trajectory is sub-

ject to statistical error according to correlation times.  That is, successive configurations in an MC 

trajectory are not statistically independent, but related by the MC perturbations.   

The general formula for the squared error in the mean of a property average 𝐴 is given by: 

𝜎𝐴̅
2 =

𝜎𝐴
2

𝑡tot (2𝜏𝐴 + 1)⁄
 

Here, 𝑡tot gives the total number of MC steps used to compute the average 𝐴̅.  𝜏𝐴 is a correlation 

time based on the discrete-time MC dynamical trajectory.  It is sensitive to the kinds of MC steps 

performed, and is given by the formula: 

𝜏𝐴 =∑𝐶𝐴(𝑖)

∞

𝑖=1

 

Here, 𝑖 is an index for the discrete Monte Carlo steps and 𝐶𝐴(𝑖) is the autocorrelation function 

for 𝐴 computed at these intervals.  Note that if successive steps are perfectly uncorrelated, 

𝐶𝐴(𝑖 ≥ 1) = 0 and 𝜏𝐴 = 0. 
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Orientational moves 

For rigid polyatomic molecules, one needs to perform Monte Carlo moves that make random 

perturbations to the molecular orientations in addition to the center-of-mass translational de-

grees of freedom.  Typically, translational moves are separated from orientational moves, and 

one draws a random number to decide which to attempt.  A basic procedure is: 

1. Pick a random rigid molecule 𝑖. 

2. Draw a random number 𝑟 in [0.0,1.0): 

• If 𝑟 < 0.5, then perform a single-molecule displacement move for 𝑖.   

• If 𝑟 ≥ 0.5, perform an orientational displacement move for 𝑖. 

There are a number of procedures for orientational displacement.  One of the simplest is the 

following: 

1. Pick a random unit vector.  This is equivalent to picking a random point on a sphere, and 

there are a number of simple algorithms for doing this. 

2. Pick a random angular displacement 𝛿𝜃 in [−𝛿𝜃max, 𝛿𝜃max]. 

3. Rotate the molecule along the axis of the random vector and about its center of mass by 

the amount 𝛿𝜃. 

Another perhaps even simpler approach is: 

1. Pick a random coordinate axis, either x, y, or z.   

2. Pick a random angular displacement 𝛿𝜃 in [−𝛿𝜃max, 𝛿𝜃max]. 

3. Rotate the molecule along the axis about its center of mass by the amount 𝛿𝜃. 

Similar to translational displacements, orientational moves also involve a maximum displace-

ment 𝛿𝜃max that can be tuned to attain acceptance ratios in the range 30-50%. 

Orientational moves of these forms are also symmetric, 𝛼𝑚𝑛 = 𝛼𝑛𝑚, so that 

𝑃12
acc = min[1, 𝑒−𝛽(𝑈2−𝑈1)] 

Random number generators 

When we pick a random number in the computer, we are actually picking a pseudo-random 

number.  These numbers are not truly random—they follow a specific mathematical sequence 
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that is ultimately deterministic—but they have statistical properties that are reminiscent of ac-

tual random variables.   

Random numbers are produced by algorithms that take in a seed value, an integer number that 

is used to begin the sequence of pseudorandom numbers.  A random number generator will 

produce the same sequence of random numbers for the same initial seed.  One can explicitly 

specify the seed at the beginning of a simulation, which can be helpful in debugging programs as 

it produces deterministic behavior.  Alternatively, if a seed is not specified, programming lan-

guages (like Python) will often create a seed from the current time. 

The basic random number generator will produce a random real number from the uniform dis-

tribution in the range [0.0,1.0).  Random numbers from other distributions, such as the Gaussian 

or Poisson distributions, can be generated by drawing one or more random numbers from this 

basic distribution.   

Algorithms for random number generation have been the subject of much interest.  Some early 

algorithms were found to be flawed in that they produced sequences of numbers in which subtle 

patterns and correlations could be detected.  Currently a popular random number generator, and 

the one used by the numpy.random module in Python, is the Mersenne twister.   This random 

number generator has quite good statistical properties (sequences of random numbers have low 

correlation).  It also has a period of 219937, meaning that the same random number will not be 

drawn with a frequency greater than 1 in 219937. 

Reduced units 

When working with systems defined by dimensionless or reduced units, such as the monatomic 

Lennard-Jones system, the temperature is typically defined in units of the energy scale and 𝑘𝐵: 

𝑇∗ =
𝑘𝐵𝑇

𝜖
 

Thus the acceptance criterion does not involve an explicit 𝑘𝐵 because it is already included in the 

dimensionless temperature: 

𝑃12
acc = min [1, 𝑒−

Δ𝑈∗

𝑇∗ ] 

  



© M. S. Shell 2009 19/19 last modified 10/30/2019 

Summary 
A general approach to any Monte Carlo simulation involves the following steps: 

1. The system potential energy function is determined.  One chooses a functional form for 

𝑈(𝐫𝑁). 

2. The statistical-mechanical ensemble of interest is chosen.  This uniquely specifies the  

probabilities ℘𝑚with which each microstate 𝑚 should be sampled.  In a classical atomic 

system, each microstate 𝑚 corresponds to a set of particle coordinates 𝐫𝑁.  In the canon-

ical ensemble, ℘𝑚 ∝ exp(−𝛽𝑈𝑚). 

3. The set of Monte Carlo moves is chosen.  For atomic systems, this might consist of single-

particle displacements.  For rigid molecules, this might consist of both molecule transla-

tional and orientational displacements (two kinds of moves).  These moves uniquely spec-

ify the move proposal probabilities 𝛼𝑚𝑛.  For symmetric moves, 𝛼𝑚𝑛 = 𝛼𝑛𝑚. 

4. One determines the appropriate acceptance criterion.  Typically we use the Metropolis 

criterion.  The acceptance criterion then follows directly from the relation, 

𝑃12
acc = min [1,

℘2𝛼21
℘1𝛼12

] 

5. A simulation is performed using the determined acceptance criterion.  Equilibration 

must first be achieved by propagating the system for several relaxation times. 

6. Ensemble property averages are computed from trajectory averages.  The average value 

of any configurational property in the ensemble of interest then follows from a simple 

average over the “time”-progression of the production phase of the simulation: 

⟨𝐴⟩ =
1

𝑛tot
∑𝐴(𝐫𝑖

𝑁)

𝑛tot

𝑖=1

 


