Monte Carlo methods ChE210D

Today's lecture: basic principles of stochastic Markov processes and Monte Carlo
simulations.

Overview

In the previous lectures, we saw that the molecular dynamics (MD) approach generates a deter-
ministic trajectory of atomic positions as a function of time, by way of solving Newton’s equations
of motion. In doing so, it allows us to extract both thermodynamic and kinetic property averages
from the simulations.

In this lecture, we cover the other major method for generating atomic trajectories: the Monte
Carlo (MC) approach. Unlike MD, Monte Carlo methods are stochastic in nature—the time pro-
gression of the atomic positions proceeds randomly and is not predictable given a set of initial
conditions. The dynamic principles by which we evolve the atomic positions incorporate random
moves or perturbations of our own design; as such, the dynamics of Monte Carlo trajectories are
not representative of the true system dynamics and instead depend on the kinds of random
moves that we perform. However, Monte Carlo methods rigorously generate correct thermody-
namic properties as they are designed by construction to do so.

MC and MD approaches are complementary. If we are interested in kinetic properties, MD is a
natural choice. On the other hand, MC methods offer several attractive features:

e MC methods naturally and easily treat different thermodynamic ensembles. For exam-
ple, it is quite simple to perform (rigorously) a constant temperature simulation using MC
methods. This contrasts with the special thermostat techniques often required with mo-
lecular dynamics simulations.

e MC methods offer great flexibility in choosing the random moves by which the system
evolves. This can often greatly speed equilibration in complex systems, e.g., in dense pol-
ymeric systems.

e MC methods are not subject to inaccuracies due to discrete-time approximations of the
equations of motion.

e MC methods require only energies in order to generate the atomic trajectories. These
approaches, therefore, do not require expensive force calculation and can handle contin-
uous and discrete intermolecular potentials in an equivalent way.

© M. S. Shell 2009 1/19 last modified 10/30/2019

The MC approach was first developed in the 1940s and 50s by researchers at Los Alamos working
on nuclear weapons projects. It was later applied extensively to model atomic systems, most
notably the hard-sphere system, and has since become widely employed as a modern tool in
molecular simulation and many other fields (e.g., statistics and finance). Notably, the MC method
was one of the earliest algorithms to be used on the first computers.

Our discussion here will center on the use of the Monte Carlo method in computing thermody-
namic properties of atomic systems in the canonical ensemble.

Simple example of canonical Monte Carlo

Before diving into the details of the method, let’s consider a simple example. We will examine a
Monte Carlo simulation of the Lennard-Jones liquid, whose energy function is given in dimen-
sionless units by:

U = Z 4(ri;"? —1;5°)

i<j

The simulation will be performed at reduced temperature T. Our simulation progresses through
iterations of the following basic Monte Carlo step:

1. Randomly pick one of N particles.

2. Perturb each of the x, y, z coordinates separately by three random values taken from the
uniform distribution on the interval [~ 87pax, OTmax]- Here, 8.y is the maximum dis-
placement.

3. Compute the change in potential energy due to the particle move, AU = U, — U;.

4. Use the following rule, called the Metropolis criterion, to decide whether or not to keep
the move or instead revert back to the original configuration before step 2:

e IfAU < 0, accept the move.

e If AU > 0, compute P2 = ¢=AU/T_ Draw a random number r on the interval
[0.0,1.0) and accept the move if and only if P3¢ > r.

5. If the move is accepted, keep the new configuration and update any running averages
with it (e.g., the potential energy). If the move is rejected, discard the new configuration
and update any running averages with the original state.

Ultimately, aggregated over many MC steps, our simulation produces configurations that obey
the canonical distribution at T'. In other words, configurations appear with probability

© M. S. Shell 2009 2/19 last modified 10/30/2019

_u()
PN e T
Any property of interest, such as the average potential energy or pressure (via the virial), can
then be computed as a “time”-average over the sequence of configurations produced during the
Monte Carlo steps.

The perturbation that we apply in each step to the coordinates of an atom is called a single-
particle displacement and it one of many possible kinds of Monte Carlo moves. A single-particle
displacement move looks something like the following:

o
o

Notice that we have a free parameter in our approach: the maximum displacement 67;,,,. This
is a parameter that we can tune to adjust the efficiency of our moves. If it is too large, particles
will be displaced far from their original positions and will likely have core overlaps with other
particles in the system, resulting in a rejection of the move. If it is too small, the evolution of the
system with MC steps will be very slow. Generally, maximum displacements are adjusted such
that the average acceptance rate of proposed moves is 30-50%.

In step 4, we compute the acceptance probability and draw a random number to determine
whether or not we accept the proposed move. Aside from the random move proposals, this is
the stochastic element in our simulation. We can draw random numbers in the computer using
pseudorandom number generators, discussed more below.

Statistical mechanics in the canonical ensemble (constant N,V,T)

Before we proceed with a detailed treatment of the Monte Carlo method, we review some sta-
tistical mechanical concepts. If one connects a system to a very large heat bath and allows ex-
change of energy, the total energy of the system is no longer constant, but fluctuates. Instead,
the system temperature is held constant, equal to that of the heat bath. Such conditions give
rise to the canonical ensemble, perhaps the most common ensemble of physical interest.

© M. S. Shell 2009 3/19 last modified 10/30/2019

In the canonical ensemble for a classical system, the microstate distribution is proportional to
the Boltzmann factor:

(PN, rN) oc e=AHEYrY)

where f = 1/kgT. The normalizing factor for the probabilities is the canonical partition func-
tion:

1
Q(T; v, N) = Wf e_BH(PNJ'N)dedrN

Since the Hamiltonian is additive in kinetic and potential energies, the integral over momenta
can be performed analytically. For spherically-symmetric particles,

Z(T,V,N)

Q(T, V,N) = m

h? 2
= —,BU(I‘N) N = —_—
where Z = f e dr?, AT) = <2nkaT)

Z(T,V,N) is called the configurational integral, and it only depends on the potential energy
function for the particles. A(T) is the thermal de Broglie wavelength. For heteroatomic systems,
we have to account for the different atomic masses and employ multiple de Broglie wavelengths
in this expression, one for each atom type.

In the canonical ensemble, the distribution of particle positions (configurations) is separable from
the momentum degrees of freedom. One can write,

P, V) = pPMpei")

. e~ BK(P")
$(p)—W

N~y e_BU(rN)
PO =257

Note that the momenta distribution is known analytically, but the configurational distribution
requires solution of the integral Z(T,V, N), which depends on the specific form of the potential
energy function. Also notice that, by construction,

[oamary =1 [peMapt =1

The canonical partition function can also be written as a sum over energies using the microca-
nonical partition function or density of states,

© M. S. Shell 2009 4/19 last modified 10/30/2019

Q(T,V,N) = fQ(E, V,N)e PEQE

The distribution of total energies in the canonical ensemble is:

_Q(E,V,N)e FE
PE) =—T7 0

The mean energy is given by both

(&) = | BpE)dE
= [HE @,) dpVar
Because the partition function is separable, this can be split into kinetic and configurational parts:

(E) = f K(pV)p(p")dpY + f U () dr

= (K) +(U)
3NksT
=——+()

At a macroscopic level, the canonical partition function relates to the Helmholtz free energy,
A(T,V,N) = —kgTInQ(T,V,N)
whose macroscopic differential form is given by,

dA = —SdT — PdV + udN

Monte Carlo simulation in the canonical ensemble

Problem formulation

Once we know the microstate distribution g2(p",r"), we can compute virtually any property of
interest. Consider a generic property A(p",r"), which could be the potential energy, kinetic
energy, local density, coordination number, radius of gyration, etc. The average value of A in any
ensemble is given by:

(4) = j A", rV)p(p", rV)dpY dr®

In other words, we simply average A over every microstate using the microstate distribution
function. This general expression applies to any equilibrium property, i.e., to any property that

© M. S. Shell 2009 5/19 last modified 10/30/2019

is time-independent. This does not include kinetic transport coefficients, which depend on inte-
grals of time.

How might we compute averages of this sort? We need a way to determine g (p~,r").

Our earlier considerations show that the microstate probability in the canonical ensemble is sep-
arable, and that the kinetic part is analytic. For example, to compute the average total energy:

(E) = (K) + (U)

NkgT
_3 23 +fgo(rN)U(rN)drN

Therefore, the real challenge is to develop an expression for the configurational distribution
#(@N). In any case, many bulk properties depend only on the configurational coordinates, and
not on the momenta, so we will take as our baseline problem the computation an average of the
form:

(4) = j ATV (M) dr?

B [A@N)e=PUEY) gpN
~ [e-BUGMgrN

We might think about how we would compute this configurational average. We can certainly
compute the exponential involving the potential energy, since this simply requires numerical
evaluation of the force field for a given configuration r¥. On the other hand, the integrals are
problematic:

e There are 3N integrand variables, each of which varies between 0 and L (for a cubic vol-
ume).

e There are certainly numerical approaches for evaluating integrals, such as the trapezoidal
or Simpson methods. However, we have far too many integrand variables for such meth-
ods to be practical. We would need to discretize each variable into a finite number of
steps between 0 and L. If we only chose the three values for each, {0,L/2, L}, we would
have to evaluate the potential energy 33" times. For N = 100, this would mean =~ 10143
evaluations, far exceeding what we can realistically perform.

e |t further turns out that these integrals are sharply peaked: there are very small regions
of phase space where the energies are very low and the exponential very large. Thus,
discrete approximations to these integrals are bound to fail unless we use a very large
number of steps.

© M. S. Shell 2009 6/19 last modified 10/30/2019

We seem to be at a statistical deadlock because we cannot evaluate the integrals accurately using
a numerical quadrature approach of the form

Yy Dyy o Loz A(rN)e-PUEY)

(A = S, Sy o Dz €7BUCD)

The underlying challenge with this approach is that we must systematically discretize configura-
tion space, an extremely high-dimensional space.

Monte Carlo integration and importance sampling

The basic problem with evaluating a configurational average is that we must perform high-di-
mensional integrals. For such integrals, the Monte Carlo method provides a way to compute
these averages and hence is often termed Monte Carlo integration.

The idea is the following: rather than discretize all of the integrand coordinates and systemati-
cally iterate through different configurations, we instead generate a finite number of configura-
tions according to the probability go(r"):

IO, " .
(4) = 7—12 A1) r} generated according to o (r")
i=1

That is, we pick n random configurations according to £ (r") and from this finite set of config-
urations take the average (unweighted) value of A. In this way, the probability weight g (r") is
included in the average implicitly, by virtue of the fact that we have picked representative con-
formations according to that probability.

Here is an example that illustrates the difference between the importance sampling approach
and systematic discretization. Imagine we have one particle in one dimension whose potential
energy function is described by a harmonic potential tethering the particle to the origin:

U(x) = kx?

The distribution of particle positions in the canonical ensemble is then Gaussian:
k
p() = L -
T

We want to compute the average squared distance from the origin, (x2). If we were to system-
atically discretize x into 12 values, we would take 12 configurations similar to the following:

© M. S. Shell 2009 7/19 last modified 10/30/2019

AP)

tToTTT0TTC0TTT0T T 0 T

Then we would compute the average squared distance as

On the other hand, we could pick 12 configurations randomly with probabilities according to the
distribution:

o (x) o e~ Bkx*

This might look something like:

AP @)

=

: T T O00000 00 @ 0

Notice that the configurations are not evenly spaced for two reasons:
e Configurations where @ (x) is larger are more likely to be chosen.
e Configurations are chosen randomly, and not systematically. Thus, we would expect a

different collection of configurations each time we performed this procedure.

© M. S. Shell 2009 8/19 last modified 10/30/2019

In this case, our estimated value of (x2) is

12

i=1

You may be concerned that our estimate for (A) now involves a stochastic element, in that we
could arrive at different results each time we averaged in this way. We can be confident, how-
ever, that as we pick more representative configurations, the two methods converge to the same
average. For low-dimensional integrals (including this simple example), stochastic integration
typically converges slower compared to systematic discretization. However, for high-dimen-
sional integrals of the kind we normally encounter in many-atom systems, stochastic integration
typically converges much faster than systematic discretization.

Monte Carlo integration provides us with a way to compute thermodynamic property averages
of molecular systems: we take a set of configurations generated according to (r") and simply
compute the averages from a simple unweighted mean over them. The generation of configura-
tions according to a distribution is called importance sampling.

Markov chains
We now have a new challenge: in importance sampling, how do we generate configurations ran-
domly according to g(rV)?

It turns out that we can importance-sample configurations using a statistical construct called a
Markov chain of states. A Markov chain describes a stochastic process in which the state of a
system (here, the instantaneous atomic configuration) changes randomly with time and has no
memory of previous states. At each step in time, the system can move randomly to another state
(another configuration).

In the context of a Monte Carlo simulation, a Markov chain can be generated using the following
basic procedure:

1. At some step i, the system has an atomic configuration (state A).

2. The configuration is randomly perturbed to generate a new atomic configuration (state
B). Atypical perturbation might be a single-particle displacement: randomly pick an atom
and displaceit’s x, y, and z location variables by small random amounts. In general, these
perturbations are termed Monte Carlo moves.

3. The new configuration is considered a proposed or attempted new state of the system.
Either the proposal is accepted (the system moves to the new state) or rejected (the sys-
tem stays where it was before the proposed move is generated). The configuration at

© M. S. Shell 2009 9/19 last modified 10/30/2019

step i + 1 is then either the proposed configuration if accepted or the original configura-
tion if rejected.

4. The acceptance or rejection of the proposed moves is performed in such a way that con-
figurations are generated according to £2(r") in the long-time limit.

5. The process is repeated over and over again to generate a trajectory of configurations.

6. The trajectory includes the states of the system after each acceptance or rejection. That
is, if the proposed move was rejected at step i, then the configuration appearing at step
i is also the same as the one at step i — 1, i.e., it does not include the proposed configu-
ration at step i.

In this way, Monte Carlo moves can be considered as methods for imposing artificial, random
dynamics on the system that propagate it in time according to pre-specified configurational prob-
abilities. Then, using the computed trajectory, one can perform averages according to the im-
portance-sampling formula:

Ntot

1
)= Z AN

Here, 1. is the total number of MC steps in the simulation and 1" are the generated configura-

tions.

One might compare a Monte Carlo trajectory of configurations to that generated from a molec-
ular dynamics trajectory:

e Both simulation approaches examine discrete-time trajectories. That is, the changes from
state to state in a Markov chain occur at pre-determined discrete intervals. We call the
smallest basic interval at which the state can change (or stay the same) to be a step or
Monte Carlo step in the simulation.

e Unlike an MD trajectory, a Markov chain is stochastic and is not deterministic.

e Also unlike MD, we do not consider velocities in the Markov chain; we only consider con-
figurational degrees of freedom. The main reason we ignore the velocities (and mo-
menta) is that these contributions to the total partition function are known analytically,
and thus we do not need to evaluate them via simulation.

An important property of Markov processes is that the future state of a system after one step
only depends on the current state, and no previous state. That is, it doesn’t matter how our

© M. S. Shell 2009 10/19 last modified 10/30/2019

system arrived to its current state; the probabilities that it will move at the next time step to any
other state in the future only depend on where it currently is. This is called the Markov property.

Detailed balance

In order for this approach to work, we need a way to decide how to accept or reject proposed
configurations in our simulations. We need to choose the acceptance criterion in such a way
that our long-time trajectory correctly generates configurations according to the canonical prob-
abilities g2(r). We can do this by considering the evolution of state probabilities in our simula-
tion.

For simplicity of notation, let’s make the following definitions:

o (., (i) — probability that an instantaneous snapshot of our simulation at step i will be in
state / configuration m

® 1., — probability that, given the system is currently in state m, it will move to state n.
This is called the transition probability.

Although we know that our classical system actually has access to an infinite number of molecular
configurations m and n, we will assume for convenience that their number is actually finite and
that we can count them. This will not affect our final conclusions and, moreover, the number of
configurations is actually finite since computers have finite precision.

Since the above quantities are probabilities, we have at any point in time

Yo
ann =1

n

Here, the sums are performed over all states / configurations available to the system.

Imagine that our system has evolved for some time, randomly according to the Markov chain.
Knowing only the initial configuration, we cannot specify the configuration to which the system
has since evolved because the dynamics are not deterministic. However, we can characterize the
probabilities that we would be in each configuration after many steps. This is the set {§,,}. Ul-
timately we want

e_ﬂUm

Z

lim Som(i) =

© M. S. Shell 2009 11/19 last modified 10/30/2019

That is, we want these probabilities to converge to a stationary distribution, independent of
time, that is equal to the equilibrium distribution in the canonical ensemble.

Now imagine we move one step forward in the Markov chain from i toi + 1. How do the prob-
abilities g,,, change? For a given state m, we have to consider both the decrease in probability
associated with the system transitioning out from m to other states n and the increase in prob-
ability associated with the system transitioning from other states n into m:

i+ 1) = (D = D o) + D Tumson(D)

If we are at equilibrium, the probabilities cannot change with time and we therefore must have:

Z TnnPm = Z Toum&n for all m

n n

Here, we have omitted the step dependence to signify that these are equilibrium, time-independ-
ent probabilities. This equation is termed the balance equation. If our transition and state prob-
abilities obey this equation, then we will be at equilibrium.

One way in which the balance equation can be satisfied is through the detailed balance condi-
tion:

TnPm = Tnmén forallm,n

That is, detailed balance applies a constraint to the transition and state probabilities for every
pair of states. It is more specific than the general balance equation. All Markov processes that
obey the detailed balance condition automatically obey general balance; however, the reverse is
not true.

The detailed balance equation provides us with a way to determine the acceptance criterion in
our Monte Carlo simulation. We can write the transition probability as the product of two quan-
tities:

— acc
nmn - amann

Here, a,,,, is a move proposal probability. It gives the probability that we will propose a random
move from state m to n. It depends entirely on the kind of Monte Carlo move that we perform.
Once we pick a kind of MC move, such as a single particle displacement, this probability is deter-
mined.

The quantity P35 is the acceptance probability. It gives the probability that we should accept a
proposed move. This is the critical quantity of interest in MC simulations. We must determine

© M. S. Shell 2009 12/19 last modified 10/30/2019

what acceptance probability to use so that we reproduce the correct importance sampling prob-
abilities. If we impose the detailed balance condition, the acceptance probability should obey:

acc
Pran _ Anm&n

acc —
Ig nm AmnPm

This equation now gives us a starting point for correctly performing our Monte Carlo simulation.
We imposed detailed balance to arrive at it. Detailed balance is not required, but it gives a con-
venient way to obey general balance in order to reach a stationary distribution.

We can impose this equation at any moment in time in our Markov chain as a way to guarantee
that we converge to an equilibrium distribution. Let us be at state m = 1 initially. A move is
proposed to state n = 2. We can then write this expression as:

acc
Pi;" a1,

acc
Py 12691

Keep in mind that 1 and 2 correspond to two atomic configurations r{¥ and rY, respectively. This
equation provides us with a way to determine the acceptance criterion given the move type (and
hence the a’s) and the ensemble (hence the £’s).

Symmetric moves and the Metropolis criterion
So-called symmetric Monte Carlo moves have move proposal probabilities that are equal in the
forward and reverse directions. In other words,

a1 = Apq

Such is the case for single-particle displacements: the probability for moving from one state to
another is either a uniform constant or zero. That is, either we can get from configuration 1 to 2
and vice versa by moving one particle within &7,,,, in each of its position components or we can-
not get there at all. There are many kinds of move types in Monte Carlo, and not all of them are
symmetric.

If moves are symmetric, we have

acc
Pi;" 2
acc —
B §1

We can also use the fact that the microstate probabilities in the canonical ensemble are

P a@MdrV
e PU) g

Z(T,V,N)

Pm

© M. S. Shell 2009 13/19 last modified 10/30/2019

Here, we need to include the differential configurational volume element because the ,, are
dimensionless state probabilities. Using this result,

P e PU2drN /Z(T,V,N)
Pzalcc - e—ﬁU1drN/Z(T, V,N)
= o~ BW2~Uy)

In the last line, notice that the partition functions cancel since we incur the same probability
normalization constant for each configuration in the canonical ensemble. If we had wanted to
simulate in another ensemble, we would have used a different expression for the microscopic
probability distribution .

We still have flexibility in choosing the acceptance criterion. We can choose any procedure that
satisfies the above equation. The most frequently used criterion, and typically the most efficient
in simulation, is the Metropolis criterion:

P = min[l,e‘ﬁ(uz‘ul)]

The min function is incorporated into this criterion. If U, < U;, the acceptance probability is
always one. Otherwise, it is less than one. Thus, this move specifies that we should always move
downhill in energy if we can, an aspect which helps reach equilibration faster in Monte Carlo
simulations than alternative criteria.

The rule above must be applied equally to the reverse move. We can thus show that this ac-
ceptance criterion satisfies the detailed balance equation:

P min[1, e AUz2-U)]

PAC " min[1, e~AU1-V2)]

e_ﬁ(UZ_Ul)

—— ifl >

—5wy iU > U,
= e—ﬁ(Uz—Uﬂ

The Metropolis criterion is not a unique solution for the acceptance criterion. One can also use
the so-called symmetric criterion, although this is not frequently employed because it typically
results in longer correlation times and slower equilibration:

—BU>
pacc — e
12 —

e~ BU1 4 ¢—BUz

© M. S. Shell 2009 14/19 last modified 10/30/2019

Practical aspects
The above considerations describe the principles underlying the simple Monte Carlo example
presented at the beginning of this lecture. Practical considerations are described below.

Computing potential energy and virial changes

In computing the change in potential energy AU = U, — U;, we don’t actually need to compute
the total potential energy. Since this is a system of pairwise interactions and since we only moved
one particle, we only need to compute the N — 1 interactions of the moved particle with all other
particles. Thisis an important time savings because it means the interaction loop expense scales
as N rather than N2. The general procedure for each MC step is:

1. Pick a random particle i.

2. Compute the current energy of i with all other particles, U; ; = Zj;ti Ujj.
3. Make a random move proposal.

4. Compute the new energy of i with all other particles, U, ; = Zj;tiuij .

5. Compute the change in potential energy AU = U, ; — Uy ;.

One can maintain the total potential energy by doing updates for accepted moves of the form
U < U + AU. Due to precision issues, however, it is a good idea to do a full update of the energy
(the entire pairwise loop) once in a while, say every 10-100 or so moves per particle (e.g., every
1000-10000 moves for a 100 particle system). Moreover, it is important not to do the update
U < U + AU until after a move has been accepted; otherwise, a high-energy AU from a rejected
move could overwhelm U and cause precision errors.

If the pressure is being calculated, the approach above can also be used to compute the change
in the virial upon displacement AW, which can then be used to update W « W + AW.

At first, the scaling of the expense with N rather than N2 may seem to make MC methods much
more efficient than the MD approach. However, one must keep in mind that every particle moves
at each time step in a MD simulation. In MC, only one particle moves with each step. If we
compare the expense of one move per atom in a MC simulation, we find that it actually scales as
N2, just like MD methods. Therefore there is no particular gain in efficiency. The flexibility to
impose MC moves of various kinds, however, may result in faster equilibration than MD tech-
nigques.

© M. S. Shell 2009 15/19 last modified 10/30/2019

Equilibration and production periods

Like MD simulations, MC runs require separate equilibration and production periods of simula-
tion. Initial structures can be chosen in a variety of ways, but it is important to allow the system
to lose memory of them as it approaches equilibrium. This corresponds to the Markov chain
approaching long-time behavior where it reaches the imposed, canonical stationary distribution
of states.

What constitutes the MC trajectory

Keep in mind that every step should be included in running averages, not just the accepted steps.
This is because there is a finite Markov chain probability that we will remain in the same state,
i.e., Tyym > 0.

What constitutes the trajectory are the configurations remaining at each step after acceptance
or rejection. Consider the following scenario. We start at state 1 and moves are proposed and
rejected nine times before finally moving to state 2. For property averages over these ten MC
time steps, we should include state 1 nine times and state 2 one time such that state 1 makes a
90% contribution to the average. It would be a mistake to only include state 1 once, such that it
made a 50% contribution.

Property averages

As with molecular dynamics techniques, the average of any quantity from a MC trajectory is sub-
ject to statistical error according to correlation times. That is, successive configurations in an MC
trajectory are not statistically independent, but related by the MC perturbations.

The general formula for the squared error in the mean of a property average A is given by:

o2 = Y S
A tiot/ (274 + 1)

Here, t.,. gives the total number of MC steps used to compute the average A. 7, is a correlation
time based on the discrete-time MC dynamical trajectory. It is sensitive to the kinds of MC steps
performed, and is given by the formula:

Tqg = i Ca(d)

Here, i is an index for the discrete Monte Carlo steps and C,(i) is the autocorrelation function
for A computed at these intervals. Note that if successive steps are perfectly uncorrelated,
CA(l 2 1) = 0 and TA = 0

© M. S. Shell 2009 16/19 last modified 10/30/2019

Orientational moves

For rigid polyatomic molecules, one needs to perform Monte Carlo moves that make random
perturbations to the molecular orientations in addition to the center-of-mass translational de-
grees of freedom. Typically, translational moves are separated from orientational moves, and
one draws a random number to decide which to attempt. A basic procedure is:

1. Pick arandom rigid molecule i.

2. Draw a random number 7 in [0.0,1.0):
e Ifr < 0.5, then perform a single-molecule displacement move for i.
e Ifr > 0.5, perform an orientational displacement move for i.

There are a number of procedures for orientational displacement. One of the simplest is the
following:

1. Pick a random unit vector. This is equivalent to picking a random point on a sphere, and
there are a number of simple algorithms for doing this.

2. Pick a random angular displacement 66 in [—86 .5, 0Omax]-

3. Rotate the molecule along the axis of the random vector and about its center of mass by
the amount 66.

Another perhaps even simpler approach is:
1. Pick a random coordinate axis, either x, y, or z.
2. Pick a random angular displacement 66 in [—86 .5, 0Oax]-
3. Rotate the molecule along the axis about its center of mass by the amount 66.

Similar to translational displacements, orientational moves also involve a maximum displace-
ment 60, that can be tuned to attain acceptance ratios in the range 30-50%.

Orientational moves of these forms are also symmetric, &;,, = @, SO that
acc ; -p(U,-U
Pi5" = mln[l, e B2 1)]
Random number generators

When we pick a random number in the computer, we are actually picking a pseudo-random
number. These numbers are not truly random—they follow a specific mathematical sequence

© M. S. Shell 2009 17/19 last modified 10/30/2019

that is ultimately deterministic—but they have statistical properties that are reminiscent of ac-
tual random variables.

Random numbers are produced by algorithms that take in a seed value, an integer number that
is used to begin the sequence of pseudorandom numbers. A random number generator will
produce the same sequence of random numbers for the same initial seed. One can explicitly
specify the seed at the beginning of a simulation, which can be helpful in debugging programs as
it produces deterministic behavior. Alternatively, if a seed is not specified, programming lan-
guages (like Python) will often create a seed from the current time.

The basic random number generator will produce a random real number from the uniform dis-
tribution in the range [0.0,1.0). Random numbers from other distributions, such as the Gaussian
or Poisson distributions, can be generated by drawing one or more random numbers from this
basic distribution.

Algorithms for random number generation have been the subject of much interest. Some early
algorithms were found to be flawed in that they produced sequences of numbers in which subtle
patterns and correlations could be detected. Currently a popular random number generator, and
the one used by the numpy.random module in Python, is the Mersenne twister. This random
number generator has quite good statistical properties (sequences of random numbers have low

219937

correlation). It also has a period of , meaning that the same random number will not be

drawn with a frequency greater than 1 in 219937,

Reduced units
When working with systems defined by dimensionless or reduced units, such as the monatomic
Lennard-Jones system, the temperature is typically defined in units of the energy scale and kg:

kT
- €

T*

Thus the acceptance criterion does not involve an explicit kg because it is already included in the
dimensionless temperature:

AU*
acc __ : T TE
P =min|l,e T]

© M. S. Shell 2009 18/19 last modified 10/30/2019

Summary
A general approach to any Monte Carlo simulation involves the following steps:

1.

The system potential energy function is determined. One chooses a functional form for
Uu(h).

The statistical-mechanical ensemble of interest is chosen. This uniquely specifies the
probabilities ., with which each microstate m should be sampled. In a classical atomic
system, each microstate m corresponds to a set of particle coordinates r". In the canon-
ical ensemble, p,,, x exp(—BU,,).

The set of Monte Carlo moves is chosen. For atomic systems, this might consist of single-
particle displacements. For rigid molecules, this might consist of both molecule transla-
tional and orientational displacements (two kinds of moves). These moves uniquely spec-
ify the move proposal probabilities ay,,,. For symmetric moves, &, = -

One determines the appropriate acceptance criterion. Typically we use the Metropolis
criterion. The acceptance criterion then follows directly from the relation,

pace [1 @2“21]

12 = mln
1012

A simulation is performed using the determined acceptance criterion. Equilibration
must first be achieved by propagating the system for several relaxation times.

Ensemble property averages are computed from trajectory averages. The average value
of any configurational property in the ensemble of interest then follows from a simple
average over the “time”-progression of the production phase of the simulation:

Ntot

@y =— aa

n
tot =1

© M. S. Shell 2009 19/19 last modified 10/30/2019

