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5 Electronic Spectroscopy 
Electronic  spectroscopy  involves  transitions  in which  the  electronic  state  changes.  In  case of molecules  the 
vibrational state and rotational state will change in addition.   
 
We  will  begin  our  treatment  of  this  subject  with  atoms.  Electronic  spectroscopy  of  atoms  is  a  powerful 
spectroscopic  tool  and  is  often  used  in  analytical  chemistry  to  determine  the  atomic  composition  of  a 
substance. Next we will move on to diatomic molecules. Some of the important principles that we will find will 
be equally applicable to polyatomics.  It is not clear how much time we will have left to much time to spend on 
electronic  spectroscopy of polyatomics  themselves, but  I will at  least highlight  some of  the most  important 
points. 
 
For diatomic molecules that have no unpaired electrons and no net electronic orbital angular momentum in the 
initial  or  final  electronic  state,  electronic  spectroscopy  can  be  no  more  complex  that  rotation‐vibration 
spectroscopy  of  diatomics.   However,  once  one  involves  states  in which  one  has  either  net  orbital  or  spin 
angular momentum in one of the two electronic states involved in the transition, the rotational structure of the 
electronic transition becomes more complex. 
 

5.1 Atomic Spectroscopy  
In  our  discussion  on  spectroscopy  up  to  now we  have  only  looked  at molecules  since  atoms  do  not  have 
vibrational and rotational structure. However, as we have seen before atoms do possess electronic structure. 
We will start our discussion on electronic spectroscopy with atoms, more specifically with the hydrogen atom.  
 

5.1.1 Hydrogen atom 

We have seen before that the energy levels of the hydrogen atom are given by: 
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whereas the eigenfunctions are given by: 
 

( , , ) ( ) ( , )m
nlm nl lr R r Y      

 

Here  ( )nlR r are the associated Laguerre functions and  ( , )m
lY    the well‐known spherical harmonics. 

 
Although the energy is solely determined by the principle n quantum number one should realize that the levels 
are described by two additional quantum numbers, being l the total angular momentum and m the projection 
of l onto the space fixed z‐axis. When discussing the selection rules for electronic transitions in hydrogen and 
other atoms one has to take these quantum numbers into account.  
 
As we have seen before in our discussion of rotational and vibrational spectroscopy the intensity of a transition 
is related to: 
 

     2*
2 1
ˆI d     

In case of a hydrogen atom the total wavefunctions are simply the electronic wavefunctions, i.e. 
 

2 2elec     and   1 1elec    

  
and equal 
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2 ( , , ) ( ) ( , )m
elec n l lr R r Y    

    

 and  
 

1 ( , , ) ( ) ( , )m
elec n l lr R r Y    

    

 
In the expression above for the transition intensity � is again the dipole moment operator (it is obvious that an 
atom does not have a permanent dipole moment but one  can  readily define  the dipole moment operator) 
which is defined as  
 

j j
j

qμ r  

 
where j represents the summation over all charges, i.e. nuclei and electrons. 
 
In the case of atoms where the center of gravity  is  located on the nucleus this expression simplifies to a sum 
over electrons: 

i
i

e μ r  

 
This expression simplifies even further in the case of a hydrogen atom where there is only one single electron. 
 

e μ r  

 
Because  of  the  spherical  symmetry  of  the  hydrogen  atom  it  is  convenient  to write  the  dipole moment  in 
spherical coordinates.  
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Making  use  of  these  expression,  the  intensity  for  transitions  between  states  in  the  hydrogen  atom  is  now 
determined by the integral:  
 

   *

( ) ( , ) cos ( ) ( , )m m
n l l n l lR r Y er R r Y d      
       

 
Again we can separate the variables to rewrite this as: 
 

* *( ) ( ) ( , )cos ( , )m m
n l n l r l le R r rR r d Y Y d        
         

 
The  second  part  of  the  expression we  have  already  evaluated  before  in  our  discussion  on  rotational  and 
vibrational spectroscopy and yields the selection rules: 
 

    1l l l            and      0m m m      

 

In case one not only considers the z component but also the x and y components on finds for the selection 
rules: 
 
    1l           and     0, 1m    

 
Evaluation of the  first  integral  in the expression above shows that the value of this  integral  is generally non‐
zero independent of the quantum numbers n and l.   
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We can now plot the allowed transition of the hydrogen atom in a so called Grotrian diagram. We observe the 
well‐known  transitions  (Lynmann,  Balmer  and  Paschen  series)  in  the  hydrogen  atom  that we  have  already 
encountered before. At that time we did not concern ourselves with the selection rules, we simply said that we 
could change the n quantum number in an arbitrary way and did not discuss the selection rules for the l and m 
quantum numbers. Now we see that these can only change by certain amounts. Since the energy levels do not 
depend on these quantum numbers the spectrum is identical to that without considering the selection rules for 
the l and m  quantum numbers. 
 

 
 

5.1.2 Helium Atom 

When discussing the electronic structure of the helium atom we saw that the electronic repulsion between the 
two electrons prevented us from solving this problem exactly. In the absence of this interaction we could write 
the  Hamiltonian  as  the  sum  of  two  hydrogen  atom  Hamiltonians.  In  this  case  we  could  write  the  total 
wavefunction as the product of two hydrogen atom wavefunctions. If we where to use these wavefunctions in 
the expression to evaluate the selection rules we would find the same selection rules as for the hydrogen atom.  
 
However,  we  already  saw  that  the  presence  of  this  inter‐electronic  repulsion  makes  that  the  angular 
momentum  of  individual  electrons,  li  ,  is  not  a  conserved  quantity.  We  did  see  that  the  total  angular 
momentum 
 

i
i

L l  

is  a  conserved quantity. This has  also  an effect on  the  selection  rules. Whereas  for  the hydrogen  atom we 
found that the angular momentum of the electron has to change by one quantum we now could show that the 
total angular momentum has to change by one quantum: 
 

1L    
 
In  our  discussion  of  the  electronic  structure  of  atoms we  also  saw  that we  had  to  include  the  spin  of  the 
electron  for  a  proper  description. We  found  that  in  the  case  of  the  helium  atom we  could write  the  total 
wavefunction as the product of a spatial and a spin wavefunction: 
 

Total spatial spin    

 
We just saw that the dipole moment acts only on the spatial coordinates and not on the spin coordinates. This 
implies that we can now write the transition probability integral as:  
 

     * * *
2 2 1 1 2 1 2 1

ˆ ˆ
spatial spin spatial spin spatial spatial spatial spin spin spind d d              
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The first integral on the right hand side gives the selection rules discussed above. The second integral will give 
the selection rules for the spin quantum numbers. Since we know that the eigenfunction of an operator form a 
complete orthonormal set we find that the spin wavefunctions have to be equal in both states for this integral 
to be non‐zero. Consequently we have the selection rule: 
 

0S   
 
We saw that the application of the Pauli principle to the helium atom implied that for the ground state of the 
helium  atom  where  both  electrons  reside  in  the  same  spatial  orbital,  the  spin  wavefunction  has  to  be 
antisymmetric. This in turn implied that the total spin S equaled zero and that the ground state corresponded 
to a singlet state. This has not to be true for excited states where the electrons occupy different spatial orbitals. 
For excited states therefore both singlet and triplet states exist which have nearly the same energy, the triplet 
states being slightly lower in energy in accordance with Hund’s rules. Since transitions between the singlet and 
triplet states are forbidden by the selection rules one often shows the singlet and triplet systems separately in 
the Grortian diagrams.  
 

 
 

5.1.3 Multi‐electron Atoms 

The treatment of atoms consisting of more than 2 electrons is not very different from that of helium. We saw 
before that we can use the Russell‐Sanders coupling approximation to derive the states  (designated by term 
symbols, 2S+1LJ) from any electron configuration. One can now derive the following general selection rules. 
 

1. 0, 1L         

The selection rule  0L   is not valid for states having  L=0 
 

2. , ,even even odd odd even odd    

Here even and odd refer to the arithmetic sum  i
i

l over all the electrons. This selection rule is 

called the Laporte rule. An important result of this rule is that transitions between states arising 
from  the  same  electron  configuration  are  forbidden.  This  has  important  consequences.  For 
example  transitions  between  the  1P  state  and  1D  states  of  carbon which  both  arise  from  the 
excited 1s22s22p13d1 configuration are forbidden by the Laporte rule (but not forbidden by rule 
1). 
 

3. 0, 1J         

The selection rule  0J   is not valid for states having  J=0 
 

4. 0S    
This selection rule is only valid if the spin‐orbit coupling is small. It is therefore only applicable for 
those atomic systems that can be accurately described by the Russell‐Sanders coupling scheme. 
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As an  illustration of these selection rules  let us have a  look at the Grotrain diagram for carbon shown below. 
Transitions between states derived from the ground state electron configuration are not allowed based on the 
�L and �S  selection  rules. From  the diagram  it  is clear  that even  for a  relative  simple atom as carbon many 
electronic  transitions are possible. We also  see  that  the  transitions between  the  1P  state and  1D  states  that 
both arise from the 1s22s22p13d1 configuration are forbidden by the Laporte rule. For atoms containing a much 
larger number of electrons, the number of states and thus transitions increases dramatically which makes the 
resulting spectra rather complex and difficult to analyze.  
 

 
 

5.2 Vibrational structure of electronic bands 
In  contrast  to  atoms, electronic  transitions  in molecules  can be accompanied by  changes  in  vibrational and 
rotational  states.  It  is  therefore  that  by  an  electronic  band  I  refer  to  the  entire  spectrum  including  all  the 
transitions between one electronic state and another. 
 
To get an overview of what an electronic band will look like, consider the following. In each electronic state we 
have electronic, vibrational, and rotational energy. I will use the notation Te for electronic energy in cm‐1, G(v) 
for the vibrational energy, and F(J) for the rotational energy. 
 
For the upper state of the electronic band we can therefore write 
 

    eE T G F         

 
and for the lower state 
 

    eE T G F         

 
This neglects the interaction of rotation and vibration, however this simple treatment will allow us to see the 
overall structure of the band.  We can look at the details later. 
 
Neglecting  vibration‐rotation  interaction,  the  frequencies  of  the  transitions  in  a  given  electronic  band  can 
therefore be written: 
 

   
     e e

e vib rot

E E T T G G F F
  

              

  
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The first part is simply the difference in energy between the bottoms of the two electronic potential curves and 
has a fixed value for a particular electronic band. 
 
The  second  two  parts  give  the  vibrational  and  rotational  structure  respectively.    Because  the  rotational 
energies are small with respect to the vibrational energies, the rotational structure will appear as fine structure 
on each vibrational band but will not alter the overall appearance of the band.   
 
I will first focus on the vibrational structure of the electronic band to get some idea of the overall shape of the 
spectrum.  I will then go on to discuss the rotational structure of the electronic band. 
 
As we will  see  in  the next  section,  there  are no  strict  rules  that  govern  the  change  in  vibrational quantum 
number that accompanies an electronic transition. The Franck‐Condon Principle, which we will discuss shortly, 

determines  the  intensities  of  the  transitions  for  different  values  of v.    Because  of  the  lack  of  a  strict  �v 
selection rule, there is potentially much information in an electronic transition. 
 
I will talk separately about two different types of electronic spectra: absorption spectra and emission spectra. 
 
Absorption spectra are caused by molecules  in the  lower electronic state that make a transition to the upper 
state  upon  absorbing  a  photon.  Emission  spectra  are  caused  by molecules  in  the  upper  electronic  state 
spontaneously make a downward transition and in doing so, emit light. 
 
In our discussions of other types of spectroscopy, we have considered only absorption spectra.  That is because 
the  lifetimes of vibrational and rotational states are sufficiently  long that molecules will more often than not 
collide with other molecules and give their energy off through the collision before they have the chance to emit 
a photon.  While one can observe infrared and even microwave emission, one must look at samples at very low 
pressure where the collision  frequency  is  low.   Moreover, detectors that operate  in this  frequency range are 
not so sensitive. 
 
In electronic spectroscopy, the radiative  lifetimes are sufficiently short that molecules can easily emit before 
they undergo a collision.  In addition, detectors for visible and ultraviolet light can be very sensitive. 
 
Let us first consider absorption spectra. 
The  overall  appearance  of  an  electronic  absorption  band  depends  upon  the  vibrational  spacings  and  the 
temperature of the sample.  If the vibrational spacing in the lower state is high, most of the population will be 
in the ground vibrational state.  Thus, the spectrum will contain a single progression of vibrational transitions, 
all of which originate in the ground vibrational state of the lower electronic state and go to different vibrational 
states in the upper electronic manifold (as shown on the left in the figure below). 
 

Note  that we are not applying a v=±1  selection  rule here.   The vibrational  selection  rules are given by  the 
Franck‐Condon principle, which we will consider shortly.  This principle allows for larger changes in vibrational 
quantum number. 
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However  if  the vibrational  spacings  in  the  lower electronic  state are  small  (as  in  the  right part of  the  figure 
above), there may be significant population  in several vibrational states.   In this case there will be a series of 
vibrational  progressions  originating  from  different  initial  states.  If  the  vibrational  spacing  of  the  upper  and 
lower electronic states is similar, many of these transitions will be very close in frequency and may overlap. 
 
For example,  in the right hand side of the figure, notice that the 0‐0 band will be similar  in energy to the 1‐1 
band and the 2‐2 band.   This sequence of bands  that differ by one vibrational quantum number  in both  the 
lower and upper electronic manifolds are called sequence bands. 
 
Any band that originates from a vibrational state other than  v 0   is also called a hot band. 
 
Electronic  spectra  can  be  greatly  simplified  by  cooling  the  sample  and  getting  rid  of  population  in  higher 
vibrational states.  Normally one can only do this until the point at which the molecule condenses and becomes 
a  liquid  (at  which  point  the  spectrum  changes  fairly  radically).    There  are  some  tricks,  however,  to  cool 
molecules to a few degrees Kelvin and keep them in the gas phase. This dramatically reduces the complexity of 
a spectrum. 
 
You  can  see  that  on  the  left‐hand  side of  the  above  figure,  the  spacing of  the members of  the  vibrational 
progression reflects the vibrational spacing in the upper electronic state. This provides information that allows 
one to find the shape of the potential curve in the excited electronic state. 
 
On  the right hand side of  the  figure, you can  find  transitions  that go  to the same  final state but originate  in 
different  initial  states.   One  can  use  these  transitions  in  a manner  similar  to  the method  of  combination 
differences to find the vibrational spacings in the lower electronic state. 
 
Now let us consider emission spectra. 
The picture for emission spectra is almost the inverse of that for absorption spectra: 
 

 
 
 
You can see that by choosing transitions that begin  in the same upper state, one can get  information on the 
vibrational spacing in the lower electronic state.   
 
One  important difference  from  absorption  spectra,  however,  is  that  that molecules produced  in  an  excited 
electronic state are often formed in more than one vibrational level (for example in an electrical discharge or in 
a flame), and this means that there will be several progressions in the emission spectrum. It is possible, if one 
uses optical excitation to populate a single  level  in absorption, to  look at a single progression  in the emission 
spectrum. 
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To summarize, from absorption and/or emission spectra between two different electronic states one can get 
information on the vibrational spacings in each electronic state and from this derive the potential.  As we will 
see  in  a moment,  even  in  a broad overview  spectrum of  the  vibrational bands  (without  the  rotational  fine 
structure), the intensities will tell us something about the geometry change upon electronic transition.  If one 
can  go  high  enough  in  the  upper  electronic  state,  one  can  even  determine  the  dissociation  energy  of  the 
molecule. 
 
Let us now  look  a  little more deeply  into  the question of  intensities  and  selection  rules  for  the  vibrational 
quantum numbers. 
 

5.2.1 Vibrational selection rules 

Recall that selection rules for all types of dipole induced transitions arise from the dipole moment integral: 
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where  z  is dipole moment in lab fixed frame. 

 
The first thing we have to do is to convert the dipole moment into the molecule fixed frame: 
 
    ( , ) ( , )cosz i iq R q R     

 

where  µ is the dipole moment in the molecule fixed frame and is the angle between the lab and molecule 

fixed z‐axis.  
 
It is important to realize  ( , )iq R  depends on electronic and vibrational coordinates 

 
We can then write our integral: 
 

12 2 2 1 1 2 1 ,
ˆ( ) ( ; ) ( ) ( , ) ( ; ) ( ) ( , )cos ( , )

iz el i vib i el i vib q R rot rotq R R q R q R R d d d                          
   
The  second part  gives  the  rotational  selection  rules. These are  independent of  the electronic or  vibrational 
state and will give the usual selection rules: 
 

    1J    
    0, 1m    

 
We can rewrite the first part of the expression as: 
 

    2 2 1 1
ˆ( ) ( ; ) ( , ) ( ; ) ( )

ivib el i i el i q vib RR q R q R q R d R d        
    
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The integral over the electronic coordinates defines what is known as the electronic transition dipole moment 
function: 
     

    2 1
ˆ( ) ( ; ) ( , ) ( ; )

ie el i i el i qR q R q R q R d       

   
Note  the  differences  between  the  electronic  transition  dipole  moment  function  and  the  dipole  moment 
function  we  defined  when  discussing  vibrational  spectroscopy.  The  transition  dipole  moment  function  is 

defined  as  the  integral  using  2 ( ; )el iq R    and  1 ( ; )el iq R whereas  for  the  evaluation  of  the  dipole moment 

function the electronic wavefunctions are for the same electronic state, i.e.   1 ( ; )el iq R   and  1 ( ; )el iq R   

We get various restrictions for electronic transitions from this factor  µe(R).   

 
1. One restriction, which we have already discussed  in vibrational spectroscopy, comes from symmetry 

considerations.  If we  know  the  symmetries  of  the  electronic  states,  one  has  to  simply  look  in  the 
character tables to find which components of the dipole moment have the proper symmetry to make 
the direct product in the integrand totally symmetric.    

 
2. A  second  restriction  comes  if  we  write  the  electronic  state  as  a  function  of  spatial  and  spin 

coordinates.    In  this  case,  like  for atoms  there  is a  restriction  that  the  spin  state must not  change 
during an electronic transition. This means that a singlet must go to a singlet and a triplet to a triplet, 
etc.  This rule can break down due to spin‐orbit coupling terms in the Hamiltonian.  The breakdown is 
more severe if there are atoms of high atomic number. 

 
The intensities for the vibronic transitions are then deduced from: 
 

    2 1( ) ( ) ( )vib e vib RR R R d     

 
Analogous  to  our  discussion  of  vibrational  spectroscopy  we  can  expand  the  transition  dipole moment  as 
function of R.  

 ( )
( ) ( )

e

e
e e e e

R

d R
R R R R

dR


       

 
  

 
As the first term will generally be the largest the integral for the transition dipole moment can be approximated 
as:      

    2 1 2 1( ) ( ) ( ) ( ) ( ) ( )vib e vib R e e vib vib RR R R d R R R d           

 
This approximation is equivalent to saying that the electronic transition moment is constant for all vibrational 
levels. 
 
The intensity of an electronic transition, I, is therefore proportional to  
 

   
2

2
2 1( ) ( ) ( )e e vib vib RI R R R d          

     
The overlap integral of the vibrational wave functions, which is called a Franck‐Condon factor, determines the 
strength of the transitions. It is important to realize that since the vibrational wavefunctions belong to different 
electronic states the vibrational integral is not equal to zero. 
 

5.2.2 Franck‐Condon Principle 

The Franck‐Condon Principle states that the  intensities are given by the vibrational overlap  integral, and this 
gives a simple yet powerful picture for interpreting electronic spectra.  Note that there is overlap with the wave 
function of more than one vibrational level in the excited electronic state.  
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We can look at this integral graphically in the following manner: 
 

 
 
 
Consider two nearly identical potential curves as sketched above:  
 
If the two curves lie right above each other (same equilibrium internuclear separation or same geometry), then 
the best overlap will be for final states with the same number of vibrational quanta as the initial state (�v=0).  

You can see that all transitions with v not equal to zero will be small.  In the limit that the two potential curves 
are  exactly  the  same  shape  and  have  exactly  the  same  equilibrium  geometry,  there will  be  a  strict  �v=0 
selection rule, since the eigenfunctions will be strictly orthonormal. 
 

In this case where v=0 transitions dominate, the spectrum will consist of as strong 0‐0 band and very weak  1‐
0 and 2‐0 bands. 
 
If the vibrational frequency  is sufficiently  low, there may be population  in more than one  initial  level.   In this 

case,  there will also be sequence bands with v=0 such as a 1‐1 or a 2‐2 band.   However,  if  the vibrational 
frequencies are not very different in the two electronic states, these will fall very close to the 0‐0 band and will 
not change the overall appearance of the band structure. 
 
Consider now the case  in which the two potentials are shifted.   This means that the molecule has a different 
geometry  in  the  excited  electronic  state  than  the  ground  electronic  state  (different  R  for  the  case  of  a 
diatomic).   You can see that  in this case, shown below, the best overlap with the ground state wave function 
will  be  to  states  that  have  larger  numbers  of  vibrational  quanta.    The  overlap  persists  over  a  number  of 
vibrational levels, thus giving rise to a vibrational progression. 
 
In general, long vibrational progressions in electronic spectra indicate an appreciable change in geometry in the 
excited electronic state.  (i.e. shift in equilibrium positions of the potential wells).  
 
 

 

A large geometry change results  
in a long progression of  
vibrational bands with   v0.  

 

0  0 

1  0 
2  0 

3  0 
4  0 

5  0 

 
 
This general principle holds  for polyatomic molecules as well as  for diatomics. Remember when we  treated 
vibrational motion of polyatomics,  the use of normal modes allowed us  to  treat a polyatomic molecule as a 
collection of harmonic oscillators.  The same is true here. One can consider each vibrational mode separately.  
If there is a large change in geometry along a particular normal coordinate, then there will be a progression of 

A small geometry change 
favors v=0 transitions

The spectrum will look something like this



00

10 20
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bands  in  that  particular mode  in  the  electronic  spectrum.  If  the  geometry  doesn't  change,  then  the most 

intense peak will be for v=0 for that mode. 
Thus,  one  can  look  at  an  electronic  spectrum  and  get  an  idea  immediately  about what  the  difference  in 
geometry will be for the excited electronic state. However, what one sees  in the spectrum are the geometry 
changes projected onto the normal modes of the molecule. We usually think of geometry changes in terms of 
bond length and angle changes.  Because more than one normal mode can involve a particular bond vibration 
or angle bending motion, a change in a particular geometrical feature could cause a progression in more than 
one normal mode. 
 

5.3 The FC principle and diffuse spectra 
Recall that our discussion of the Franck‐Condon principle considered two general cases. 
 
In  one  case,  the  excited  state  potential  is  very much  like  the  ground  state  potential with  little  shift  in  the 
equilibrium bond distance.  In this case, the strongest feature in the spectrum is the 0‐0 band. 
 
In a second case, there  is a strong geometry shift that causes a  long progression of vibrational bands. Let us 
now consider an extreme case of the second type.  The best Franck‐Condon factors might be for states that are 
actually  above  the  dissociation  threshold  on  the  upper  surface.    Since  the  levels  are  not  quantized  at  this 
energy,  the  bands  will  become  diffuse  (i.e.,  continuous),  although  they  will  still  show  the  same  overall 
bandshape.  This comes from the overlap with the continuum wave functions. 
 
 

 
 
In  this  case,  excitation of  the bands higher  than  v=5  causes  the molecule  to dissociate.   The energy of  the 
photongoes  into breaking the chemical bond, and  thus no  light can be  re‐emitted.   This  is one example of a 
non‐radiative process.   

 
Another scenario can be the following, see figure below. 
 

 
 
 
In this case, a purely dissociative state crosses the upper bound state.   Molecules excited to  levels above the 
crossing point could potentially cross over and dissociate  rather  than  radiate.   This  is  called predissociation.  












Diffuse bands



5  ELECTRONIC SPECTROSCOPY 

110 

 

The levels are broadened by the time‐energy uncertainty principle, and as the dissociation becomes faster, the 
possibility of light re‐emission decreases. 
 
These are two examples of non‐radiative processes in diatomic molecules that are fairly common.  These and 
other such processes are also common in polyatomics.  I will briefly describe them in the following section. 

5.4 Non‐radiative processes 
Think back to our treatment of the vibrational states of polyatomic molecules.   Recall the complications that 
can arise when we have two vibrational states that are close  in energy—in a perturbation theory picture the 
wave functions can “mix”, which means that they have some character of each of the two near‐resonant states.  
A similar situation occurs  in electronic spectroscopy because there can be different energy levels at the same 
energy.   As we will see  in a moment, this kind of mixing represents a type of “non‐radiative” energy transfer 
from one state to another. 
 
One typically describes non‐radiative processes  in excited electronic states by the use of a Jablonski diagram.   
In this picture  I no  longer show potential curves since, for polyatomics there are too many dimensions.   I will 
simply draw the levels. 
 
Let me simply define the different terms that are used in this figure. 
 
The significations S and T  indicate singlet and  triplet states  (electronic states with paired and unpaired spins 
respectively). 
 
Vibrational relaxation – the loss of vibrational energy through collisions with other molecules.  This will happen 
both in the gas phase and in condensed phases, although generally much faster in the latter. 
 

 

S 0 

S 1 

S 2 

T 1 

T 2 

 vibrational  
relaxation 
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internal  
conversion 
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intersystem  
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intersystem  
crossing  

10 4 - 10 12  s -1 

vibrational  
relaxation 

Absorption 

Fluorescence 
106 –109 s-1 

Absorption 

Absorption 

Phosphorescence 
10-1 –104 s-1 

 
 
Internal  conversion  –  a  non‐radiative  process  by  which  a molecule  changes  from  one  electronic  state  to 
another of the same multiplicity (i.e., singlet to singlet or triplet to triplet).  It is a problem of mixing between 
electronic states that occurs due to terms in the electronic Hamiltonian that we neglected when we made the 
Born‐Oppenheimer approximation. 
 
Intersystem  crossing‐  a  non‐radiative  process  by  which  a molecule  changes  from  one  electronic  state  to 
another of different multiplicity (i.e., singlet to triplet or triplet to singlet).  It  is a problem of mixing between 
electronic states that occurs due to spin‐orbit terms in the electronic Hamiltonian. 
 
Absorption – the absorption of a photon, causing a change in electronic state. 
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Fluorescence – the emission of a photon, causing a change from one electronic state to another of the same 
multiplicity. 
 
Phosphorescence ‐ the emission of a photon, causing a change from one electronic state to another of different 
multiplicity. Because this  is  formally forbidden by the electronic selection rules,  it tends to be very weak and 
hence have a very long lifetime. 
 
The numbers given  in  the  figure are  typical values  for  the  rates of  these various processes  for a polyatomic 
molecule in solution. The situation is somewhat different for an isolated gas phase molecule. 
 
In an  isolated molecule,  the only way  to change energy  is  to  radiate, and  thus vibrational  relaxation cannot 
occur. However, one  can  still have  intersystem  crossing  and  internal  conversion  as well  as  redistribution of 
energy  between  different  vibrational modes.  This  latter  process  is  called  intramolecuar  vibrational  energy 
redistribution and is abbreviated IVR. 
 
In the condensed phase, vibrational relaxation is very fast, and this means that very quickly a molecule moves 
to  the  lowest  vibrational  level  of whatever  electronic  state  it  is  in. One  typically  observes  fluorescence  (or 
phosphorescence) from these lowest vibrational levels.  
 
It is important to have this picture in mind and to know the difference between what happens in the gas phase 
and what happens in the condensed phase. 
 

5.5 Rotational structure of electronic transitions 
Recall  that when  discussing  diatomic molecules  during  the Quantum  Chemistry  course we  introduced  the 
concept of term symbols to describe electronic states of molecules.  
 
Term symbols are denoted as: 
 

2 1S
  

 
where,   2 1S  is the spin multiplicity,  the projection of the total electronic orbital angular momentum L onto 
the bond axis and   the projection of the total angular momentum (including spin angular momentum) onto 

the bond axis. For  = 0, 1, 2 . .  the states are designated as 
 

For  the moment, we will  consider only   transitions. Other  types of  transitions will have  similar overall 
properties, but the details will be different. 
 

The rotational selection rule for diatomics with no electronic angular momentum,  i.e.  states,  is simply J = 
±1.  Since there is no electronic angular momentum, the change in angular momentum due to the absorption 
of the photon must go into a change in the mechanical rotation of the nuclei. 
 
This case is similar to the rotational structure of infrared spectra.  One observes two rotational branches in the 
electronic spectrum:  a P‐branch and an R‐branch. 
 
To see what the spectrum would look like, we simply have to take the difference in the energy level expression 
consistent with the rotational selection rules. 
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The transition frequency comes from the difference between these when you apply the selection rules. 
 
In  a  manner  analogous  to  that  for  infrared  spectroscopy,  we  can  define  the  part  corresponding  to  the 
rotationally independent part of this expression as the band origin. 
 

     
2 2

0

1 1 1 1
v v v v

2 2 2 2
e e e e e e e eT T x x                                    

       
 

 
 
This  represents  the difference  in  electronic  and  vibrational  energy  of  the  two  states  (i.e.,  the difference  in 
energy of the two vibrational levels of the different electronic states). 
 

The vibrational  frequencies  e and  as well as  the anharmonicities are completely unrelated because  they 

refer to different potential curves (different electronic states). 
 
We can then write 
     

           2 22 2
0 v v v v1 1 1 1transition B J J B J J D J J D J J                       

 
If we neglect the centrifugal distortion terms we have  
 

       0 v v1 1transition B J J B J J             
 
It  is  important  to note here that  these  rotational constants are unrelated since  they correspond  to different 
electronic potential curves. 
 
If we now apply the selection rules, we get P and R branches analogous to vibration‐rotation spectroscopy 
 

   
     

   

2

0 v v v v

2
0 v v v v

( ) 1 1

( )

R J B B J B B J

P J B B J B B J





         

       
 

 
You can see that the overall pattern of rotational lines will be the same as in vibrational spectroscopy.  There 

will  be  a  null  gap  in  the  area  around  0   where  there  is  no  transition,  and  then  transitions  spaced  by 

approximately 2B. 
 
The big difference here, however, is that the two rotational constants can now differ much more because the 
geometry of the molecule can be very different in the ground and excited electronic states. 
 
If the B's differ widely enough, then at high J, the last term in the above expressions can be larger that the first 
and cause the rotational transitions in the spectrum to go the other direction. The point at which the transition 
frequencies turn around and go in the other direction is called a band head. 
 

v"=0

v'=0

Te"

Te'
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Case (1)     v ve er r B B        and    v v 0B B    

 
  In this case, the R branch transitions, which  initially go to higher wave number with  increasing J will 

turn around and go  to  lower wave number at  sufficiently high  J.   This causes a band head  in  the R 
branch. 

 

Case (2)     v ve er r B B        and    v v 0B B    

 
  In  this case, the P branch transitions, which  initially go to  lower wave number with  increasing  J will 

turn around and go  to higher wave number at sufficiently high  J.   This causes a band head  in  the P 
branch. 

 
You can see that there will be a correlation between the vibrational structure of an electronic spectrum and the 
rotational  structure  in  the  following  sense.  If  there  is a  large  change  in  geometry between  the  ground and 
excited electronic  state,  this will  result  in Franck‐Condon  factors  that  favor a  large change  in  the vibrational 
quantum number v. 
 
At the same time, the change in geometry will mean the rotational constant will be different for the two states, 
and  this may  lead  to  a  band  head  in  one  branch  or  the  other.  Thus,  the  strong  change  in  geometry  has 
important consequences both for the overall vibrational structure as well as for the rotational structure of the 
each vibrational band. 
 
 

5.6 Electronic Spectroscopy of polyatomics 
We have already discussed many topics associated with the electronic spectroscopy of polyatomic molecules.  
Although  our  discussion  of  the  vibrational  structure  of  electronic  bands  was  focused  on  diatomics,  the 
principles  hold  for  each  normal mode  of  a  polyatomic molecule.    The  same  is  true  for  the  Franck‐Condon 
principle—one can take a cut through the potential curve  in each normal coordinate, and everything that we 
discussed  about  the  FC  principle  would  hold  for  each  coordinate.  This  implies  that  depending  upon  the 
geometry  change  of  the molecule  upon  electronic  excitation  some  normal modes  show  long  progressions 
whereas others show no progressions at all. 
 
In the electronic spectroscopy of polyatomic molecules one often uses the  following notation to  indicate the 
change in vibrational quantum numbers. 
 

    v '
v "i  

 
here �i indicates the ith normal mode, v” is the vibrational quantum number in the lower electronic state and v’ 
that of the upper electronic state. 
 
 
Some examples: 

2
01   Normal mode 1 changes vibrational quantum number from 0 in the lower electronic state to 2 in the 

upper state. 
 

2
13   Normal mode 3 changes vibrational quantum number from 1 in the lower electronic state to 2 in the 

upper state. This is a hot band transition (start from excited vibrational level).     
       

1 0
0 12 4   Normal mode 2 changes vibrational quantum number from 0 in the lower electronic state to 1 in the 

upper state and at the same time normal mode 4 changes vibrational quantum number from 1 to 0. 
This  is combination band  transition  ( 2 modes are  involved) and   a hot band    transition  (start  from 
excited vibrational level).. 
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The transition from the vibrational ground state (vibrational quantum number of all normal modes equal zero) 
in  the  lower electronic  state  to  the vibrational ground  state of  the upper electronic  state  is called  the band 
origin and has the special notation. 
 

      0
00  

 
Depending  on  the  number  of  normal  modes  and  whether  they  form  long  progression  upon  electronic 
excitation  the  spectrum can become very  complicated.  Let’s have a  look at an example. Assume we have a 
molecule with 3 normal modes that have the following frequencies.  
 
 

  Vibrational frequencies 
Lower electronic state 

Vibrational frequencies 
Upper electronic state 

1  2900 cm‐1  3000 cm‐1 

2  2200 cm‐1  2100 cm‐1 

3  800  cm‐1  600 cm‐1 

 
 

Assuming  that  the 3  vibration  forms  a  long progression  the electronic  spectrum might  than  look  as  in  the 
figure indicated below.  
 

The zero frequency in this figure corresponds to the frequency of the band origin, 0  
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