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1. For a molecule belonging to the D2h point group, deduce whether the following vibrational 
transitions from the ground vibrational state are allowed in the infrared and/or Raman 
spectrum. State the direction of the transition moment and/or the component of the 
polarizability involved. 

a. to the v=2 level of a b1g vibration 
b. to the v=1 level of an au or b2u vibration 
c. to the combination level involving v=1 of a b1u and v=1 of a b3g vibration 
d. to the combination level involving v=2 of an au vibration and v=1 of a b2g vibration. 

 
 
a) 
General remarks: For a molecule, a transition from ν1 to ν2 to be infrared-active(raman)-active, 
Ψν2*μ̂Ψν1 (Ψν2*α̂ijΨν1) has to be symmetric in order to not vanish upon integration. This is 
aequivalent to the direct sum of the functions to contain the totally symmetric representation (a 
consequence coming from group theory). In the case that Ψν1 is the ground state, the direct 
product Ψν2*μ̂ (Ψν2*α̂ ) has to contain the totally symmetric representation (since the ground state 
is totally symmetric). For this to happen, Γ(Ψ2) = Γ(μ̂i)(Γ(Ψ2) = Γ(α̂ij)) has to hold for all 
components i, j. 
 
Operator specific remarks: The dipole moment operator is proportional to the space-operator. 
Therefore, μ̂i possesses B1u , B2u , B3u symmetry for the x,y and z component respectively. For the 
polarizibility, the following symmetries are given for the different components: 

 
 
 
 
 

With the above considerations in mind, the transitions are investigated as follows: 
 
a) The symmetry of the niveau ν = 2 of a b1g vibrational mode is B1g ⊗ B1g = Ag, which is different 
from any component of μ̂. Therefore, it is IR-forbidden. However, since the components αii are of 
symmetry Ag, the transition is Raman allowed. 
 
b) Neither the au nor the b2u vibrational mode possesses an adequate symmetry contained in μ or 
αij . Therefore these transitions are neither IR nor Raman allowed. 
 
c) The symmetry of the combined vibrational mode is: B1u ⊗ B3g = B2u . Therefore, this transition 
is Raman forbidden, but IR allowed with component μy. 
 
d) The symmetry of the combined vibrational mode is: Au ⊗ Au ⊗ B2g = B2g. Therefore, this 
transition is Raman allowed with component αxz, but IR forbidden. 
 



2. The infrared spectrum of N2O has three fundamental bands. Assuming that the structure of N2O 
is linear, explain how this spectrum allows you to distinguish between NNO and NON. Sketch 
the normal modes. 
 
With IR spectroscopy one can easily distinguish between NNO and NON, since NNO posesses a 
permanent dipole, whereas NON does not (assuming a linear structure). Therefore NNO is IR 
active and NON is not. Furthermore, the 3 fundamental bands can be associated to the following 
normal modes: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



3. Fill in the table with a YES or a NO to indicate allowed spectroscopic transitions. For 
vibrational and vibrational Raman transitions, indicate the symmetry species of the 
vibrational modes to which transitions are allowed. 
 
 
 
General approach: 
Purely rotational transitions: 
The existence of a permanent dipole moment is investigated: For molecules with a permanent 
dipole moment, purely rotational transitions are allowed, else not. 
 
Vibrational & vibrational Raman transitions: 
For determining the possible vibrational IR and vibrational Raman transitions, the direct product 
decomposition of the reducible representation of the vibrational part needs to be computed. 
Since the IR activity is determined by the dipole moment, a mode will be active if the irreducible 
representation contains a linear part (x, y or z). Similarly, the Raman activity is determined by the 
polarisability and a mode will be active if the irreducible representation contains a quadratic part 
(xx,xy, yy, . . . ). The irreducible representation can be computed in the following way: 

1. Determine the symmetry group G of the molecule 
2. If G is an infinite group, then consider a subgroup (for D∞h this could be D2h for 
example) and continue solving in that group. 
3. Look up (or derive) the character table corresponding to the group 
4. For each symmetry element in the group, compute the reducible representation by 
multiplying the number of unshifted atoms with the contribution per atom 1 
5. Obtain the irreducible representation Γirredtot, by computing the coefficient ai for each term i 
using the reduction formula (as also outlined in the lecture notes): 

 
 
 

6. If the original group was infinite: use (or derive 2 ) partial correlation tables to map the 
obtained decomposition back to the infinite group. 
7. Subtract the translational and the rotational terms from Γirredtot in order to obtain Γirredvib 
 

 
 
 
 
 
 
 
1The contribution per atom depends on the considered symmetry element: a) E. . . 3, b) i. . . -3 c) σ . . . 1 d) Cn = 1 + 2 cos ( 360/n ) d) Sn = − 1 + 2 cos 
( 360/n ) 
2One can easily derive partial correlation tables by matching corresponding functions 

H2O: 
H2O possesses a permanent dipole in z-direction. Therefore, purely rotational transitions are 
allowed. Furthermore, it belongs to the symmetry group C2v, which possesses the following 
character table: 



 
 
 
 
 
 
 
The character of the reducible representation for H2O is computed: 
 
 
 
 
 
 
 
 
Since C2v is a finite group (4 group elements), the reduction formula can be applied: 
 
 
 
 
 
 
 
 
 
With that, the direct product decomposition is: Γirredtot = 3A1 + 1A2 + 3B1 + 2B2 
Subtracting the translational and rotational modes, the irreducible representation of the 
vibrational part is obtained: 
 
 
 
 
 
This means that 2 vibrational normal modes have A1 symmetry and 1 normal mode has B1 
symmetry. Considering the character table, A1 corresponds to z, x2 , y2 and z2 entries, which is 
associated to a μz dipole moment and αxx , αyy and αzz polarisabilities. Similarly, B1 corresponds to 
x and xz entries, which is associated to a μx dipole moment and an αxz polarisability. 
 



SF6: 
SF6 possesses no permanent dipole. Therefore purely rotational transitions are not allowed. 
Furthermore, it belongs to the symmetry group Oh, which has the following character table: 

 
The character of the reducible representation for SF6is computed: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Since Oh is a finite group (48 group elements), the reduction formula can be applied to the 
relevant irreducible terms3: 

 
 
 
 
 
 
 
 



 
With that, the direct product decomposition is: Γirredtot = A1g + Eg + T2g + 3T1u + . . . 
Subtracting the translational and rotational modes, the irreducible representation of the 
vibrational part is obtained: 
 
3Remark: Only irreducible terms which are associated to linear or quadratic coordinate terms need to be considered. 

 
 
 
 
 
This means that one vibrational normal mode has A1 symmetry, one has Eg symmetry, one has T2g 
symmetry and two have T1u symmetry. Comparing these terms with corresponding functions in 
the character table leads to 3 Raman active modes of symmetry A1g, Eg and T2g and two IR active 
modes of symmetry T1u. 
 
 
CS2: 
CS2 possesses no permanent dipole. Therefore purely rotational transitions are not allowed. 
Furthermore, it belongs to the symmetry group D∞h . Since D∞h is an ininite group, we consider 
one of its subgroups - namely D2h 4 , which possesses the following character table: 

 
The character of the reducible representation for CS2 is computed: 



 
 
 
 
 
 
 
 
 

 
 
 
 
 

4The choice of subgroup is in principle arbitrary, yet one of course will appreciate using a subgroup with a decently small numer of elements. 

Since D2h is a finite group (8 group elements), the reduction formula can be applied: 

 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
giving the following decomposition: 
Γirredtot(D2h) = Ag + B2g + B3g + 2B1u + 2B2u + 2B3u 
 
Considering now the partial correlation table: 
Ag → Σg+, B2g + B3g → Πg, B1u → Σu+, B2u + B3u → Πu, 
 
the direct product decomposition in the original infinite group is obtained: 
Γirredtot(D∞h) = Σg+ + Πg + 2Σu+ + 2Πu 
 
Subtracting the translational and rotational modes, the irreducible representation of the 
vibrational part is obtained: 

 
 
 
 
 

This means that one vibrational normal mode has Σg+ symmetry, one has Σu+ symmetry, one has 
Πu symmetry. Comparing these terms with corresponding functions in the character table leads to 
1 Raman active mode of symmetry Σg+, Eg and T2g and two IR active modes of symmetry Σu+ and 
Πu. 
 



N2O: 
N2O possesses a permanent dipole. Therefore purely rotational transitions are allowed. 
Furthermore, it belongs to the symmetry group C∞v. Since C∞v is an ininite group, we consider one 
of its subgroups - namely C3v, which possesses the following character table: 
 
 
 
 
 
 
 
The character of the reducible representation for N2O is computed: 

 
 
 
 
 
 
 

Since C3v is a finite group (4 group elements), the reduction formula can be applied: 
 
 
 
 
 
 
 

 
giving the following decomposition: Γirredtot(C3v) = 3A1 + 3B1 + 3B2 
Considering now the partial correlation table: 
A1 → Σ+, B1 + B2 → Π, 
 
the direct product decomposition in the original infinite group is obtained: 
Γirredtot(C∞v) = 3Σ+ + 3Π 
 
Subtracting the translational and rotational modes, the irreducible representation of the 
vibrational part is obtained: 

 
 
 
 
 

This means that two vibrational normal modes have Σ+ symmetry and one has Π symmetry. 
Comparing these terms with corresponding functions in the character table leads to all 3 modes 
to be Raman and IR active. 
 



Allene: 
Allene possesses no permanent dipole. Therefore, purely rotational transitions are not allowed. 
Furthermore, it belongs to the symmetry group D2d, which possesses the following character 
table: 
 
 
 
 
 
 
 
 
The character of the reducible representation for allene is computed: 

 
 
 
 
 
 
 
 

 
Since D2d is a finite group (8 group elements), the reduction formula can be applied: 

 
 
 
 
 
 
 
 
 

With that, the direct product decomposition is: 
Γirredtot = 2A1 + 1A2 + 2B1 + 4B2 + 6E 
 
Subtracting the translational and rotational modes, the irreducible representation of the 
vibrational part is obtained: 

 
 
 
 
 

This means that 2 vibrational normal modes have A1 symmetry, 2 have B1 symmetry, 3 have B2 
symmetry and 4 have E symmetry. Comparing these terms with corresponding functions in the 
character table leads to all modes being Raman active and 7 modes with symmetry B2 and E to be 
IR active. 
 



Cl2: 
Cl2 possesses no permanent dipole. Therefore purely rotational transitions are not allowed. 
Furthermore, it belongs to the symmetry group D∞h . Analogously to CS2, the subgroup D2h will be 
used to find a decomposition, which will then be mapped to the infinite group using partial 
correlation tables. The character of the reducible representation for Cl2 is computed: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

After application of the reduction formula, the following decomposition is found: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
giving the following decomposition: 
Γirredtot(D2h) = Ag + B2g + B3g + B1u + B2u + B3u 
 
Considering now the partial correlation table: 



Ag → Σg+, B2g + B3g → Πg , B1u → Σu+, B2u + B3u → Πu, 
 
the direct product decomposition in the original infinite group is obtained: 
Γirredtot(D∞h) = Σg+ + Πg + Σu+ + Πu 
 
Subtracting the translational and rotational modes, the irreducible representation of the 
vibrational part is obtained: 

 
 
 
 
 

This means that Cl2 possesses one vibrational normal mode with symmetry Σg+ which is Raman 
active. 
 



4. For the molecules BF3 (D3h symmetry) and cis-diimide HN=NH (C2v symmetry): a,b) 
Determine the number and symmetries of the normal modes of vibration. Determine 
which of these modes will appear in an infrared spectrum and which will appear in a 
Raman spectrum. 
 
In analogy to problem 3, the number and symmetries of the normal modes of vibration are found. 
 
BF3: 
The point group D3h possesses the following character table: 

 
 
 
 
 
 
 
 
 
 

The character of the reducible representation for BF3 is computed: 
 
 
 
 
 
 
 
 
 
 
 

Since D3h is a finite group (12 group elements), the reduction formula can be applied: 

 
 
 



 
 
 
 
 
 
 
 
 
 
 
giving the following decomposition: 
Γirredtot(D3h) = A1’ + A2’ + 3E’ + 2A2’’ + E’’ 
 
Subtracting the translational and rotational modes, the irreducible representation of the 
vibrational part is obtained: 

 
 
 
 
 

This means that BF3 possesses 1 vibrational normal mode with symmetry A1’ which is Raman 
active, 2 normal modes of symmetry E‘ which are both IR and Raman active and another mode 
with symmetry A2’’ which is IR active. 
 
HN=NH: 
The point group C2v possesses the following character table: 

 
 
 
 
 
 
 
 

The character of the reducible representation for HN=NH is computed: 
 
 
 
 
 
 
 

 
Since C2v is a finite group (4 group elements), the reduction formula can be applied: 



 
 
 
 
 
 
 

 
giving the following decomposition: 
Γirredtot = 4A1 + 2A2 + 2B1 + 4B2 
 
Subtracting the translational and rotational modes, the irreducible representation of the 
vibrational part is obtained: 

 
 
 
 
 

This means that cis-diimide possesses three vibrational normal modes with symmetry A1 which 
are both IR and Raman active, 1 normal mode of symmetry A2 which is Raman active and 2 
normal modes with symmetry B2 which are both IR and Raman active. 


