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4 Vibrational Spectroscopy 
The field of vibrational spectroscopy is extremely important to a chemist or chemical engineer, since it is one of 
the primary methods used to identify molecules. Unlike rotational spectroscopy, which is applicable only to gas 
phase molecules, vibrational spectroscopy provides  important  information on condensed phase molecules as 
well as those in the gas phase. Although a vibrational spectrum is different in a liquid or a solid than in a gas, it 
still carries information that is unique to a given molecule that can be used as a “fingerprint” of that molecule. 
We will discuss primarily gas phase vibrational spectra, however, much of what we will do will be applicable to 
condensed phases as well. The difference will be that the rotational structure of a vibrational spectra cannot in 
general be resolved in the condensed phase except in very special circumstances. 
 
Our discussion will begin with diatomic molecules and then progress to polyatomic molecules. In our discussion 
of the latter, you will find that molecular symmetry plays an important role. 
 

4.1 Diatomic Molecules 

4.1.1 Energy Levels and Selection Rules 

We  have  already  seen  an  expression  for  the  energy  levels  of  a  diatomic  molecule  including  centrifugal 
distortion and vibration rotation interaction: 
 

       
2

22
v v

1 1
(v, ) v v 1 1

2 2
e e e eF J T x B J J D J J               

   
 

 
where Te is the electronic energy. Previously we called this U(Re). I have used Dv here instead of D to allow for 
the possibility that it might have vibrational dependence. 
 
To determine what the spectrum looks like, we need to use this expression  in combination with the selection 
rules for vibrational transitions.. 
 
In our overview of molecular  spectroscopy earlier  in  the course,  I derived an expression  for  the  intensity of 
spectroscopic transitions that involved matrix elements of the dipole moment function between the initial and 
final state. For certain values of the quantum numbers these  integrals vanish, and this gives rise to selection 
rules for the allowable changes in quantum number. 
 
For  radiation  polarized  in  the  z‐direction  (i.e.  with  respect  to  a  space‐fixed  z‐axis),  the  intensity  of  a 
spectroscopic transition is proportional to: 
 

     2*
2 1
ˆ
zI d        

 
To obtain  the vibrational/rotational  selection  rules, we have  to  separate  the wave  functions  into electronic, 
vibrational and rotational parts.  
 

    2 2 2 1 1 1 ,
ˆ( ; ) ( ) ( , ) ( , ) ( ; ) ( ) ( , )

iel i vib rot z i el i vib rot q Rq R R q R q R R d d d                   

 
Recall  that  the  z‐component  of  the  dipole moment  refers  to  the  z‐component  in  a  space  fixed  axis.  One 
normally measures the dipole moment in the reference frame of the molecule. Before we called this µ�. For the 
z‐component we saw that: 
 

    ( , ) ( , )cosz i iq R q R    

 
When we separate the rotational part from the electronic and vibrational part we get: 
 



4  VIBRATIONAL SPECTROSCOPY 

72 

 

    2 2 1 1 2 1 ,
ˆ( ; ) ( ) ( , ) ( ; ) ( ) ( , )cos ( , )

iel i vib i el i vib q R rot rotq R R q R q R R d d d                     

 
For vibrational/rotational transitions, we are not changing the electronic state, so that ��el = ��el. Also (recall the 
Born‐Oppenheimer approximation), we assume  that  the nuclei are essentially stationary on  the  timescale of 
the electronic motion. For  treating  the electronic motion, we  therefore  fix  the nuclei and  integrate over  the 
electronic coordinates.  
 

    2 1 1 1 2 1 ,
ˆ( ) ( ; ) ( , ) ( ; ) ( ) ( , )cos ( , )

ivib el i i el i q vib R rot rotR q R q R q R d R d d                   
     

 
The electronic  integral gives us the average value of the dipole moment  integral  in the given electronic state, 
which is a function of the nuclear coordinates. This is simply what we call the dipole moment function µ(R). 
 
We can then write: 
 

    2 1 2 1 ,
ˆ( ) ( ) ( ) ( , )cos ( , )vib vib R rot rotR R R d d                 

   
The integral over the angular coordinates gives the rotational selection rules for vibrational transitions. That is, 
when the vibrational quantum number changes, there must also be an accompanying change in the rotational 
quantum numbers that are consistent with this integral. Otherwise the whole expression will be zero. 
 
You can see that this second factor is the same as for pure rotational transitions and gives rise to the selection 

rules of J = ±1 and m = 0. Recall that if we look at the x‐ or y‐components of the dipole moment, we can also 

have m = ±1. 
 
One  finds  the  vibrational  selection  rules  by  evaluating  the  first  integral.  For  a  diatomic molecule, we  can 
expand the dipole moment function as power series in the displacement coordinate ex R R  . 
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2
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2x x

d d
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If we keep terms no higher than linear in x and substitute into the integral, we have 
 

    0 2 1 2 1

0

1
ˆ( ) ( ) ( ) ( )

2
vib vib vib vib

x

d
x x dx x x x dx
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     



       

 
The  first  term  equals  zero  when  the  vibrational  quantum  number  changes.  Thus,  the  selection  rules  for 
vibrational transitions are given by the second term. 
 
First notice that one requirement for a molecule to undergo a vibrational transition is that it produce a change 
in dipole moment as it vibrates. Let us look at a typical curve for a dipole moment of a heteronuclear diatomic 
as a function of the internuclear distance.  
 

 
 
What matters  is not the magnitude of the dipole moment, but the slope of the dipole moment function. This 
means that the dipole moment changes as the molecule vibrates. 
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In addition to a change in dipole moment, the intensity of a vibrational transition is determined by the integral 
       

    v v
ˆ( ) ( )x x x dx 

 
  

where  we  use  v   and  v   to  indicate  the  vibrational  quantum  numbers  in  the  upper  and  lower  state, 
respectively.  
 
If  we  use  harmonic  oscillator  wave  functions,  evaluating  this  integral  is  straightforward.  We  saw  in  the 

quantum chemistry course of last semester that we can write the operator  x̂  as: 
 

     †1
ˆ ˆˆ

2
x a a   

 
 

where  †â  and  â are raising and lowering operators. Substituting this into the integral gives: 
 

    †
v v v v

1
ˆ ˆ( ) ( ) ( ) ( )

2
x a x dx x a x dx    

   
     

  
Using the fact that 
 

   
†

v v+1
ˆ v 1a         and    v v‐1

ˆ va     

 
we have 

    * *
v v +1 v v ‐1

1
v 1 ( ) ( ) v ( ) ( )

2
x x dx x x dx      

       

        
 

The first integral will be zero unless   v' = v'' +1 or  v = 1 
The second integral will be zero unless v' = v'' ‐ 1 or v = ‐1 
 

So the selection rule for vibrational transitions is:  v = 1 
 
 
This selection rule is based upon two approximations:  

 The vibrations are described by harmonic oscillator wave functions  

 The dipole moment function is approximated by a linear function. 
 

In the exercises you will explore the breakdown of these two assumptions and find that this results in v >1. In 
reality, the v = ±1 transitions are strong and v >1 transitions are much weaker. A rule of thumb  is that the 

transitions get 10 times weaker for each successively larger change in v. 
 
A bit of terminology: 
 

      final state    initial state 

      v'    v" 

      1    0  Fundamental band 

      2    1  Hot band 

      2    0  First overtone 

      3    0  Second overtone 
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4.1.2 Vibration‐Rotation Spectra 

Let us now use the energy level expression  
 

       
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together with the v = ±1 and J = ±1 selection rules to see what the spectrum will look like. 
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Note that the electronic part drops out since we are not changing electronic state. 
 
Let us now separate off the part that  is purely vibrational from the part that  is rotational.  I will call the pure 

vibrational terms . 
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I will now use the vibrational selection rule by letting v' = v'' + 1 
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  is called the band origin and  it  is where the vibrational transition would occur  if there were no changes  in 
rotational quantum number as well. 
 
Remember  that  the vibrational spectrum will occur  in  the  infrared part of  the spectrum. As we will see  in a 
moment, the spectrum will have rotational structure, but all these transitions occur in the infrared. 
 
For the present case, let us consider a transition that originates from the v'' = 0 level. In this case 
 
    0 2e e ex     

 
We then have 

           2 22 2
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where 0 is given above. 
 
We must now put in the relationship between J' and J''. There are two choices corresponding to the +1 and ‐1 
selection rule. This gives rise to two branches of the spectrum: 
 
 

R Branch:   (J = 1)      J' = J'' + 1 
 

              2 2 22
0 v v v v1 2 1 1 2 1Rv B J J B J J D J J D J J                       

 
I will neglect the centrifugal distortion part for now. Rearranging, we get 
 

         20 v v v v( ) 1 1 0,1,2,3Rv R J B B J B B J J                     

 
 

P Branch:  (J = ‐1) J' = J'' ‐ 1  
 

        2
0 v v v v( ) 1,2,3Pv P J B B J B B J J                  

 
Note that since J' = J'' ‐1, the lowest value of J'' in the P branch is 1. We can look at this on the following energy 
level schematic  
 
 

 
 
Now let us think about what the spectrum will look like. There are several important things to notice. 
 

First, notice that there  is no transition right at the band origin, . You can see that by  letting J'' = 0, the first 
transition in the R branch is: 
 
    0 v(0) 2R B    

 
The first in the P branch is: 
 
    0 v(1) 2P B    
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There is no transition at . This is because the rotational selection rules must be obeyed.  
 
 

 
 
 
The spacing between R(0) and P(1) is 2(Bv' + Bv''). If Bv' and Bv'' were equal, this would be a gap of 4B. This gap is 

called the null gap. The band origin, , is approximately in the center. 
 
The second thing to note  is the effect of the second term  in the expressions for the P and R branches.  If we 

were to ignore the difference between Bv' and Bv'' for a moment (which is equivalent to saying that  = 0), then 
the last term in each of these expressions would drop out. The lines would then be equally spaced by units of 
2B.  
 
 

 
 
The inclusion of this second term will shift the levels in each branch by an amount that depends upon J'' 2. For 
the infrared spectrum of a diatomic molecule, Bv' is always less than Bv''. This is because of anharmonicity in the 

potential. The average bond  length  is always a bit  longer  in a vibrationally excited state and  this makes  a 
positive term.  
 
This means that (Bv' ‐ Bv'') is negative. The last term in each expression will shift the levels to lower energy. This 

has the effect of compressing the R branch and extending the P branch.  
 
 

 
 
By measuring  this  effect,  one measures  (Bv'  ‐ Bv''),  and  from  this one  can  determine  the  vibration  rotation 

interaction constant , since  v

1
v

2
eB B      

 
 

 
The overall shape of the spectrum will always look something like: 
 
 

 
 

0

R(0)P(1) {{ 2Bv'2Bv''

0

R(0)P(1)



R(1)
R(2)

R(3)
R(4)

P(2)
P(3)

P(4)

P(5)
R(5)P(6)

0

R(0)P(1)



R(1)
R(2)

R(3)
R(4)

P(2)
P(3)

P(4)

P(5)
R(5)P(6)

0





4  VIBRATIONAL SPECTROSCOPY 

77 

 

The intensities of the transitions are determined largely by the Boltzmann distribution of initial rotational state 
populations.  
 
Remember that  

   
 
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2 1 b
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J e
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To  calculate  this,  we  only  need  to  know  the  rotational  constant  in  the  lower  vibrational  state  and  the 
temperature.  If we know  the  rotational constant of a molecule  (determined by  the  line positions),  then  the 
intensities of a  spectrum provide a direct measure of  the  temperature! This  is how one  typically measures 
temperatures of objects in space (comets, planets, stars, etc...). One collects light emission from these objects 
and looks for transitions of known molecules. The intensities provide the temperature. 
 
There  is  one more  comment  that  I  need  to make  regarding  the  relative  intensities  of  the  transitions  in  a 
vibration‐rotation  spectrum. Remember  that  the  intensities are proportional  to  the  square of  the  transition 
moment integral. We used this integral to determine the selection rules, which only requires determining when 
the  integral  is  identically  zero. We  didn’t  pay much  attention  to  the  proportionality  constants  outside  the 
integral. If we had done things carefully we would have seen that the intensity of the P branch transitions are 
proportional  to  J/(2J+1) and  that of  the R branch  transitions are proportional  to  (J+1)/(2J+1). These  factors, 
known as the Hönl‐London factors, must be taken into consideration when determining the temperature. 
 

4.1.3 Combination Differences 

Because  a  vibration‐rotation  spectrum  involves  transitions  between  two  vibrational  states  (with  different 
rotational constants), the frequencies of these transitions carry  information on both states. We would  like to 
separate  the  information  about  the  initial  and  final  vibrational  states. We  can do  this using  the method of 
combination differences.  
 
 

 
 
 
As an example, consider the difference in the frequencies of the R(0) and P(2) transitions. You can see that both 
levels terminate on J' =1. Their difference in energy reflects only the spacing in the lower vibrational state. You 
can see that 
 
    v(0) (2) 6 6R P B B      

 
In general, one can write 
 

       2 v v v

1
1 1 ( 1) ( 1) 4

2
F R J P J F J F J B J  

            
 
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where J refers to the level that the two transitions have in common (in this case the upper state). 
 
This  gives  us  information  only  on  the  ground  state  rotational  constant.  It  has  allowed  us  to  separate  the 
information between the initial and final vibrational levels. 
 
We  can do  the  same  thing  to get  information only about  the  rotational constants  in  the excited vibrational 
state. Consider the difference in energy between the R(1) and P(1) transitions: 
 

 
 
 
These transitions originate on the same level but terminate on different levels. One can see that    
 
    v(1) (1) 6 6R P B B     

 
In general         

       2 v

1
4

2
F R J P J B J

      
   

 
where J refers to the level in common, which in this case is the lower state. 
 

One could take the average of  2

1
4

2

F

J


  
 

 for different values of J and get  vB  . 

 

Similarly one could take the average of  2

1
4

2

F

J


  
 

 and get  vB  . 

 
The other way to analyze this data is to plot  2F vs. J. This would give a slope of 4B and an intercept of 2B. 

 
 

 
 
The non‐linearity at high J comes from the centrifugal distortion term that we neglected. One can include this 
term and then fit these curves to a higher order function. This will give us a value for D. 
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4.2 Polyatomic Vibration 

4.2.1 Normal Modes of Vibration 

When  we  consider  the  vibrational  motion  of  polyatomic  molecules,  the  situation  is  somewhat  more 
complicated than diatomics as polyatomic molecules can vibrate in many different ways or modes. 
 
Consider a simple classical two‐dimensional harmonic oscillator that has different  force constants, k,  in each 
direction.  If  you  give  it  initial  displacement  along  x  or  y,  it  will  undergo  simple  harmonic motion  in  that 
coordinate.  
 
If  you  give  it  initial  displacement  off‐axis  (simultaneously  in  x  and  y)  then  the motion will  be much more 
complex. 

 
 
One can get this vibrational motion by superimposing the vibrations along the x‐axis and the y‐axis. These two 
vibrations are said to be normal vibrations or normal modes. These normal modes thus serve as the basis to 
describe the overall vibrational motion.  
 
A  polyatomic molecule  is  a multidimensional  object,  and  its  vibrational motion,  analogous  to  the  example 
above, can always be broken down as a linear combination of some fundamental set of vibrations. This set of 
vibrations  forms a basis  set with which all motions can be written as a  linear  combination. There are many 
ways to choose such a basis set. One choice might consist of every bond stretching vibration and a bending of 
every angle. 
 
A specific type of vibrational motion of a polyatomic is called a normal vibration or a normal mode. The normal 
modes have special properties that are useful when solving the Schrödinger equation, or Newton’s equations 
of motion  for  that matter. As we will  see,  at  low energies where anharmonicity  is not  so  important,  these 
modes are the stationery states of the system. 
 
The  number  of  normal mode  for  a molecule  can  be  derived  by  considering  the  degrees  of  freedom.  For  a 
molecule consisting of N atoms the total number of degrees of freedom equals 3N. To describe the position of 
the molecule  3  degrees of  freedom  are  required.  The orientation  in  space of  a molecule  is  described by  3 
degrees of freedom for a non‐linear and 2 for a linear molecule. We therefore find that the vibrational degree 
of freedom equals 3N‐6 for a non‐linear molecule and 3N‐5 for a linear molecule.  
 
As the number of normal modes equals the number of vibrational degrees of freedom we find for the number 
of normal modes:  
 

3N‐6   for a non linear molecule 
3N‐5   for a linear molecule 

 
 
Consider the case of H2O. For water there are  3 3 6 3    degrees of freedom that correspond to vibrational 
motion of the molecule. Thus there are 3 normal modes for water. 
 
In water, as we will see later these normal vibrations are: 
 

y

x
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  Symmetric Stretch      Antisymmetric Stretch        Bend 
   

 
In the case of CO2  there are 3 3 5 4   normal modes: 

               
   
  Symmetric Stretch      Antisymmetric Stretch  Bend (out of plane)   Bend (in plane) 
 

(Note that because of symmetry the two bend vibrations are degenerate.) 

 
 
As we  discussed,  normal modes  are  fundamental modes  of  vibration  that  form  a  basis  set  to  describe  all 
vibrational motions of the molecule. It is important to realize that they are not the only basis set. But as we will 
see in a moment, choosing this particular basis significantly siplifies solving the Schrödinger equation.  We will 
see that within certain approximations the normal modes are the eigenfunctions of the Hamiltonian and thus 
the excitations of normal vibrations are what one observes in IR spectroscopy of polyatomic molecules. 
 
As we did with diatomic molecules,  the place  to start  in describing  the vibrations  is  to  look at  the potential 
energy  function. For a diatomic  it was a one‐dimensional  function  (remember we wrote  it as a power series 
expansion). For a polyatomic, it is a multidimensional function. 
 
I will start with the following set of coordinates: 
 
Let     x1, y1, z1    represent the Cartesian coordinates of nucleus 1 
    x2, y2, z2    represent the Cartesian coordinates of nucleus 2 
    x3, y3, z3    represent the Cartesian coordinates of nucleus 3, etc. . . 
    
I will now define a set of mass weighted Cartesian displacement coordinates, qi, where the subscript denotes 

the value of each coordinate at the equilibrium position. 
 

   

   

   

   

1 1 1 1 4 2 2 2

2 1 1 1 5 2 2 2

3 1 1 1 6 2 2 2

e e

e e

e e

q m x x q m x x

q m y y q m y y

q m z z q m z z

   

   

   

 

 
Thus   

q1, q2, q3  refer to nucleus 1 
    q4, q5, q6  refer to nucleus 2 
    q7, q8, q9  refer to nucleus 3  etc. . . 
 
Given this coordinate system, one can write the multidimensional potential energy function as a Taylor series in 
the 3N coordinates: 
 

   
2 3

, , ,0 0 0

1 1
(0)

2! 3!
i i j i j k

i i j i j ki i j i j k

V V V
V V q q q q q q

q q q q q q
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There  are  3N  coordinates  included  here, which means  that  some  of  them will  represent  translations  and 
rotations of the molecule. 
 
As in the case of a diatomic molecule, we can choose the zero of energy to be the bottom of the potential well. 
This makes V(0)=0. 
 
Also,  since  the power  series  is expanded about  the equilibrium position,  there must be a minimum  in each 
coordinate. This makes all the first derivatives equal to zero. 
 
Furthermore, we will neglect all the terms of 3rd order and higher. Neglecting the higher order terms is basically 
the  harmonic  oscillator  approximation  for  a  multidimensional  system.  As  in  the  case  of  diatomics,  this 
approximation  is  reasonably good  for  the  lowest  vibrational  levels. We will examine  the breakdown of  this 
approximation later. 
 
In this case we can write 
 

   
2

, ,
0

1 1

2 2
i j ij i j

i j i ji j

V
V q q f q q

q q

 
     
     

where 

   
2

0

ij

i j

V
f

q q

 
     

 

 
The fij are generalized force constants. 

 
In mass weighted Cartesian coordinates, we can write the kinetic energy 
 

   

2
1

2
i

i

dq
T

dt

   
 

  

  
The total energy of the molecule, kinetic + potential, is then given by 
 

   

2

,

1 1

2 2
i

ij i j
i i j

dq
E f q q

dt

   
 

       

 
To  solve  the  quantum mechanics  of  this  problem,  one must  first  find  the Hamiltonian  by  substituting  the 
operators for the momentum and the coordinates. 
 
Remember that  if we can write the Hamiltonian as a  linear combination of terms that depend upon different 
sets of coordinates, then the wave function can be written as a product of wave functions that depend on each 
coordinate and the total energy will be a sum of energies for motion in each coordinate. 
 
The problem here, however, is that the cross terms in the potential energy part of the Hamiltonian cause it to 
be  non‐separable.  Because  these  terms  depend  upon  two  different  coordinates,  we  cannot  write  the 
Hamiltonian as a sum of terms that depend on each coordinate. 
 
Let's think about what these cross terms mean physically. The terms where i = j are force constants similar to 
those we encountered in diatomic molecules, V = 1/2 k x2. It corresponds to the curvature of the potential in a 
particular  coordinate‐‐the  proportionality  constant  between  the  energy  and  the  displacement  in  that 
coordinate. In the case of polyatomics, there are many such force constants. 
 
The  cross  terms,  fij,  reflect  how  an  extension  in  one  coordinate,  i,  effects  the  potential  energy  in  another 

coordinate, j. As long as we have these cross terms, the displacement coordinates will not be an orthogonal set 
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of coordinates with which to describe the vibrational motions of the molecule, since these terms cause motion 
in one coordinate to affect the motion in another. 
 
Fortunately, it is possible to make a linear transformation from the mass weighted coordinates qi to a new set 

of coordinates, Qi, such that these cross terms no longer appear: 

 
 
In other words, one must find a coordinate system in which the  
 

   
3

1

N

i ij j
j

Q l q


    

 
This new set of coordinates, Qi, is called the normal coordinates. Note that there are 3N of these coordinates, 

because there were 3N of the mass weighted coordinates. 
 
I will not  go  into  the details of how  to  find  the  coefficients  lij  that  transform  the mass weighted Cartesian 

coordinates into the normal coordinates. It is not difficult however.  
 
When we write down the vibrational Hamiltonian for a polyatomic molecule, the normal coordinates make the 
problem tractable. Using this new set of coordinates, one can write the total energy as: 
 

   

23 3 6
2

1 1

1 1
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N N
i

i i
i i

dQ
E Q

dt




 

   
 

     

 
Note that there are 3N terms representing kinetic energy and 3N‐6 potential energy terms (or 3N‐5 for a linear 
molecule). This is because the coordinates that correspond to center of mass translation and overall rotation of 
the molecule only have kinetic energy terms and no potential energy (these coordinates do not  involve bond 
compression or extensions). 
 
The vibrational modes that correspond to the 3N‐6  (or 3N‐5) normal coordinates are the normal modes and 
have the properties described above. 
 
Let us assume we have separated off the translational motion of the center of mass as well as the rotational 
motion of  the molecule  and write down  the Hamiltonian  for  the  vibrational motion. Because we  are using 
normal coordinates, the Hamiltonian is separable into 3N‐6 (or 3N‐5 for a linear molecule) terms, one for each 
normal coordinate.  
Thus,      
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where   
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Remember that whenever the Hamiltonian is separable in this way, the total wave function can be written as a 
product of wave functions, one for each coordinate. 
 
    v1 1 v2 2 v3 3 v(3N‐6) 3 6( ) ( ) ( ) ( )vib NQ Q Q Q          

 
and the total energy is then just a sum of energies for each coordinate, 
 
    v1 v2 v3 v3 6NE E E E E         
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In addition, because solving the problem using normal coordinates eliminates the cross terms in the potential 
energy, the Hamiltonian for each coordinate is simply a harmonic oscillator Hamiltonian.  
 
We already know what the wave functions and energies look like: 
 

     
2

2
v v v( )

i iQ

i i i i i iQ N H Q e


 


  

Where 

   
2
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
 


 

 

Note  that  the definition of   is different  than  in our  treatment of diatomic molecules  in  that  it  is missing a 

factor of µ
1/2
. This is because the Qi are linear combinations of mass weighted coordinates. 

 
The energies are given by 
 

    v

1
v v 0,1,2,

2
i i i iE h     

 
  

Where 
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2
i i 


  

   

Note once again, that we are missing a factor of µ. It was absorbed into the definition of  when we used mass 
weighted coordinates. 
 
There are now 3N‐6 vibrational quantum numbers, vi, one for each coordinate. 
 
The total energy is just 
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E h
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and the total wave function is a product of 3N‐6 wave functions as given above. 
 
Remember the approximation that we made at the beginning of this treatment ‐‐ we ignored all the terms of 
3rd order and higher in the vibrational potential.  
 
As long as this approximation is valid, the vibrational motion of a polyatomic is no more complex than that of a 
diatomic ‐‐ there are simply more modes. 
 
There are several important things to notice about the solutions to this problem. One is the zero‐point energy. 

Recall that in the v=0 level, a diatomic molecule has zero‐point energy in the amount of 1/2 h. In a polyatomic, 
the equivalent quantity is 
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If a molecule has many vibrational modes, this can be a considerable amount of energy. 
 
The second point is that in the lowest vibrational level, corresponding to vi = 0 for all i, the wave function is a 
product of one‐dimensional v=0 functions which are just Gaussian functions, each of which is symmetric in its 
respective coordinate. 
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The overall  function will therefore be totally symmetric under all symmetry operations of the molecule. This 
point will be important when we consider selection rules. 
 
Before I go on to the next section, let me come back to where I started and make sure it is clear what normal 
coordinates and normal modes really are. 
 
Normal coordinates are linear combinations of mass weighted Cartesian coordinates chosen in such a way that 
the potential energy function has no quadratic cross terms (i.e., no qiqj terms). This has the effect of making 

the Hamiltonian separable into harmonic oscillator Hamiltonians for each coordinate. Each one commutes with 
the  total Hamiltonian,  and hence  the  vibrational quantum number  associated with each  coordinate  is  time 
independent. The vibrational motion corresponding to each coordinate is called a normal mode.  
 
When I draw the displacement vectors corresponding to normal modes, such as  
           

 
 
one can see that arrows can be described by a linear combination of x, y, and z coordinates for each atom. This 
linear combination is the normal mode. The coefficients in the linear expansion depend upon the masses of the 
atoms, the molecular geometry, and the force constants of the bonds. 
 
Even though we haven't gone through the diagonalization of the force constant matrix needed to find them, 
you should have an appreciation for what normal modes (and normal coordinates) are and why one uses them.  
 

4.2.2 Group Vibrations 

The normal modes of a molecule  involve movements of essentially all the atoms (except  in cases  in which by 
symmetry a central atom must remained fixed). The normal mode is a global molecular motion in which all the 
atoms move in phase and at the same frequency. 
 
However, certain types of normal modes tend to have most of the motion  localized  in  just a  few atoms of a 
molecule. This results from particular combinations of masses and force constants. For example, if at the end of 
a molecule  you have a  light atom  such as hydrogen, bonded  to a heavier atom,  such as oxygen,  there will 
usually be a normal mode of vibration  in which most of the motion consists of OH stretch. The normal mode 
has  all  the  atoms  move,  but  the  displacements  are  often  greatest  for  the  OH  stretch.  Moreover,  the 
characteristics of this motion are relatively insensitive to the atoms in the rest of the molecule. So, for example, 
the  OH  stretch  in  CH3OH  occurs  at  a  similar  frequency  as  in  CH3CH2OH.  One  can  assign  a  characteristic 
frequency to the OH group, and when measuring the vibrational spectrum of an unknown molecule, one can 
relatively quickly assign different vibrational bands to this type of motion. 
 
This phenomena occurs  for many types of bond vibrations, and by knowing  these characteristic  frequencies, 
one can analyze many of the features of an unknown molecule. In the table below, I show a list of characteristic 
group wavenumbers for bond stretching and bending vibrations. 
 

 
 
 
 
 
 
 
 
 
 

CO O
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Frequencies (in cm‐1) of typical bond‐stretching and angle bending group vibrations 
 
  Bond stretching           Bond stretching 

Group   cm‐1  Group   cm‐1 

 
3300 

 
3600 

 

3020 
 

3350 

 

2800 
 

1295 

 
2960 

 
1310 

 
2050 

 
1100 

 
1650 

 
650 

 
900 

 
560 

 
430 

 
500 

 
1700     

 
2100     

 
 
 
  Angle bending           Angle bending 

Group   cm‐1  Group   cm‐1 

 

700 

 

1450 

 

1100 

 

300 

C
H

H
H

 

1000     

 
 
 
There are other types of vibrational modes that show characteristic group frequencies. I have shown you just a 
few as an example. 
 
If you  take an  infrared  spectrum of a  fairly  complex molecule,  the appearance of  certain group  frequencies 
helps to identify which functional groups belong to the molecule. 
 
There are certain types of vibrational modes that do not consist of primarily one type of motion but  involve 
large components of several bond motions. While it is difficult to identify these from the spectrum, the specific 
pattern  of  coupled  vibrations  serves  as  fingerprint  of  a  specific molecule,  since  these  vary  strongly  from 
molecule to molecule.  
 
Infrared spectra for the purpose of qualitative analysis (determining what something is) can be obtained from 
gas, liquid, or solid samples. The local environment will shift some vibrational frequencies. For example, if there 
is hydrogen bonding between OH groups in a liquid, the OH stretch frequency will be shifted. 
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4.2.3 Group Theory and Molecular Vibrations 

Because  the  potential  energy  function  of  a molecule must  be  unchanged  with  respect  to  any  symmetry 
operation associated with the point group of that molecule, each normal mode of vibration will correspond to a 
particular symmetry species (i.e., irreducible representation) of that point group. Another way of saying this is 
that  the  displacement  vectors  corresponding  to  the  normal modes  form  a  basis  for  one  of  the  irreducible 
representations of the molecule. 
 
If one knows the displacement vectors corresponding to a normal mode, one can find the symmetry properties 
of  that mode by noting  the effect of  the  symmetry operations on  these vectors.  (This works well with non‐
degenerate vibrations but is more complex with degenerate vibrations.) 
 
One  other  thing we  can  do  is  to  find  a  reducible  representation  corresponding  to  all  the  vibrations  of  the 
molecule. The direct product decomposition of such a representation will give the symmetry species of all the 
vibrational modes.  
 
The following expressions give you the character of the reducible representation for a molecule which, upon 
decomposition, will give you one symmetry species for every vibrational mode of the molecule. This procedure 
will not  tell you which normal modes have which symmetry, but  it  tells you  for  the 3N‐6 modes, how many 
there will be of each symmetry species. 
 

(E) = 3N‐6 (or 3N‐5)      N is the total number of atoms 

(C()) = (Nc‐2)(1 + 2cos)     Nc is the number of atoms left invariant by the C rotation 

() = N        Nis the number of atoms number left invariant by reflection 

(i) = ‐ 3Ni        Ni is the number of atoms left invariant by the inversion 

(S()) = Ns(‐1+2cos)      Ns is the number of atoms left invariant by the S rotation 

 
 
Let's look at the example of H2O.  (note: xz‐plane is plane of molecule) 
 

 
 

C2v  E  C2  v(x,z)  v'(y,z)     

A1  1  1  1  1    z 
A2  1  1  ‐1  ‐1    Rz 
B1  1  ‐1  1  ‐1    x, Ry 
B2  1  ‐1  ‐1  1    y, Rx 
vib  3  1  3  1     

 
 

To get vib:   (E) = 3(3)‐6 = 3     

    (C2) = (1‐2)(1 ‐ 2cos(180)) = (‐1)(‐1) = 1 
    v) = 3  

    v ') = 1 

 
Remember that the direct product decomposition is given by

 
 

    red
i i

i

a       

where   

    *1
( ) ( )i red

i c
c

a N c c
h

    
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 

 

 

 

1

2

3

1

1
1 3 1 1 1 3 1 1 2

4

1
1 3 1 1 ( 1) 3 ( 1) 1 0

4

1
1 3 ( 1) 1 1 3 ( 1) 1 1

4

1
1 3 ( 1) 1 ( 1) 3 1 1 0

4

a

a

a

a

        

          

          

          

 

 
Thus,     1 12vib A B    

 
This means  that of  the 3 normal modes of water, 2 will have A1  symmetry and one will have B1  symmetry. 
Although  this procedure does not give you  the displacement vectors  representing  the normal modes,  if one 
knows the displacement vectors one can observe how they transform under the symmetry operations of the 
point group. You have already done this in one of the exercises.  
 

4.2.4 Selection Rules 

Selection rules for polyatomic molecules are determined in the same general way as for diatomics ‐‐ we must 
evaluate the transition moment  integral. I will concentrate on the vibrational part. The rotational part will be 
the same as for pure rotational spectroscopy and will differ for different types of rotors. We need to evaluate 
 

    *
2 1

ˆ
vib vib vib vibd       

 
In  the  case  of  diatomics,  there  was  only  one  vibrational  coordinate  ‐  the  internuclear  separation.  In 
polyatomics, we have many different modes. 
 
We can write the dipole moment function as a power series in the normal coordinates, Qi. For example, we can 

write the z‐component of the dipole moment as 
 

   
2

0
,0 0

1

2
z z

z z i i j
i i ji i j

Q QQ
Q Q Q

 
 

   
            

    

  
For  the moment we will  consider only  the  linear  terms,  since  the higher order  terms will be much  smaller. 
However, the higher order terms do lead to a slight breakdown of the selection rules.  
 
Remember that we can write the wave  function as a product of harmonic oscillator wave  functions  for each 
mode. For the initial state 1we will write this as 
 
    1 v1 v2 v3 v(3 6)vib N           

 
where  v1 v2, ,   etc. represent the different normal modes for the lower state. The final state we write as:  

 
    2 v1 v2 v3 v(3 6)vib N                     

 
We must  take  the matrix  element  of  the  dipole moment  using  these wave  functions  that  are  products  of 
harmonic oscillator wave functions.  
 
The dipole moment matrix element will be 
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* * * * *
2 1 v1 v2 v3 v(3 6) v1 v2 v3 v(3 6) 1 2 3 3 6

* * * *
0 v1 v2 v3 v(3 6) v1 v2 v3 v(3 6) 1 2 3 3 6

* * * *
v1 v2 v3 v(3 6)

ˆ ˆ( ) ( )

( ) ( )

( )

vib z vib N z N N

z N N N

N

d dQ dQ dQ dQ

dQ dQ dQ dQ

            

        

   

  

  



       

       

   

 



  

  

 v1 v2 v3 v(3 6) 1 2 3 3 6( )z
i N N

i i

d
Q dQ dQ dQ dQ

dQ


     

 
    

 
  

 

 
The first term gives the selection rules for pure rotation transitions, since it will be zero if any of the vibrational 
quantum numbers change. The second term is really a sum of terms, one for each normal mode.  
 

   

* * * *
v1 1 v1 1 v2 v3 v(3 6) v2 v3 v(3 6) 2 3 3 6

1

* * * *
v2 2 v2 2 v1 v3 v(3 6) v1 v3 v(3 6) 1 3 3 6

2

( )( )

( ) ( )

z
N N N

z
N N N

d
Q dQ dQ dQ dQ

dQ

d
Q dQ dQ dQ dQ

dQ


       


       

  

  

 
        

 

 
        

 



 

 

  

  



 

 
In  each  term,  the  second  factor  is  just  a  normalization  integral  for  all  the  modes  other  than  the  one 
corresponding to the change in dipole moment. We therefore find that only one of the terms in this sum can be 
non‐zero.  
 
You can see that the transition moment integral for change in the number of quanta in any particular normal 
mode will be given by an  integral that  is  identical to that for a one‐dimensional harmonic oscillator. Thus for 
each mode i, we have       

 

   

*
v v

z
i i i i

i

d
Q dQ

dQ


 

 
  

 


 
 

This will give rise to a v = ± 1 selection rule for each normal mode i. (One could use the same procedure with 
raising and  lowering operators to evaluate this  integral for each coordinate.) It also has the requirement that 
the dipole moment has  a  non‐zero  change  along  that particular  normal mode.  That  is, when  the molecule 
vibrates in that mode, the dipole moment must change. 
 
We must not forget that any one of the components of µ (x, y, or z) can give rise to a transition, so there are 
similar integrals for the x and y components. 
 
Thus,  to get a  transition  to occur  in a particular mode,  the molecule must  change  its dipole moment when 
vibrating  in that mode  (example of CO2). Moreover,  if the  integral  is not  identically zero by symmetry,  it will 

give rise to the selection rule vi = ±1 for each normal mode i. 

 
We can use group theoretical methods to evaluate whether or not the transition moment integral is identically 
zero on the basis of symmetry. In the one‐dimensional case integrals over function that are odd, i.e. non even, 
yield zero. Analogous arguments hold for multi‐dimensional integrals of the type:  
 

    *
2 1

ˆ
vib z vib vibd     

 
To determine whether this integral is zero one has to turn to group theory. One can show that for the integral 
to  be  non‐zero,  the  direct  sum  of  the  function  in  the  integral  must  contain  the  totally  symmetric 
representation: 
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         2 1integrand z i i
i

a               

 
Thus the coefficient ai  for the totally symmetric representation should be non‐zero  
 
Recall that the ground state is totally symmetric. If  1  is the ground state, then the direct product  

 

       2 z        

 
must contain the totally symmetric species for this to happen  
 

       2 z     

 
and similarly for the y‐ and x‐components. 
 
Remember that the species of the dipole moment components are the same as translation in that coordinate. 
 
The procedure for finding the selection rules for transitions from the ground state is as follows: 
 
(1)  Assign the molecule to a point group. 
(2)  Look up the translation species in the character table. 
(3)  The allowed transitions from the ground state will be to those states that have the symmetry of the 

translations in the x‐, y‐, and z‐direction. Simply find where these occur in the relevant character table. 
 
Consider, for example, for H2O which is C2v. 
 

C2v  E  C2  v(x,z)  v'(y,z)     

A1  1  1  1  1    z 
A2  1  1  ‐1  ‐1    Rz 
B1  1  ‐1  1  ‐1    x, Ry 
B2  1  ‐1  ‐1  1    y, Rx 
             

 
Transitions from the ground state (which is A1) are allowed to vibrations of the species A1 (polarized along the z 
axis), B1 (polarized along the x‐axis), and B2 (polarized along the y‐axis). The expression "polarized along the x, 
y, or z axes means that this is the direction of the change in dipole moment. 
 
If one is not starting from the ground state, then the selection rules are given more generally by the symmetry 
species of the integrand  
 

         2 1integrand z i i
i

a            

 
and similarly for the other components of µ. 
 
Note that overtone transitions are not  forbidden on the basis of symmetry. When symmetry says something 
will be non‐zero, it doesn't say how large it will be ‐‐ in fact it can be infinitesimally small. Overtone transitions 
can be allowed by symmetry but forbidden on the basis of selection rules. (Recall from the exercises that there 
are certain ways the selection rules can break down.) 
 
The symmetry species of a non‐degenerate normal mode with n quanta  is given by the direct product of the 
species with itself taken n times.  So, for 2 quanta in a B1 mode of water  
 

       2v 2 1 1 1 1B B B A         

 
This is not so simple in the case of an overtone of a degenerate normal mode such as one with E species,  
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       2v 2 E E E       

 
If you decompose  E E it may  include extra  symmetry  species, depending upon  the point group. There are 
ways to figure out which species are extra, but it is easier to look up the result of the decomposition in tables. 
 
To determine whether a  transition  from  the ground state  to an overtone  level  is allowed by symmetry, one 
simply finds the species of the transition moment integrand. 
A state with one or more quanta in more than one normal mode is called a combination level and transitions to 
a combination level are called combination bands. 
 
For H2O we have the following situation: 
 
  (010)   A1   bend         1585 cm‐1     

  (020)   A1   bend overtone      3151 cm‐1 
  (100)   A1   symmetric stretch      3651.7 cm‐1      
  (011)   B1  stretch bend combination   5332 cm‐1 
  (001)   B1   asymmetric stretch    3751.7 cm‐1  
 
 

 
 
 
To determine whether transitions to combination levels are allowed by symmetry, one must find the symmetry 
species of a combination  level. This  is simply done since the symmetry species of a  level with one quanta  in 
each of two normal modes  is simply the direct product of the symmetry species of the separate modes with 
one  quantum.  Combination  levels  of  different  degenerate  vibrations  do  not  pose  the  same  problems  as 
overtones of degenerate vibrations. 
 
The direct product of combination levels can then be used in finding the symmetry species of the integrand in 
the transition moment integral.  
 

4.3 Rovibrational Spectra of Polyatomic Molecules 
The  rovibrational  spectra of polyatomics,  that  is,  the  spectrum  taking  into account both  the vibrational and 
rotational selection rules, is somewhat particular for each type of rotor. Given what we have already done on 
diatomic rotation‐vibration spectra, you should be able to determine what such a spectrum would  look  like  if 
you know  the expression  for  the energy  levels and  the  relevant  rotational  selection  rules.  I will  just do one 
example – the case of a symmetric top.  
 

(0 0 0)

(0 0 1)  B1
(1 0 0)  A1

(0 1 0)  A1

(0 1 1)  B1

(1 0 1)  B1

(0 2 0)  A1
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4.3.1 Symmetric tops 

Recall the energy level expression for the rotational levels of a symmetric top: 
 

    2( , ) 1F J K BJ J A B K     

  
There are  two  rotational quantum numbers,  J and K, where  J  represents end over end  rotation and K  is  the 
projection of J onto the symmetry axis of the molecule.  
 
In  pure  rotational  spectroscopy,  the  selection  rules  only  allowed  �K=0  transitions  (i.e.,  transitions within  a 
single K stack). The rotational selection rules for rovibrational spectra can be different from the pure rotation 
spectrum  insofar as the direction of the change of dipole moment can be different  from the direction of the 
permanent dipole moment  (note  that  this was not possible  in  the case  for diatomics). This allows  rotational 
transitions that are not allowed in pure rotational spectra.  
 
In the case of a symmetric top the selection rules for a rotation‐vibration transition are: 

 If the change in dipole moment is parallel to the top axis (parallel band): 
 

K = 0, J = ±1       if   K = 0 

K = 0, J = 0, ±1    if   K  0 
 

 If the change in dipole moment is perpendicular to the top axis (perpendicular band): 
 

K = ±1, J = 0, ±1 
 
The different possibilities are shown in the schematic below.  
 
Each K stack will have its own J structure, and this is called a sub‐band. 
 
To determine whether a transition is parallel or perpendicular one can use group theory. In case the transition 
moment corresponds to a translation in the z‐direction (which is usually taken as the direction of the symmetry 
axis)  a parallel  transition  results.  In  case  the  transition moment  corresponds  to  a  translation  in  the  x or  y‐
direction a perpendicular transition will result. 
 

 
 

(Note that the arrows indicate only the change in K, not the change in J) 
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 Parallel bands 

In a parallel band, because K = 0, all the different K sub‐bands stack on top of one another,  just  like a pure 
rotational spectrum. The difference, however, is now one has a Q branch (J=0) in addition to a P and R branch.  
The sub‐band origin for a parallel band is given by: 
 

    2
0 0 ' " ' "subv A A B B K        

 
The figure above shows each sub‐band separately and then the superposition of the two sub‐bands. 
 

 
 
 
Perpendicular bands 
The sub‐band origins for a perpendicular band are given by 
 

        2
0 0 ' ' 2 ' ' ' " ' "subv A B A B K A A B B K            

 

Because of the   2 ' 'A B K term, each sub‐band is widely shifted from the previous one. This is shown in the 

schematic spectrum shown below. 
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As you can see the spectra for parallel and a perpendicular transition are markedly different. A brief inspection 
of  the  spectrum  therefore  will  immediately  tell  you  if  you  are  dealing  with  a  parallel  or  perpendicular 
transition.  
 
Notation for symmetric top rovibrational transitions 
Because there is the possibility of changing both the J and K quantum numbers during a rovibrational transition 
of a symmetric top, one must have a notation that carries the  information on what those changes are. Recall 

that  for  a  diatomic molecule  we  labeled  them  R(J)  or  P(J)  to  indicate  J=±  1  and  the  initial  J  state.  For 
symmetric tops, the notation is as follows: 
 

 " "K
KJ J   

 

where the value of K or J is indicated by the P Q R notation. 
 

Thus, if one writes  2 (3)
Q P  this means a transition that starts with K=2 and J=3 in the lower vibrational state and 

goes to K=2 and J=2 in the upper vibrational state. 
 

4.4 Raman Spectroscopy 

4.4.1 Introduction 

Now  I would  like to address the subject of Raman Spectroscopy. Although one cannot truly do  justice to this 
subject in the time we have, I will try to give you an appreciation for its important features. 
 
The Raman effect is a light scattering phenomenon. 
 

 
 
In the simplest sense, one can consider the Raman effect as a collision between a photon and a molecule. Light 

of incident frequency i impinges on a molecule and is scattered. The frequency of scattered light can either be 

at the same frequency as the incident light (elastic scattering), or it can be at some shifted frequency (inelastic 
scattering). 
 
The elastic scattering case,  in which the molecule  is returned to  is original state  is called Rayleigh Scattering. 
The inelastic case, in which the final state of the molecule changes is called Raman Scattering, after the Indian 
physicist Chandrasekhara Raman who first observed this effect in 1928 (and won the Nobel Prize in 1930). 
 

   

Lord Rayleigh  Chandrasekhara Raman 

hi

hs
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Raman scattering occurs through the  interaction of the  incident photon with a molecule's charge distribution 
and results in the transfer of energy from the radiation field to the internal (vibrational and rotational) motions 
of the molecule or vice versa. 
 
Raman Scattering is a two‐photon process. Conceptually, one can view this process as a transition from some 
initial state to some intermediate or “virtual state” followed by a transition back to one of the real states of the 
molecule.  
 

 

Rayleigh Scattering 
Stokes Antistokes 

Raman Scattering 

{v} 

v=0 

v=1 

 i  i  s  s  i  as 

 
 
The inelastic scattering event in which energy is transferred from the radiation field to the molecule resulting in 
a lower energy photon is called stokes scattering while the case in which energy is given up from the molecule 
to the field is called antistokes scattering. 
 

 
 
In  Raman  Scattering,  information  is  contained  in  the  difference  in  frequency  between  the  incident  and 
scattered photons, for this corresponds to vibrational and rotational energy level spacings of the molecule. This 

difference, , is called the Raman Shift. 
 
The  intense peak at the excitation frequency (i.e., Rayleigh scattering) emphasizes that Raman scattering  is a 
relatively inefficient process, and this means that it requires high intensity excitation sources. 
 
The greater  intensity of the stokes  lines compared to the antistokes  lines reflect,  in part, the different  initial 
population  of  these  states.  You  can  see  that  antistokes  scattering  requires molecules  in  the  vibrationally 
excited level which are typically much less populated at room temperature (see our earlier discussion of state 
populations). 
 
The picture above shows Raman scattering for a system with only one vibrational mode (i.e., a diatomic). In a 
polyatomic molecule, one can induce transitions to different normal modes, and so the Raman spectrum may 
have a number of peaks. 
 

Stokes Antistokes

i

Rayleigh

 =  i - s   =  vib

Raman Shift

 

s
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The principal advantages of Raman Scattering are twofold:  
 

 One can get information about vibrational state of a molecule without working in the infrared region 
of  the  spectrum  because  the  energy  level  information  is  contained  in  the  difference  in  frequency 
between  the  incident  and  scattered  photon.  Since  the  virtual  level  {v}  need  not  correspond  to  an 
actual molecular eigenstate, one can use incident photons of whatever frequency is easily available.  

 

 The second advantage is that it does not require a tunable excitation source, but rather the ability to 
analyze  the  frequency of  the  scattered  radiation which  is  easily  done with  a monochromator.  The 
intensity of light scattering is proportional to the 4th power of the frequency, so using higher frequency 
sources results  in a more  intense spectrum.  It  is this strong dependence on the frequency that gives 
the sky its blue color. Particles and molecules in the atmosphere preferentially scatter blue light. 

 
 

4.4.2 Quantum Mechanical Considerations 

The basic physics of the Raman effect arise from the interaction of electromagnetic radiation with a molecular 
charge distribution. When one applies an electric field to a distribution of charges such as a molecule, the field 
will polarize  the charges, giving  rise  to an  induced dipole moment.  If  the applied  field  is not  too strong,  the 
induced dipole moment will be proportional to the applied field: 
 
    ind μ αE  

 

is simply the proportionality constant between the electric field and the induced moment and  is called the 
polarizability.  
 
For highly  symmetrical molecules,  the  induced dipole moment  is  in  the  same direction as  the applied  field. 
However, for less symmetrical molecules,  indμ  and E  can point in different directions. So we must write: 

 

   

x xx x xy y xz z

y yx x yy y yz z

z zx x zy y zz z

E E E

E E E

E E E

   

   

   

  

  

  

  

 
The polarizability can be represented by a 3 x 3 symmetric matrix called the polarizability tensor: 
 

Stokes Antistokes

i
Each peak corresponds 
to a different normal mode s
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x xx xy xz x

y yx yy yz y

z zx zy zz z

E

E

E

   
   
   

    
         

        

 

 
 
In  the  quantum mechanical  treatment  of  vibrational  Raman  scattering,  the  intensity  (and  selection  rules) 
depend upon the square of integrals of the type 
 

    *
2 1

ˆ
vib ij vib dQ         i,j = x, y, z 

 
This  is  analogous  to  the  dependence  of  infrared  transitions  upon  the  square  of  the  dipole moment matrix 
element. 
 
I only show the vibrational part here, but similar to the case for infrared transitions, there  is a rotational part 
that arises when one goes  from  the  spaced  fixed  coordinates  to molecule  fixed  coordinates. As we will  see 
later, for a simple diatomic molecule without electronic angular momentum, the rotational selection rules are 

J = 0, ±2.  
 
For this integral to be non‐zero, the integrand must contain the totally symmetric representation. 
 
That is,  

         *
2 1ij        

 
must contain the totally symmetric representation. 
 
The six elements of the polarizability tensor,  xx , yy , zz , xy , xz , yz , have the same symmetry behavior as 

the  binary  products  of  coordinates  x2,  y2,  z2,  xy,  xz,  yz,.  The  symmetry  of  these  products  (or  properly 
symmetrized combinations of them) are listed on the right side of the character tables. 
 
If we consider transitions in which the initial state  is the ground vibrational state, then  1  has A1 symmetry. 

For the integrand to contain the A1 representation, then 
 

       *
2 ij       

 
One simply  looks  in  the character  table  for the different components of ����The allowed Raman transitions 
will be to vibrational states which have the same symmetry of these components of the polarizability tensor. 
There is an example of this in the exercises. 
 
 
There is one important to thing to notice. If you look at character tables for a group in which there is a center of 
inversion, you will find that the symmetry species that contain the translations in the x, y, and z directions will 
be mutually exclusive from those that have the components of the polarizability tensor. Thus, for a molecule 
with a center of symmetry, no fundamental mode will be both infrared and Raman active. 
 
The physical  basis of Raman  scattering  relies upon  a  change  in  the molecular  polarizability  (and  hence  the 
induced dipole moment) as  the molecule vibrates. This  is analogous  to normal  infrared  spectroscopy which 
relies on a change in the permanent dipole moment as the molecule vibrates.  
 
By  comparing  the expected polarizability at each  turning point of  the vibration, you  can get a good  idea of 
whether the derivative will be zero at the equilibrium position. 
 



4  VIBRATIONAL SPECTROSCOPY 

97 

 

 

Vibrational Mode 

Symmetric Triatomic 

Polarizability 
Derivitive 

Variation of 

Polarizability 
With Normal 
Coordinate 

 0 = 0 = 0 

Raman Activity Yes No No  
 
 
 
It  is  instructive  to make  the corresponding  figures  for  the change  in dipole moments which are required  for 
infrared transitions and compare them to the requirements for Raman transitions: 
 
 

 

Vibrational Mode 

Symmetric Triatomic 

Variation of 
Dipole Moment 

With Normal 
Coordinate 

Dipole Derivitive 

Infrared Activity No Yes Yes 

= 0  0  0 

 
 
You can see that there  is a complementarity here. The transitions that are Raman active are  infrared  inactive 
and vice versa. As we will see in a moment, this is true for all molecules that have a center of inversion. 
 
There  is  one  extremely  important  feature  of  Raman  scattering  that  I  haven't  yet  mentioned.  Because  it 
depends  upon  the  change  of  polarizability  and  not  on  change  in  dipole moment,  homonuclear  diatomic 
molecules have a Raman spectrum. Some of the most accurate information on homonuclear diatomics comes 
from Raman spectra. Let us think about how � might change in a symmetric linear triatomic. 
 

4.4.3 Vibrational Selection Rules 

The  considerations  above  give us  the  symmetry  restrictions but not  the  selection  rules.  The  selection  rules 
come from actually evaluating the matrix elements of the components of the polarizability tensor 
       

    *
2 1

ˆ
vib ij vib dQ         

 
rather than simply noting when it is zero on the basis of symmetry. 
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To evaluate this  integral, we can expand one component of the polarizability as a power series  in the normal 
coordinates Qk. 
     

 
2

0
,0 0

1

2
xx xx

xx xx k k l
k k lk k l

Q Q Q
Q Q Q

 
 

   
          

    

 
If we neglect all the terms higher than the linear term we have 
 

     
0

0

xx
xx xx k

k k

Q
Q


 

 
    

  

 
 
If we want the selection rule for only the change  in the mode corresponding to Qk we only need to consider 
one term of the sum. 
 
The matrix element of this component of the polarizability will then be 
 

     * * *
2 1 2 1 2 10

0

ˆ xx
vib xx vib k xx vib vib k vib k vib k

k

dQ dQ Q dQ
Q


       

 
    

    

 
The first term on the right is only non‐zero in the case that the vibrational state doesn't change. This term gives 
the requirements for Rayleigh scattering (non‐zero polarizability).  
 
The second term gives rise to Raman selection rules. The integral is the same as for infrared transitions and will 

lead to the same selection rule: v = ±1.  
 
The  breakdown  of  this  selection  rule  occurs  in  a  similar  fashion  to  that  for  infrared  transitions,  since  the 
relevant  integral  is  the  same. Anharmonicity  in  the potential will  cause  the wave  functions  to deviate  from 
harmonic oscillator functions, and this will allow greater changes in the vibrational quantum number. Also non‐
linear terms in the polarizability will cause the selection rules to break down. 
 
The  other  requirement  for  having  a  Raman  spectrum,  as we  have  stated  before,  is  that  the  polarizability 
derivative (the change as the molecule vibrates in a particular mode), must be non‐zero. 
 

4.4.4 Vibration‐rotation Raman Spectra of Diatomics 

One  of  the  most  important  features  of  Raman  spectroscopy  is  its  ability  to  provide  information  on 
homonuclear diatomic molecules, since these have no  infrared spectrum due to the  lack of change  in dipole 
moment  and  no microwave  spectrum  due  to  the  lack  of  permanent  dipole moment.  Thus,  the  rotational 
structure of the Raman spectrum provides information not available by other methods.  
 
The details of a Raman spectrum for a diatomic molecule is simply determined by the vibrational and rotational 
selection rules. 
 
Recall that the vibrational selection rule,  in the harmonic oscillator approximation,  is the same as for infrared 

spectroscopy: v=±1. 
 
The  rotational  selection  rules  are  different  however.  Because  Raman  scattering  is  a  two‐photon  process, 

conservation of total angular momentum dictates that the selection rule must be J = 0, ±2. 
 

Thus the spectrum will have a O, Q, and S branch corresponding to J = ‐2, 0, +2 respectively. 
 
Knowing  the energy  level spacings  for  the  rovibrational  levels of a diatomic molecule, you should be able to 
determine what the spectrum will look like, both in the case in which vibration‐rotation interaction is neglected 
(i.e., B B  ) and in the case in which the change in B is explicitly taken into account.    


