

Spectroscopy

Exercises Chapter 3B

1. For the $^{12}\text{C}^{32}\text{S}$ molecule the following millimeter wave pure rotational transitions have been observed (in MHz):

Transition	v=0	v=1
J=1←0	48'990.978	48'635.977
J=2←1	97'980.950	97'270.980
J=3←2	146'969.033	145'904.167
J=4←3	195'954.226	194'534.321

- a. For each vibrational level, determine the corresponding rotational constant, B .
- b. From your answers in (a), determine the vibrational-rotation interaction constant, α and determine B_e .
- c. From B_e calculate r_e .

2. The S_2O molecule is a bent triatomic molecule. The S-S bond is 1.884 Å long, the S-O bond is 1.465 Å long, and the SSO angle is 118.0°.

 - a. Locate the center of mass and set up the moment of inertia tensor. Pick the z-axis out of the plane and the x-axis parallel to the S-S bond.
 - b. Diagonalize the moment of inertia tensor to find I_A , I_B , and I_C .
 - c. Determine the value of the asymmetry parameter κ .