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Spectroscopy 

 
Corrections Chapter 3B 

 

 

 

1. For the 12C32S molecule the following millimeter wave pure rotational transitions have been observed (in 

MHz): 

 

Transition v=0 v=1 

J=10  48'990.978 48'635.977 

J=21  97'980.950 97'270.980 

J=3  146'969.033 145'904.167 

J=4  195'954.226 194'534.321 

   

 

a.   For each vibrational level, determine the corresponding rotational constant, B. 

b.  From your answers in (a), determine the vibrational-rotation interaction constant,  and determine Be. 

c.   From Be calculate re. 

a. As a first approximation, we can neglect the centrifugal distortion constants. The frequencies of purely 

rotational transitions for a linear molecule are therefore given by the expression:  v, 1 2 1J J B J    v . 

J+1  J B0 [MHz] B1 [MHz] 

1  0 24495.49 24317.99 

2  1 24495.24 24317.75 

3  2 24494.84 24317.36 

4  3 24494.28 24316.79 

 

By representing the experimental frequencies as a function of J+1 and by performing a linear regression, we 

can determine the rotational constant, B= slope/2 

 

The following results are obtained for the first two vibrational levels of 12 32C S . 

 

 

0v   : 

 

B0=24494.62 MHz 
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1v   : 

 

 

B1=24317.13 MHz 

 

 

 

If we want to take into account the centrifugal distortion, that is to say the fact that the bond lengthens when 

the molecule rotates, then B decreases when J increases (which we observe on the values of the transitions). 

 

By using the equation :  

 

   3

1 v2 1 4 1J J B J D J      v ,  

 

and by adjusting the experimental results, we obtain the following values, 

 

v Bv [MHz] Dv [MHz] 

0 24495.56 0.04 

1 24318.07 0.04 

 

 

b.    

If we neglect the centrifugal distortion, we can assimilate the vibrational constants calculated in (a) to 

 1
2v eB B v   . The values of 0B  and 1B  allow us to determine the vibration-rotation interaction constant 

  and the rotational constant of the rigid rotator eB . 

      31
0 1 2 2e eB B B B           

   24 494 24316 178 MHz     

  

      31
0 1 2 23 3 2e e eB B B B B        

   0 13
24.583 GHz

2e

B B
B


   

 

c.  Given that 
2 2 28 8e

e

h h
B

I r  
   (in frequency units), the value of er  from that of eB  calculated in point (b). 
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where   

   
   

12 32

12 32

12.000 31.972
8.725 uma

12.000 31.972

m C m S

m C m S
 
  


 

 

1.53 Åer    

 

 

2.   The S2O molecule is a bent triatomic molecule. The S-S bond is 1.884 Å long, the S-O bond is 1.465 Å long, 

and the SSO angle is 118.0°. 

  

a.   Locate the center of mass and set up the moment of inertia tensor.  Pick the z-axis out of the plane and the x-

axis parallel to the S-S bond. 

b.   Diagonalize the moment of inertia tensor to find IA, IB, and IC. 

c.   Determine the value of the asymmetry parameter 
 

 

a. There are two ways to locate the center of mass of the molecule: 

 Either we define a system of axes O x y z     temporarily  (according to the data of the problem) and we 

calculate the coordinates 
i i

i
CM

i
i

m r
r

m


 







of the centre of mass of the system. We then translate O x y z     

to find the system of axes centred at the centre of mass Oxyz in which we will calculate the tensor of 

inertia. 

 

 

 

 

The procedure is as follows: for example, we place the central atom S on the origin O  and the other S 

on the axis O x  . Thanks to Sr , Or  and  , we determine the coordinates of the three atoms (let 0r


 for 

O, 1r


for the central S and 2r


 for the other S): 

y 

x 

S 

S 

O 


rS

rO

x 

y 

S 

S 

O 

x
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0 1 2

0.688 0 1.884

1.294 Å 0 Å 0 Å

0 0 0

r r r

     
                        
     
     

  
 

 

Using    16 15.9949 umaOm m O   and    32 31.9721 umaSm m S   in the formula given above, 

we calculate: 

 0 1 2

0.616

0.259 Å
2

0

O S S
CM

O S

m r m r m r
r

m m

              
 

  


 

 

  The coordinates of the atoms in the Oxyz system translated to the center of mass are simply obtained by 

subtracting this vector from the coordinates in O x y z    : 

i i CMr r r  
  

 

 The other method is to  directly work in the Oxyz system whose origin is at the centre of mass. In  this 

case, we set the condition of the centre of mass as : 0i CM i i
i i

m r m r
     
 
 

 
. We then try to identify the 

9 unknown coordinates (3 for each atom). For this, we use the fact that the molecule is in the Oxy plane 

with the SS bond parallel to Ox, as well as Sr , Or  and  : 

 

0 1 2

0 12 1

2 1

10 1

0 1

0
cos

2

sin
cos

2
sin

i i
i

S S O O
m rS

S O

O O
O

S O

O

z z z
m r m r

xx x r
m m

y y
m r

yx x r
m m

y y r









  
        

       



 

 

0 1 2

1.304 0.616 1.268

1.035 Å 0.259 Å 0.259 Å

0 0 0

r r r

      
                         
     
     

  
 

 

  These coordinates allow us to calculate the tensor of the moment of inertia with respect to the Oxyz system 

according to its definition: 
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 

 

 

2 2

2 2 2

2 2

21.41 26.97 0

26.97 90.73 0 uma Å

0 0 112.13

i i i i i i i i i
i i i

i i i i i i i i i
i i i

i i i i i i i i i
i i i

m y z m x y m x z

I m x y m x z m y z

m x z m y z m x y

    
  
                 

   
 

  

  

  

 

b. To diagonalize this matrix, it is necessary for us to calculate its eigenvalues which will happen to be 

the diagonal elements of the tensor in the system of principal axes. We solve this with its 

characteristic equation: 

0I    

      2
21.41 90.73 26.97 112.13 0          

  2 112.13 1214.67 112.13 0       

2

2

2

12.15 uma Å

99.99 uma Å

112.13 uma Å

A

B

C







        


   

 

2

12.15

99.99 uma Å

112.13

A

B

C

I

I I

I

   
           
   
   

 

 

c. The asymmetric parameter is defined from rotational constants A, B and C:  

2B A C

A C
  



.  

Given the definition of A, B and C, we could get directly   in terms of AI , BI  and CI , by using:  

2 1 1

1 1

B A C

A C

I I I

I I


 




 .  

But let’s calculate A, B and C to get an idea of their values: 

 
2

-1
2

cm   
2 8A A

h
A J

I cI
    


 

And the same for B and C 
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-1

-1

-1

1.386 cm

0.168 cm

0.150 cm

A

B

C

        


   

 

 We calculated 0.97   . This result being relatively close to, we deduce that the molecule is not very 

different from a symmetrical elongated top (prolate). 

d. For question b) for those who are curious of what the main axis looks like 

By determining the normalised eigenvector Av


, Bv


 and Cv


 associated with the eigenvalues A , B  and C , 

we will obtain the rotation matrix R which transforms the system of axes Oxyz to the principal axis system 

Oabc for which the moment of inertia tensor is diagonal. 

For A :   

0.946
9.259 26.973 0

0.325 Å
0

0

A A
A A

A A A A
A

A A

x x
x y

I y y v
z

z z


     

                         
     


 

For B :   

0.325
26.973 9.259 0

0.946 Å
0

0

B B
B B

B B B B
B

B B

x x
x y

I y y v
z

z z


     

                        
     


 

 

For C :   

0
90.727 26.973 0

0 Å
26.973 21.407 0

1

C C
C C

C C C C
C C

C C

x x
x y

I y y v
x y

z z


     

                          
     


 

 

 These vectors are the basic vectors of the new coordinate system (Oabc) expressed in the old coordinate system 

(Oxyz). 

The rotation matrix R is therefore: 

0.946 0.325 0 cos sin 0

0.325 0.946 0 sin cos 0

0 0 1 0 0 1

R

 
 

   
        
   
     

 

where 18.95     is the angle whose old axis system had to be rotated around the Oz axis to obtain the main 

axis system (Oz axis remains fixed, i.e. Oc=Oz).
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The coordinate of the atoms in this new axes of system are given by: 

1
i ir R r 
 

 

We obtain: 

0 1 2

1.569 0.498 1.283

0.555 Å 0.445 Å 0.167 Å

0 0 0

r r r

      
                         
     
     

  
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