
 

51 

 

3 Rotational Spectroscopy 

3.1 Classifications of Rotors 
I will begin this subject by looking at the rotational motion of molecules in general. I will first classify molecules 
into different types according to the nature of their rotational motion. We will then look at a few of these types 
in somewhat more detail. 
 
Last semester,  I discussed  the quantum mechanics of  the Rigid Rotor. During  that discussion,  I made a brief 
digression comparing linear and rotational motion. 
 
    Linear Motion          Rotational Motion 

      x         
      m        I 

      v= dx/dt       =d/dt 
      p = mv        L = I 
 

The expression for angular momentum, L = I, in rotational motion is analogous to p=mv in linear motion. 
 

For the rotational motion of a single particle about a point, both  and L are vectors which point out of the 
plane of rotation in the same direction. 

 
This will be true for a diatomic molecule if one neglects any angular momentum of the electrons. 
 

For an extended object however (which includes non‐linear polyatomic molecules),  and L need not point in 
the same direction. 

 
 
You can see in this case, rather than being a single number, I must be represented by a 3 × 3 matrix 
 
    L Iω   
 
written explicitly as 
 

   
x xx xy xz x

y xy yy yz y

z xz yz zz z

L I I I

L I I I

L I I I





    
         

        

 

 
I is called the moment of inertia tensor. 



L

p

m
r



L
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One can derive the form of the moment of inertia tensor for a collection of nuclei rotating in space using the 
definition of angular momentum. 
 

Consider a collection of nuclei of mass m located at positions r relative to the origin in a Cartesian coordinate 

system. The collection of nuclei is rotating with angular velocity . 
 
The angular momentum is given by 
 

     m    
 

     L r p r ω r  

 
Where we used that: 
 

     m m      p v ω r  

 
To simplify this, we need to use the cross product identity 
 

              P Q R Q P R R P Q  
 
This gives 

   

    

    2 2 2
x y z

m

m x y z x y z

    


       


  

   

     





L ω r r r r ω

ω r

 

        
Writing out the vector components gives 
 

   

     

     

2 2 2 2 2 2 2 2 2
1 2 3

1 2 3

ˆ ˆ ˆe e e

ˆ ˆ ˆe e e

x y z

x y z x y z x y z

L m x y z x y z x y z

x x y z y x y z z x y z

         


           

  

        

        

         


 

 
This can be written in matrix form as:  
 

   

 
 

 

2 2

2 2

2 2

x x

y y

z z

m y z m x y m x z
L

L m y x m x z m y z

L
m z x m z y m x y

        
  

        
  

        
  





    
    
                  

   
 

  

  

  

 

 
 
The diagonal elements of this matrix are referred to as the moments of inertia 
 

     2 2 2
xx xI m y z m r   

 
     

 

     2 2 2
yy yI m x z m r   

 
     

 

     2 2 2
zz zI m x y m r   

 
     
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Note that the moment of inertia with respect to an axis involves the squares of the perpendicular distances of 

the masses from that axis (e.g.,  2
xr   from the x‐axis). 

 
The off‐diagonal terms in this matrix are called the products of inertia: 
 

    xyI m x y  


   

 

    xzI m x z  


   

 

    yzI m y z  


   

 
The matrix is called the moment of inertia tensor. 
 
Because the moment of inertia tensor is a real symmetric matrix, one can prove that it is always possible to find 
an orthogonal transformation matrix X that transforms the moment of inertia tensor I into diagonal form. 
       

    1 Ι X IX  

 
The matrix X represents a rotation of the coordinate system, which can be written as 
 

    1 r X r  or   r Xr  
 
(One can show that the columns of the matrix X are made up of the normalized eigenvectors of I ). 
 
 
The new coordinate system is called the principle axis system and the I' matrix is a diagonal matrix given by 
 

   

0 0

0 0

0 0

x x

y y

z z

I

I

I

 

 

 

 
    
 
 

I

 
 
Usually the use of the principle axis system is assumed, so the primes are dropped and 
 

    x x xI I     y y yI I     z z zI I    

 
In the principle axis system one can always write 
 

   

0 0

0 0

0 0

x x x

y y y

z z z

L I

L I

L I





    
        
    
    

   

 
Which axis is labeled x, y, and z is chosen by a set of geometrical conventions. For example, the z‐axis is always 
chosen  to be  the highest order axis of  rotational  symmetry, and  the  x‐axis  is out of  the plane  for  a planar 
molecule. 
 
With  the  moment  of  inertia  tensor  in  diagonal  form  like  this,  the  different  components  of  the  angular 
momentum can simply be written 
 

    x x xL I    y y yL I    z z zL I     

 
The total angular momentum vector can be constructed from these three projections on the principle axes. 
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The rotational kinetic energy can be written as: 
 

   

2 2 2

22 2

1

2

2 2 2

rot x x y y z z

yx z

x y z

E I I I

LL L

I I I

      

  

   

 
An alternative labeling scheme for the principal axes is based upon the magnitudes of the moments of inertia. 
In this case, the axes are labeled A, B, and C according to the requirement that 
 

    A B CI I I     

 
It is not obvious in this case which one is A, B, and C from simply looking at the molecule. One must calculate 
the moments of inertia. It is important to realize that this is simply another way of labeling the axes. They are 
the same set of three axes, however. 
 

     
 
 
All molecules can be classified on the basis of their three moments of inertia. There are 5 different cases: 
 

1. Linear Molecules, IA =0,  IB= IC    e.g., HCN  
 
 

     
 
 
 

2. Spherical Tops, IA  = IB  = IC    e.g., SF6 and CH4 
 
 

     

H H

O

z(b)

y(a)

x(c)

z(a)

y(b)

x(c)

C NH

F

S

F

FF

F F

y(b)

x(a)

z(c)
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3. Prolate Symmetric Tops, IA < IB = IC   e.g., CH3Cl 
 

     
 
 

4. Oblate Symmetric Tops, IA = IB < IC     e.g., BF3 
 

     
 
 
 

5. Asymmetric Tops,  IA < IB < IC       e.g., H2O 

 
 

     
 
 
Group theory can be used to classify the rotational properties of molecules. There are three important rules to 
remember: 

 Molecules in the groups Oh, Td, and Ih are spherical tops. 

 Molecules in C∞v and D∞h are linear. 

 All symmetric top molecules must have a Cn axis with n>2. 
 
You can see that H2O only has a C2 axis and is an asymmetric top. 
 

3.2 Linear Molecules 
I have already  laid much of the foundation for discussing rotational spectroscopy of diatomic molecules, and 
linear molecule rotation is essentially the same as that of diatomic rotation. 
 

3.2.1 Level Spacing 

In general, we write the classical expression for the kinetic energy as 
 

    2 2 21 1 1

2 2 2
K A A B B C CE I I I      

H

H C

H

Cl z(a)

x(c)

y(b)

F

F

BB

F

z(c)

x(a)

y(b)

H H

O

z(b)

y(a)

x(c)
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Recall that in a diatomic molecule, IA = 0 and IB = IC = I. We can therefore write 
 

   

2 2

22 2

1 1

2 2

2 2 2

K B B C C

CB

E I I

JJ J

I I I

  

  

 

         
The quantum mechanical Hamiltonian for a linear rigid rotor is just 
 

   
2ˆ

ˆ
2

J
H

I
  

 
We have already solved this problem: 
 

   

     

       

2

2

ˆ
ˆ , , ,

2

1 , 1 ,
2

m m m
J J J

m m
J J

J
HY Y EY

I

J J Y BJ J Y
I

     

   

 

   


   

 
where  
 

   
2 2

22 8

h
B

I I
 


  (in Joules) 

 
Often spectroscopists use F(J) to express the rotational energy levels as a function of the quantum number J in 

units of MHz or in cm‐1.  
             

     ( ) 1F J BJ J    

 
Unfortunately, the same symbol B is used whether expressed in Joules, MHz, or cm‐1. 
 
Remember that for a linear molecule, IA = 0 and IB = IC= I. The moment of inertia, I, will simply be  
     

2I m r


  

 
where r is the distance of the atom from the center of mass. 
 
 

3.2.2 Selection Rules 

In our earlier discussion of selection rules for a diatomic, we started with the transition moment integral 
 

     2*
2 1
ˆ
zIntensity d       (or the equivalent with µx or µy) 

 
After putting in the wave functions as products of vibrational, rotational and electronic parts, we get that the 
integral can be written as: 
   

    2 2 2 1 1 1 ,
ˆ( ; ) ( ) ( , ) ( , ) ( ; ) ( ) ( , )

iel i vib rot z i el i vib rot q Rq R R q R q R R d d d                   
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Where qi are  the electron  coordinates and R  the distance between  the nuclei. The dipole moment which  is 

given  in  the  laboratory  frame of  reference  as  ( , )z iq R   and depends on  both  the  electron  and  the nuclear 

positions can be written in the molecular frame of reference as 
 
      ( , )cosiq R   

 
Rearranging terms and grouping them together gives: 
 

    2 2 1 1 2 1 ,
ˆ( ; ) ( ) ( , ) ( ; ) ( ) ( , )cos ( , )

iel i vib i el i vib q R rot rotq R R q R q R R d d d                    

 
If we now realize that  for pure rotational transitions we do not change electronic or vibrational  level we can 
rewrite this as: 
 

    1 1 1 1 2 1 ,
ˆ( ; ) ( ) ( , ) ( ; ) ( ) ( , )cos ( , )

iel i vib i el i vib q R rot rotq R R q R q R R d d d                    

 
This double  integral gives  the mean  value of  the dipole moment, averaged over  the electronic and nuclear 
coordinates. This is also known as the permanent dipole moment, µe, of the molecule. We can thus write: 

 

    2 1 ,( , )cos ( , )e rot rot d           

 
 
You can see that one requirement for pure rotational transitions is that the molecule has a permanent dipole 
moment, µe.  

 
Thus, molecules  such  as O=C=O,  Cl  –  Cl, H‐C�C‐H which  have  no  dipole moment,  have  no  pure  rotational 
spectra. 
 
The other requirement is that the integral is non‐zero. We can use rigid rotor wave functions for evaluating this 
integral. 
 
Recall that: 

    ( , ) (cos )
mm im

RR J Jm JY N P e       

 
where 

   
   

 

1

2!2 1

4 !
Jm

J mJ
N

J m

 
  

  
  

 

Remember that the  (cos )
m

JP   are the associated Legendre polynomials. 

 
Putting this into the integral yields 
 

   
2 1 , ,( , )cos ( , ) (cos ) cos (cos )

(cos )cos (cos )

m mim im
rot rot J m J J m J

m m im im
J m J m J J

d N P e N P e d

N N P P d e e d

 
   

 
 

          

    

   
     

   
     





 

 
 

 
Note: It is spectroscopic convention to label the upper state quantum number by a single prime and the lower 
state quantum number by a double prime. When indicating a transition between two states, the convention is 

to write  the upper state  first and  the  lower state second. An arrow  is used  to  indicate absorption,  J'J'' or 

emission, J'J''. When no prime is indicated, the quantum number refers to the lower state. 
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The integral over  will be zero unless m'' =m' in which case it will be 2. This gives rise to the m selection rule 

m = 0. This m selection rule results from our choice of radiation along the z‐direction. If we chose the x or y 

component, we could get m = ±1. This arises from the relation between the molecule fixed dipole moment 
and the projection on the different axes. We know that  
 

   

cos

sin sin

sin cos

z

y

x







  

   

   







 

 

If you used one of the  latter two components, you would get a sinor cos  in the   integral, and this would 
give m = ±1. 
 

To help evaluate the integral over which gives the J selection rules, one can make use of a recursion formula 
that relates different Legendre polynomials to one another. 
 

    1 1

1
cos (cos ) (cos ) (cos )

2 1 2 1

m m m

J J J

J m J m
P P P

J J
    

  
 

 
   

 

Using this recursion relation in the  part of the integral gives 
 

1 1

1
(cos )cos (cos ) (cos ) (cos ) (cos ) (cos )

2 1 2 1

m m m m m m

J J J J J J

J m J m
P P d P P d P P d

J J
                

      

         
    

    
    

 
Remember that the eigenfunctions of a Hermitian operator form a complete orthonormal set. This means that 
eigenfunctions corresponding to different eigenvalues are orthogonal. 
 
Thus, the first integral on the right will be zero unless J' = J'' ‐ 1 or J'‐J'' = ‐1. This gives rise to the selection rule 

that J = ‐1. 
 
Once can see that the second integral will be equal to zero unless J' = J''+1. This gives rise to the selection rule 

that J = 1  
 

Together we have:  J = ± 1  m = 0, ±1 
 
So in addition to the requirement of a permanent dipole moment for pure rotational transitions, the rotational 

selection rules require that J = ± 1 and m = 0, ±1. Because  in the absence of a magnetic field the states of 

different m are degenerate, the m = 0, ±1 selection rule has no effect on the energies of the transitions in the 
spectrum. We will therefore ignore it for the moment. Note that this is true both for pure rotational transitions 
and vibration‐rotation transitions, since the same integral is involved. 
 

The selection rule J = ± 1 results in the following transition frequencies: 
 

        

 

1 ( ) ( ) ( 1) ( )

1 2 1

2 1

J J F J F J F J F J

B J J BJ J

B J

        

    

 

   

 

Thus, the first transition, J = 10, occurs at 2B. The others are spaced at multiples of 2B. 
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Example: Rotational Spectrum of CO. 
 

 
 
 
Note the isotope peaks; different isotopes have different rotational constants. From analysis of this spectrum, 
one could get the rotational constant B, which gives the moment of inertia, I, which in turn will provide re. This 
is the most accurate way to determine bond lengths. 
 
The expression that we derived  for the energies of the rotational  levels was  in the rigid rotor approximation 
where we have neglected vibration rotation interaction and centrifugal distortion.  
Recall our general expression for the energy levels of a diatomic: 
 

         
2

22v 1 1 1
(v, ) v 1 v v 1 1

2 2 2
J

e e e e

E
F J B J J x J J DJ J

hc
                       

     
 

 
 
It is important to note that the number of terms here is simply determined by how many terms we carry in the 
perturbation theory treatment to derive it. One can take this out to higher order terms if one likes.  
 
One can rewrite this expression in the following way 
 

       
2

22
v

1 1
(v, ) v v 1 1

2 2
e e eF J x B J J DJ J              
   

 

where  
 

    v

1
v

2
eB B      

 
 

 
One  can  have pure  rotational  transitions  in  excited  vibrational  states,  and  this  expression  accounts  for  the 
change  in  the  B  rotational  constant with  increasing  vibrational  quantum  number  as well  as  the  effects  of 
centrifugal distortion. (Higher order treatments include the vibrational dependence of D as well).  

2B

6B

12B

0

4B

2B

6B

. . .
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As we discussed earlier in the course, the fact that the rotational constant is dependent on the vibrational level 
reflects the fact that there is anharmonicity in the potential that makes the average bond length increase with 
increasing  vibrational  quantum  number.  This  makes  the  effective  rotational  constant  depend  upon  the 
vibrational quantum number, v.  

 
 
 
 
The frequency for a pure rotational transition comes from taking the difference in energy levels: 
 

              

   

1

2 2 22
v v

3

v

( ) ( ) ( 1) ( )

1 2 1 2 1 1

2 1 4 1

J J F J F J F J F J

B J J D J J B J J DJ J

B J D J

        

         

   

 

 
You can see that the transition frequencies are slightly lowered by centrifugal distortion. 
 
Using  this more  accurate  expression,  one  can  now  obtain  not  only  the  rotational  constant  B,  but  also  the 
vibration rotation interaction constant � and the centrifugal distortion constant D. 
 

3.3 Spherical Tops 
In general, one would expect spherical top molecules not to show any pure rotational transitions because they 
do not have any permanent dipole moment (which is a requirement for having a pure rotational spectrum). 
 
 You  can  see  this  by  simply  looking  at  the  character  tables  for  the  point  groups  Td,  and  Oh.  There  is  no 

translational coordinate (i.e., x, y, or z) which belongs to the totally symmetric representation. Remember, that 
the symmetry of different components of the dipole moment are the same as a translation  in that direction. 
Thus we would not expect there to be any dipole moment and hence no rotational spectrum. 
 
However,  for  spherical  top molecules which  have  only  C3  axes  of  symmetry,  there  can  be  a  slight  dipole 
moment induced by centrifugal distortion. 
 
Consider the molecule CH4 for example. Rotation about any of the 4 C3 axes will push out the off axis hydrogens 
slightly but does not effect  the hydrogen  that  is on  the axis. This  results  in a very small dipole moment and 
hence a weak rotational spectrum. I will not take the time to discuss this in detail. 
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3.4 Symmetric Tops 
Now let’s turn to the more complex problem of symmetric top rotational motion. Although more complex than 
that  of  linear  molecules,  among  polyatomics  the  rotational motion  of  symmetric  tops  is  the  simplest  to 
understand. My discussion will focus on prolate symmetric tops, although I will mention oblate tops at several 
points. 
 
Recall that in a prolate symmetric top, IA < IB = IC. The two identical moments are usually called IB. We call the 

axis of highest symmetry in a symmetric top, the figure axis. 
 
In the quantum mechanical picture of symmetric top rotation, one has to consider which operators commute 
with each other,  since  this determines which quantities  can be  simultaneously well defined. Moreover,  the 
quantities  whose  operators  commute  with  the  Hamiltonian  will  be  independent  of  time  and  will  be 
represented by “good” quantum numbers. 
 

Recall that for rigid diatomic molecules, the operators  2ˆ ˆ ˆ, , ZH J J  all commute with each other. Remember that JZ 

represents  the  projection  of  J  on  the  spaced  fixed  z‐axis. We  therefore  had  two  good  rotational  quantum 
numbers J, and m, although the energy depends only on J. 
 
For a symmetric top molecule we will find that there is another operator that commutes with these three, i.e. 
the operator representing the projection of J on the figure axis. This operator is given the symbol Jz (lower case 
z) or Ja. 
 
Thus,  there will  be  an  additional  good  quantum  number, which  is  denoted  K,  that  represents  a  constant 
projection of the total angular momentum on the figure axis of the molecule. 
 
In the quantum mechanical problem of the symmetric top, the total angular momentum of the molecule must 
simultaneously maintain a constant projection on  the spaced  fixed z‐axis as well as on  the  figure axis of  the 
molecule. 
 
We therefore have the following picture: 
 
 

 
 
 
We get two cones, constrained by the need to have constant projections of J. The relative sizes of these cones 
are simply related to the projection quantum numbers K and m. We should realize that the J vector is not fixed 
in space, it simply has a fixed length and a fixed projection on the space fixed z‐axis. 
 
In a symmetric top, we will see that the energy now depends upon two of the three good quantum numbers, 
i.e. J, which corresponds to the total angular momentum, and K, which corresponds to the projection of J on 
the figure axis.  It  is still true that  in the absence of magnetic fields, the energy doesn’t depend upon m since 

spaced fixed 
Z-axis 

J 
figure axis 
of molecule

m  

K  
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space is isotropic. The fact that the molecule is not isotropic means that the energy will depend upon K. If the 
molecule was isotropic (i.e., a spherical top) the energy would not depend upon K. 
 

3.4.1 Hamiltonian and Energy Levels 

To treat the quantum mechanical problem of the symmetric top, one has to write down the classical expression 
for the total energy and then substitute the corresponding operators to get the Hamiltonian. One must then 
find the eigenvalues and eigenfunctions of the Hamiltonian. 
 
The classical expression for the energy of a rigid prolate symmetric top is: 
 

   

 

22 2

2
2 2

2 2 2

1

2 2

CA B

A B C

A
B C

A B

JJ J
E

I I I

J
J J

I I

  

  

         

 

Since      B CI I  

 
We could also write this 
 

     
2

2 21

2 2
z

x y

A B

J
E J J

I I
      

 

since for a prolate symmetric top, a  z, b  x, and c  y. 
 
 (Remember  that  lower  case  x,  y,  z  are  molecule  fixed  coordinates,  uppercase  X,  Y,  Z  are  spaced  fixed 
coordinates) 
 
We know that 
 

    2 2 2 2
x y zJ J J J       or    2 2 2 2

x y zJ J J J      
 
We can therefore write 
 

     
2

2 21

2 2
z

z

A B

J
E J J

I I
      

 
Rearranging this gives 
 

   
2

21 1

2 2 2
z

B A B

J
E J

I I I

 
   

 
   

 
The corresponding quantum mechanical Hamiltonian is therefore: 
 
 

   
2

2
ˆ 1 1ˆ ˆ
2 2 2

z

B A B

J
H J

I I I

 
   

 
   

 

 
Because we are dealing with non‐linear molecules,  the eigenfunctions of  this Hamiltonian will depend upon 

three  angles,  the  so‐called  Euler  angles and .  The  first  two  are  those of  a  spherical polar  coordinate 
system  that describe  the orientation of  the  figure  axis  (which  is  fixed  in  the molecule) with  respect  to  the 
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space‐fixed X, Y, and Z axes. Another angle, , is needed, to describe the orientation of the molecule about its 

figure axis. (The spinning motion of a symmetric top about its top axis involves a change in .) 
 
Thus       ( , , )        

 

These eigenfunctions will be simultaneous eigenfunctions of  2ˆ ˆ ˆ, , ZH J J  and  ẑJ since these operators commute. In 

addition to representing states having a fixed value of the energy, these eigenfunctions can be characterized by 
3 rotational quantum numbers, J, m, and K. The first two have their usual meaning, while the third represents 
the projection of J on the figure axis.  
 

It is important to note the analogy between  ẐJ  and  ẑJ . Recall that the operator for JZ is given by 

 

    ẐJ i



 

  

 
One could show that  
     

    ẑJ i



 

        

 

If we  substituted  into  the Hamiltonian  the  2Ĵ and  ẑJ operators, we would  find  that we  could  separate  the 

Hamiltonian  into  separate parts  that depend upon and .  Thus  the  eigenfunctions will be products of 
separate functions of and .  
 

We already know what the solutions to the and parts are. Remember that the eigenfunctions for 
 

     ẐJ i



 

     are simply  ( ) ime        

 
In the same way, the eigenfunctions of 
 

     ẑJ i



 

   are     ( ) iKe     

  
This set of eigenfunctions  will therefore have the form 
 

   

1

2

, , 2

2 1
( , , ) ( )

8
im J iK

J K m mK

J
e d e     


   

 
 

 
It  is clear  that  these  functions are eigenfunctions of  JZ and  Jz since multiplication by a  function of � will not 
affect the eigenvalue equation for these operators. 
 

The  functions  ( )J
mKd   are hypergeometric  functions of   2sin / 2 . They are  rarely  listed explicitly  since  the 

actual functions are usually not needed for calculations. It is sufficient to know the eigenvalues for each of the 
angular momentum operators with these functions. 
 

Although  I haven’t given you expressions  for  these  functions  ( )J
mKd    it  is  important  to know  that  if one sets 

K=0, these  functions simply become the spherical harmonics. This makes physical sense  in that  if there  is no 
rotation about the figure axis, the system behaves just like a diatomic molecule. 
 
The  important  thing  to  realize  is  that  the wave  functions  for  a  symmetric  top  depend  upon  3  rotational 
quantum numbers (rather than two for linear molecules).  
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 J is the total angular momentum quantum number as in the case of linear molecules.  

 m  is the quantum number for the projection of the total angular momentum on the spaced fixed Z‐
axis (as before). 

 K  is  quantum number  for  the projection of  the  total  angular momentum on  the  figure  axis of  the 
molecule. 

 

We  already  know what  the  eigenvalues  are  for  the  2Ĵ   and  ẐJ operators.  Because  ẑJ   is  also  a  projection 

operator, one can treat it in an analogous manner to  ẐJ . 

 
We will have the following set of eigenvalue equations: 
   

    , , , ,
ˆ ( , , ) ( , , )J K m J K mH E         

     2 2
, , , ,

ˆ ( , , ) 1 ( , , )J K m J K mJ J J          

    , , , ,
ˆ ( , , ) ( , , )Z J K m J K mJ m          

    , , , ,
ˆ ( , , ) ( , , )z J K m J K mJ K          

     

where  K  is the projection of J on the figure axis. 

 
Given the expressions for the eigenvalues of the angular momentum operators for a symmetric top, it is simple 
to determine the expression for the energy levels. 
 

   

 

2
2

, , , ,

2 2 2
2

, ,

ˆ 1 1ˆ ˆ( , , ) ( , , )
2 2 2

1 ( , , )
2 2 2

J K m z J K m

B A B

J K m

B A B

J
H J

I I I

J J K
I I I

       

   

  
    
   

  
     
   

  
 

 
 
In units of cm‐1, the energy levels for a prolate symmetric top are given by 
 

        21E BJ J A B K       

 
The corresponding levels of an oblate symmetric top can be obtained by simply substituting C for A: 
 

        21E BJ J C B K         

 
The rotational constants A, B, and C, in units of cm‐1, are defined by: 
 

   
28 A

h
A

cI
    

28 B

h
B

cI
    

28 C

h
C

cI
  

 
Remember that the convention in labeling the axes was that IA<IB<IC. Because the rotational constants A, B, and 
C are inversely proportional to the moments of inertia IA, IB, IC their ordering is reversed 
 
    A B C     

 
Since the K quantum number is a projection of J, it can only take on the values 
 
    K = ‐J, ‐J+1, . . .‐1, 0, 1, . . . J‐1, J 
 

Another way to look at this is that   J K  
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Notice that in the energy levels expressions above, the K quantum number enters in as K2. This means that the 
+K and the ‐K levels with the same |K| have the same energy (i.e., the direction of rotation doesn’t affect the 
energy). For this reason one usually leaves off the sign designation.  
 
Note  also  that m does not  enter  into  the  energy  level  expression.  This  is because  JZ did not  appear  in  the 
Hamiltonian. In the absence of an external field, there is nothing to make the energy different in one direction 
in space than in another, thus there is a 2J+1 fold degeneracy with respect to the m quantum number (i.e. the 
Z‐projection in space). However, if one puts a molecule in an electric or magnetic field, the degeneracy would 
split and states with different m would have different energies. 
 
The pattern of energy levels of a symmetric top is fairly simple. For a given value of K, the energy level structure 

looks  like  that of a  linear molecule apart  from an offset of    2A B K   for a prolate  top and    2C B K  of an 

oblate top. This is shown in the figure below.  
 

You can see that each value of K has its own stack of energy levels, the spacing of which is just   1BJ J  , which 

is the same as a linear molecule. Notice that each stack starts at successively higher values of J. This is because 

of the restriction that J � K. Also note that because   A B is a positive value (by definition of the ordering of 

the rotational constants),  the offset of each successive K stack  (i.e.,  increasing K)  is positive. That means  for 
fixed J, the levels increase with K. 
 

The major difference  in the oblate top  is that because   C B   is negative, each successive K stack  is  lower  in 

energy. You might not  see  this  immediately  from  looking at  the diagram above  since each  stack  starts at a 
higher J level (since K must be greater than or equal to J). Nevertheless, you can see that for fixed J, the levels 
get lower in energy with increasing K. 
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The levels of an oblate symmetric top are shown in the figure below: 
 
 

 
 

    21E BJ J C B K     

 

3.4.2 Selection Rules and Spectra 

I will not derive  the selection  rules  for symmetric  tops, but  in principle  it  is no different  than  for a diatomic 
molecule. One has to evaluate the transition moment integral using the appropriate eigenfunctions. 
 
The result is    1 0, 1 0J m K           
 
This  is  for pure  rotational  spectra. We will  soon  see  that  the  rotational  selection  rules will be different  for 
vibration‐rotation spectra. 
 

 The J selection rule is the same as a linear molecule. 

 The m selection rule has no effect on the spectra since the m levels are all degenerate.  

 The K selection rule restricts transitions to states within the same K stack. From a physical point of 

view, the K selection rule comes from the fact that because there is no dipole moment perpendicular 
to the axis, you cannot induce any angular momentum parallel to the axis (which is what is needed to 
change K). 

 
Neglecting centrifugal distortion, the transition frequencies are simply given by 
 

   

   
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B J

    
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 

 

 
This is shown schematically below. 
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Note  the  superposition  of  several  transitions  at  the  same  frequency.  This  is  because  the  B  constant  is 
independent of the value of K. If one takes into consideration centrifugal distortion, the overlapping transitions 
will be shifted from one another. 
 

3.4.3 Effects of Centrifugal Distortion 

If we include the effects of centrifugal distortion of a symmetric top, the energy level expression becomes 
     

           22 2 4 2( , ) 1 1 1J K JKF J K BJ J D J J A B K D K D J J K          

 
There are now 3 centrifugal distortion constants, DJ, DK, and DJK.  
 

You can see that because of the selection rule K = 0, all of the terms which depend only on K will drop out 
when one takes the difference in energy levels. The transition frequencies are given by 
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The constant DJK splits out the transitions with different K for a given J+1J which in the absence of centrifugal 
distortion would fall on top of one another. 
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Part of the microwave spectrum of cyanodiacetylne 

 

3.5 Asymmetric Tops 
Asymmetric top molecules have   IA < IB < IC   with no two moments equal to one another. 
 
The rigid rotor Hamiltonian can be written: 
 

   
22 2 ˆˆ ˆ

ˆ
2 2 2

CA B

A B C

JJ J
H

I I I
      

 
The  Schrödinger  equation  for  the  asymmetric  top  has  no  general  analytical  solutions  and must  be  solved 
numerically. 
 
If two of the rotational constants are nearly equal, the spectrum will resemble that of a symmetric top with 
some of the lines split due to asymmetry. One way to think of an asymmetric top is that the quantum numbers 
corresponding to the +K and ‐K levels that were degenerate in the symmetric top are no longer degenerate. 
 
The degree of asymmetry can be quantified by an asymmetry parameter, called "Ray's asymmetry parameter", 

, which can take values from ‐1 to +1. The asymmetry parameter is defined as 
 

   
2B A C

A C
  



 

 
 

You can see from this definition that for a:  prolate top:  B = C and =  ‐1 
          oblate top:  A = B and  
 
For a slightly asymmetric top the splitting between these levels is given by 
 

   
 

    21

!

8 ! 1 !

K

K

b J K
E

J K K


 

   
 

 
With for a slightly asymmetric prolate top: 
 

   
1

3
pb








 
 

 
Note that bp is zero for a prolate symmetric top and increases as the molecule becomes more asymmetric. 

 
The corresponding definition for an oblate top is: 
 

   
1

3
ob






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If  the asymmetry  is somewhat small,  the spectrum can be analyzed as a symmetric  top spectrum  taking  the 
asymmetry splitting into account.  
 
The figure below shows this splitting for a slightly asymmetric prolate top (bp = 0.01). Here the energy  levels 

are plotted with the pure J contribution to the energy subtracted off. 
There is no analytical formula, however, to relate the energies of the levels to the J and K quantum numbers. 
 
Rotational levels of asymmetric tops only have only two "good" quantum numbers (that is quantum numbers 
that correspond to conserved quantities), and that is the total angular momentum quantum number, J and the 
projection of J on the space fixed z‐axis, m. 
 
 

 
 
 
 
The quantum number K is no longer a good quantum number insofar as the projection of J on the principal axis 
is  no  longer  a  conserved  quantity.  However,  the  levels  of  an  asymmetric  top  are  often  labeled  by  the  K 
quantum numbers corresponding to the levels of a prolate or oblate symmetric top, KA, and KC. 
 

A notation that you will often see is  ,A CK KJ  to designate the rotational levels of an asymmetric top. 
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