3 Rotational Spectroscopy

3.1 Classifications of Rotors

I will begin this subject by looking at the rotational motion of molecules in general. I will first classify molecules
into different types according to the nature of their rotational motion. We will then look at a few of these types
in somewhat more detail.

Last semester, | discussed the quantum mechanics of the Rigid Rotor. During that discussion, | made a brief
digression comparing linear and rotational motion.

Linear Motion Rotational Motion
X o
m /
v=dx/dt w=d0/dt
p=mv L=I®

The expression for angular momentum, L = l®, in rotational motion is analogous to p=mv in linear motion.

For the rotational motion of a single particle about a point, both ® and L are vectors which point out of the
plane of rotation in the same direction.

i
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This will be true for a diatomic molecule if one neglects any angular momentum of the electrons.

For an extended object however (which includes non-linear polyatomic molecules), ® and L need not point in
the same direction.

®

You can see in this case, rather than being a single number, | must be represented by a 3 x 3 matrix
L=lw

written explicitly as

X XX Xy Xz X
Ly = /xy Iyy /)’Z a)}’
L i .

z xz yz 2z z

lis called the moment of inertia tensor.
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3 ROTATIONAL SPECTROSCOPY

One can derive the form of the moment of inertia tensor for a collection of nuclei rotating in space using the
definition of angular momentum.

Consider a collection of nuclei of mass m located at positions r. relative to the origin in a Cartesian coordinate
system. The collection of nuclei is rotating with angular velocity .

The angular momentum is given by
L= r,xp, =Y mr, x(wxr,)
Where we used that:
pd :mzxva :m(l(wxrﬂl)
To simplify this, we need to use the cross product identity
Px(QxR)=Q(P-R)-R(P-Q)
This gives
=>m, (w(xfl +ye+2 )=t (%0, +y,0,+ 2,0, ))
Writing out the vector components gives
L=Zma[a)x(x2 +y + 22 )8, o, (X2 Y+ 2 )8, o, (X2 YR+ 22 )8,
-X, (xaa)x +y,0,+2,0, )é1 -y, (xaa)x +Y,0,+2,0, )é2 -z, (xaa)x +Y,0, +zawz)é3]
This can be written in matrix form as:
Zma (yi +zozz) _Zmaxaya _Zmaxaza

— 2 2
1=l —2m,y.x, Zma(xa+za) > my,z, | o,
a a a
Z 2 2 a)z
_Zmazaxa _Zmazaya Zma (Xa +ya)
a a a

~ o~ ~

The diagonal elements of this matrix are referred to as the moments of inertia

le=2m, (v +2))

_ 2
- arxi
a

_ 2 2\ _ 2
Iyy _Zma (Xa +Za)_zmah
a a

_ 2 2\ _ 2
Izz _zma (Xa +ya)_zmarzl
a a
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3 ROTATIONAL SPECTROSCOPY

Note that the moment of inertia with respect to an axis involves the squares of the perpendicular distances of
the masses from that axis (e.g., r’, from the x-axis).

The off-diagonal terms in this matrix are called the products of inertia:

Ixy = _Zmaxaya
a

Ixz = _Zmaxaza
a

Iyz = —Z m,y,z,

The matrix is called the moment of inertia tensor.

Because the moment of inertia tensor is a real symmetric matrix, one can prove that it is always possible to find
an orthogonal transformation matrix X that transforms the moment of inertia tensor I into diagonal form.

I'=X"IX
The matrix X represents a rotation of the coordinate system, which can be written as
r'=X"ror r=Xr'

(One can show that the columns of the matrix X are made up of the normalized eigenvectors of I ).

The new coordinate system is called the principle axis system and the I' matrix is a diagonal matrix given by

L, I, 0 0)\ow,
L |=|0 I, 0fa,
L,) \o 0o 1 )\e,

Which axis is labeled x, y, and z is chosen by a set of geometrical conventions. For example, the z-axis is always
chosen to be the highest order axis of rotational symmetry, and the x-axis is out of the plane for a planar
molecule.

With the moment of inertia tensor in diagonal form like this, the different components of the angular
momentum can simply be written

L =1 o L =|w L =1 o

X xTOx y — yPy 7z~ 277z

The total angular momentum vector can be constructed from these three projections on the principle axes.
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The rotational kinetic energy can be written as:

E, =%[/X o) +1,0] +1,0 |

2
Lo L oL
20, 20, 2,

An alternative labeling scheme for the principal axes is based upon the magnitudes of the moments of inertia.
In this case, the axes are labeled A, B, and C according to the requirement that

It is not obvious in this case which one is A, B, and C from simply looking at the molecule. One must calculate
the moments of inertia. It is important to realize that this is simply another way of labeling the axes. They are
the same set of three axes, however.

z(b)

x(c)

All molecules can be classified on the basis of their three moments of inertia. There are 5 different cases:

1. Linear Molecules, /4 =0, Iz=Ic e.g., HCN

X(c) 7

z(a)

2. Spherical Tops, /s =15 = ¢ e.g., SFe and CH,

x(a)
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3. Prolate Symmetric Tops, Ia</g=1Ic e.g., CHsCl

4. Oblate Symmetric Tops, la=Ilg<Ic e.g., BFs
z(c)
4
,/
b
D; y(b)
x(a)
5. Asymmetric Tops, Ia</g<lc e.g., H,O
z(b)

x(c)

Group theory can be used to classify the rotational properties of molecules. There are three important rules to
remember:

— Molecules in the groups Oy, T4, and I, are spherical tops.
— Molecules in Cwy and D..; are linear.
—  All symmetric top molecules must have a C, axis with n>2.

You can see that H,0 only has a C; axis and is an asymmetric top.

3.2 Linear Molecules

| have already laid much of the foundation for discussing rotational spectroscopy of diatomic molecules, and
linear molecule rotation is essentially the same as that of diatomic rotation.

3.2.1 Level Spacing

In general, we write the classical expression for the kinetic energy as

1 1 1
E = EIij +Elsa); +E/Cw§
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Recall that in a diatomic molecule, I, =0 and Iz = Ic=I. We can therefore write

1 1
EK = EIBC(); +E/C0)§

b LS
2021 21
The quantum mechanical Hamiltonian for a linear rigid rotor is just

72
A=
2

We have already solved this problem:

Tym jz m m
HY (6.0)=2Y" (0.0)=EY] (6,0)
2

= %J(J +1)Y"(0,90)=BI(J+1)Y" (6,9)

where

hZ hZ
B=—=—:
2l 8zl

(in Joules)

Often spectroscopists use F(J) to express the rotational energy levels as a function of the quantum number J in
units of MHz or in cm™L,

F())=BJ(J+1)

Unfortunately, the same symbol B is used whether expressed in Joules, MHz, or cm™.

Remember that for a linear molecule, I, =0 and /5 = Ic= I. The moment of inertia, /, will simply be
I:Z:mar2

where ris the distance of the atom from the center of mass.

3.2.2 Selection Rules

In our earlier discussion of selection rules for a diatomic, we started with the transition moment integral
* A 2 . .
Intensity o«c (J.(//2 ,uzt//ldr) (or the equivalent with py or py)

After putting in the wave functions as products of vibrational, rotational and electronic parts, we get that the
integral can be written as:

(10503 RI 3 (RIW 0,0) 21,0, RV oy (@3RI 1y RV (0,0) T, e T,
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Where g; are the electron coordinates and R the distance between the nuclei. The dipole moment which is
given in the laboratory frame of reference as g, (g;,R) and depends on both the electron and the nuclear

positions can be written in the molecular frame of reference as
4,(q;,R)cos @
Rearranging terms and grouping them together gives:

J‘J‘ l//;E/ (Q, ; R) l//;vib (R) /[l,] (Q, ’ R) l/lle/ (q/ ; R) l//lvfb (R)dfq’ dTR ‘[ ‘//;mt (9’ ¢) cos gl//lrat (9/ @) dTqup

If we now realize that for pure rotational transitions we do not change electronic or vibrational level we can
rewrite this as:

[[¥70(0: R (R 1, (@, RV, (0 RIW, (RYIT, 7, [ 05, (0,0)cO8 O, (0,9) d,,

This double integral gives the mean value of the dipole moment, averaged over the electronic and nuclear
coordinates. This is also known as the permanent dipole moment, ue, of the molecule. We can thus write:

/JE J‘ l//;rot (91 ¢) cos gvjlrot (91 §0) dTB,{p

You can see that one requirement for pure rotational transitions is that the molecule has a permanent dipole
moment, Ue.

Thus, molecules such as 0=C=0, Cl — Cl, H-CAC-H which have no dipole moment, have no pure rotational
spectra.

The other requirement is that the integral is non-zero. We can use rigid rotor wave functions for evaluating this
integral.

Recall that:
Ve =Y (0,0)= ijpj‘m‘ (cosB)e™

where

N

_| (27+1) (4= |m])

ST

Remember that the P,""‘(cos@) are the associated Legendre polynomials.

Putting this into the integral yields
I Yoo (0,9)c0s Oy, (0,0) dr, , = IermrP,‘vm" (cos@)e™™ cosON,,.PI" (cosO)e™ “dz,
:Nj,m,Nﬂm”ij‘,m"(cos@)cosﬁPj‘f”"‘(cosﬁ)drﬁje”"”"ﬂe"m"wdrw

Note: It is spectroscopic convention to label the upper state quantum number by a single prime and the lower
state quantum number by a double prime. When indicating a transition between two states, the convention is
to write the upper state first and the lower state second. An arrow is used to indicate absorption, J'<—J" or
emission, J'=J". When no prime is indicated, the quantum number refers to the lower state.
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The integral over ¢ will be zero unless m" =m' in which case it will be 2x. This gives rise to the m selection rule
Am = 0. This Am selection rule results from our choice of radiation along the z-direction. If we chose the x or y
component, we could get Am = 1. This arises from the relation between the molecule fixed dipole moment
and the projection on the different axes. We know that

i, = p, cosd
4, =, sinfsing
4, =, sinfcosp

If you used one of the latter two components, you would get a sing or cosg in the ¢ integral, and this would
give Am =+1.

To help evaluate the integral over 8 which gives the J selection rules, one can make use of a recursion formula
that relates different Legendre polynomials to one another.

J=|m|+
cos&P‘m‘ cosé | |P‘m‘ —P‘m‘ cosé
(cosd) = o1 (cos0) + e i (COS6)
Using this recursion relation in the @ part of the integral gives
jP)f"" (cos@)cos HP,‘T"‘(cos O)dr, = J”+—|m”| IP),'"V‘(cos H)P,‘['"l‘(cos O)dr, + % '[P‘m‘(cos 0)PJ’L‘(cos 0)dz,
2J+1 2)+
Remember that the eigenfunctions of a Hermitian operator form a complete orthonormal set. This means that

eigenfunctions corresponding to different eigenvalues are orthogonal.

Thus, the first integral on the right will be zero unless J' = J'" - 1 or J'-J" = -1. This gives rise to the selection rule
that AJ = -

Once can see that the second integral will be equal to zero unless J' = J"+1. This gives rise to the selection rule
thatAJ=1

Together we have: Al=11 Am=0, 1
So in addition to the requirement of a permanent dipole moment for pure rotational transitions, the rotational
selection rules require that AJ =+ 1 and Am = 0, £1. Because in the absence of a magnetic field the states of
different m are degenerate, the Am =0, £1 selection rule has no effect on the energies of the transitions in the
spectrum. We will therefore ignore it for the moment. Note that this is true both for pure rotational transitions
and vibration-rotation transitions, since the same integral is involved.
The selection rule AJ = £ 1 results in the following transition frequencies:

Viae, =FU")—FU")=F(J+1)-F()
=B(J+1)(J+2)-BJ(J+1)
=28B(J+1)

Thus, the first transition, J = 1<—0, occurs at 2B. The others are spaced at multiples of 2B.
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Note the isotope peaks; different isotopes have different rotational constants. From analysis of this spectrum,
one could get the rotational constant B, which gives the moment of inertia, /, which in turn will provide r.. This
is the most accurate way to determine bond lengths.

The expression that we derived for the energies of the rotational levels was in the rigid rotor approximation
where we have neglected vibration rotation interaction and centrifugal distortion.
Recall our general expression for the energy levels of a diatomic:

F(v,J)=

2
=, [v+%J+BEJ(J+1)—a}2xE [v+%) —a(v+%jJ(J+ 1)-DA(J+1)

It is important to note that the number of terms here is simply determined by how many terms we carry in the
perturbation theory treatment to derive it. One can take this out to higher order terms if one likes.

One can rewrite this expression in the following way

2
Flv,J)= (v+;j coexe[v+§] +B,J(J+1)-D* (J+1)

B, =8B, —a(v+1j
2

One can have pure rotational transitions in excited vibrational states, and this expression accounts for the
change in the B rotational constant with increasing vibrational quantum number as well as the effects of
centrifugal distortion. (Higher order treatments include the vibrational dependence of D as well).

where
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As we discussed earlier in the course, the fact that the rotational constant is dependent on the vibrational level
reflects the fact that there is anharmonicity in the potential that makes the average bond length increase with
increasing vibrational quantum number. This makes the effective rotational constant depend upon the
vibrational quantum number, v.

N

The frequency for a pure rotational transition comes from taking the difference in energy levels:
Vine, =FU')=FU") =F(J+1)—F(J)
=B,(J+1)(J+2)-D(J+1)’ (J+2) —BJ(J+1)+D/* (J+1)’
=28,(J+1)-4D(J+1)
You can see that the transition frequencies are slightly lowered by centrifugal distortion.

Using this more accurate expression, one can now obtain not only the rotational constant B, but also the
vibration rotation interaction constant @ and the centrifugal distortion constant D.

3.3 Spherical Tops

In general, one would expect spherical top molecules not to show any pure rotational transitions because they
do not have any permanent dipole moment (which is a requirement for having a pure rotational spectrum).

You can see this by simply looking at the character tables for the point groups T4, and Op. There is no
translational coordinate (i.e., x, y, or z) which belongs to the totally symmetric representation. Remember, that
the symmetry of different components of the dipole moment are the same as a translation in that direction.
Thus we would not expect there to be any dipole moment and hence no rotational spectrum.

However, for spherical top molecules which have only C; axes of symmetry, there can be a slight dipole
moment induced by centrifugal distortion.

Consider the molecule CH4 for example. Rotation about any of the 4 C; axes will push out the off axis hydrogens

slightly but does not effect the hydrogen that is on the axis. This results in a very small dipole moment and
hence a weak rotational spectrum. | will not take the time to discuss this in detail.
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3.4 Symmetric Tops

Now let’s turn to the more complex problem of symmetric top rotational motion. Although more complex than
that of linear molecules, among polyatomics the rotational motion of symmetric tops is the simplest to
understand. My discussion will focus on prolate symmetric tops, although | will mention oblate tops at several
points.

Recall that in a prolate symmetric top, /s < Is = Ic. The two identical moments are usually called /5. We call the
axis of highest symmetry in a symmetric top, the figure axis.

In the quantum mechanical picture of symmetric top rotation, one has to consider which operators commute
with each other, since this determines which quantities can be simultaneously well defined. Moreover, the
quantities whose operators commute with the Hamiltonian will be independent of time and will be
represented by “good” quantum numbers.

Recall that for rigid diatomic molecules, the operators I:I,]Z,jz all commute with each other. Remember that J;

represents the projection of J on the spaced fixed z-axis. We therefore had two good rotational quantum
numbers J, and m, although the energy depends only on J.

For a symmetric top molecule we will find that there is another operator that commutes with these three, i.e.
the operator representing the projection of J on the figure axis. This operator is given the symbol J, (lower case
z) or Jg.

Thus, there will be an additional good quantum number, which is denoted K, that represents a constant
projection of the total angular momentum on the figure axis of the molecule.

In the quantum mechanical problem of the symmetric top, the total angular momentum of the molecule must
simultaneously maintain a constant projection on the spaced fixed z-axis as well as on the figure axis of the
molecule.

We therefore have the following picture:

spaced fixed
: s Z-axis
figure axis
of molecule

J
A
mh

Kn

We get two cones, constrained by the need to have constant projections of J. The relative sizes of these cones
are simply related to the projection quantum numbers K and m. We should realize that the J vector is not fixed
in space, it simply has a fixed length and a fixed projection on the space fixed z-axis.

In a symmetric top, we will see that the energy now depends upon two of the three good quantum numbers,

i.e. J, which corresponds to the total angular momentum, and K, which corresponds to the projection of J on
the figure axis. It is still true that in the absence of magnetic fields, the energy doesn’t depend upon m since
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space is isotropic. The fact that the molecule is not isotropic means that the energy will depend upon K. If the
molecule was isotropic (i.e., a spherical top) the energy would not depend upon K.

3.4.1 Hamiltonian and Energy Levels

To treat the quantum mechanical problem of the symmetric top, one has to write down the classical expression
for the total energy and then substitute the corresponding operators to get the Hamiltonian. One must then
find the eigenvalues and eigenfunctions of the Hamiltonian.

The classical expression for the energy of a rigid prolate symmetric top is:

G da S
20, 2, 2,
V|

:—A+—(J§+J§)
2, s

=

Since / A

B

We could also write this

since for a prolate symmetrictop, a <>z, b<> x,and c <> y.

(Remember that lower case x, y, z are molecule fixed coordinates, uppercase X, Y, Z are spaced fixed
coordinates)

We know that
L+l +0=0 or L+5=r-7

We can therefore write

Rearranging this gives

S 1 1
SESERRF
20, \21, 2,

The corresponding quantum mechanical Hamiltonian is therefore:

Because we are dealing with non-linear molecules, the eigenfunctions of this Hamiltonian will depend upon
three angles, the so-called Euler angles 6, ¢, and y. The first two are those of a spherical polar coordinate
system that describe the orientation of the figure axis (which is fixed in the molecule) with respect to the
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space-fixed X, Y, and Z axes. Another angle, z, is needed, to describe the orientation of the molecule about its
figure axis. (The spinning motion of a symmetric top about its top axis involves a change in y.)

Thus v=y(0,07%)

These eigenfunctions will be simultaneous eigenfunctions of I:I,jz,]z and ]Z since these operators commute. In

addition to representing states having a fixed value of the energy, these eigenfunctions can be characterized by
3 rotational quantum numbers, J, m, and K. The first two have their usual meaning, while the third represents
the projection of J on the figure axis.

It is important to note the analogy between ]z and ]Z . Recall that the operator for J; is given by

J, = _inl
op
One could show that
J, = —ihi
ox

If we substituted into the Hamiltonian the J?and ]Z operators, we would find that we could separate the

Hamiltonian into separate parts that depend upon &, ¢, and y. Thus the eigenfunctions will be products of
separate functions of 6, ¢, and y.

We already know what the solutions to the ¢ and y parts are. Remember that the eigenfunctions for

A 0 )
J, =—ih— are simply vip)=e"™
o9

In the same way, the eigenfunctions of

J, :—ihi are wiy)=e""
4

This set of eigenfunctions will therefore have the form

eim(odl . (e)eiK;(

m

1

2J+1)2

V/J,K,m(ﬁ,qa,z):( 5 j
8

It is clear that these functions are eigenfunctions of J; and J, since multiplication by a function of & will not
affect the eigenvalue equation for these operators.

The functions d., (6) are hypergeometric functions of sin’(€/2). They are rarely listed explicitly since the

actual functions are usually not needed for calculations. It is sufficient to know the eigenvalues for each of the
angular momentum operators with these functions.

Although | haven’t given you expressions for these functions d;, (6) it is important to know that if one sets
K=0, these functions simply become the spherical harmonics. This makes physical sense in that if there is no

rotation about the figure axis, the system behaves just like a diatomic molecule.

The important thing to realize is that the wave functions for a symmetric top depend upon 3 rotational
quantum numbers (rather than two for linear molecules).
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— Jis the total angular momentum quantum number as in the case of linear molecules.

— mis the quantum number for the projection of the total angular momentum on the spaced fixed Z-
axis (as before).

— K is quantum number for the projection of the total angular momentum on the figure axis of the
molecule.

We already know what the eigenvalues are for the J* and ]Z operators. Because jz is also a projection

operator, one can treat it in an analogous manner to J, .

We will have the following set of eigenvalue equations:

AW, m 0,0, 2)=EV,, . (0,0,7)
Pw,n@0,2)=11(J+1)y,, (0.0, %)
L, enlO0, ) =hmy,, . (0,0,7)

L Vml0.0,2)=0Ky,, . (0,0,7)

where %K is the projection of J on the figure axis.

Given the expressions for the eigenvalues of the angular momentum operators for a symmetric top, it is simple
to determine the expression for the energy levels.

. J? 1 1
A 0,0, 7)=| —+| ———
Vixn0:0:2) L/B [ZIA 21,

:|:2h_2-l(-l+1)+[h_2_h_zJKz:| Yxm 0,0, 2)

20, 2,

j]zz:|‘//J,K,m(€'¢lZ)

In units of cm™, the energy levels for a prolate symmetric top are given by
E=BJ(J+1)+(A-B)K’

The corresponding levels of an oblate symmetric top can be obtained by simply substituting C for A:
E=BJ(J+1)+(C-B)K*

The rotational constants A, B, and C, in units of cm, are defined by:

h h h
= B=—7— C=—7
8rcl, 8rx°cl, 8rcl,

Remember that the convention in labeling the axes was that /4</s<Ic. Because the rotational constants A, B, and
C are inversely proportional to the moments of inertia /4, Is, Ic their ordering is reversed

A>B>C
Since the K quantum number is a projection of J, it can only take on the values
K=-J,-J41,...-1,0,1,...J-1,J

Another way to look at this is that /> |K|
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Notice that in the energy levels expressions above, the K quantum number enters in as k2. This means that the
+K and the -K levels with the same |K| have the same energy (i.e., the direction of rotation doesn’t affect the
energy). For this reason one usually leaves off the sign designation.

Note also that m does not enter into the energy level expression. This is because J; did not appear in the
Hamiltonian. In the absence of an external field, there is nothing to make the energy different in one direction
in space than in another, thus there is a 2J+1 fold degeneracy with respect to the m quantum number (i.e. the
Z-projection in space). However, if one puts a molecule in an electric or magnetic field, the degeneracy would
split and states with different m would have different energies.

The pattern of energy levels of a symmetric top is fairly simple. For a given value of K, the energy level structure
looks like that of a linear molecule apart from an offset of (A—B)k® for a prolate top and (C—B)K* of an

oblate top. This is shown in the figure below.

You can see that each value of K has its own stack of energy levels, the spacing of which is just BJ(J+1), which

is the same as a linear molecule. Notice that each stack starts at successively higher values of J. This is because
of the restriction that J B K. Also note that because (A—B) is a positive value (by definition of the ordering of

the rotational constants), the offset of each successive K stack (i.e., increasing K) is positive. That means for
fixed J, the levels increase with K.

The major difference in the oblate top is that because (C—B) is negative, each successive K stack is lower in

energy. You might not see this immediately from looking at the diagram above since each stack starts at a
higher J level (since K must be greater than or equal to J). Nevertheless, you can see that for fixed J, the levels
get lower in energy with increasing K.

6_
8_
8§ — 7 —
5_
7_
6_
;- 4 —
3
6 5 J K=3
6_
4 —_
5_
5_
jC
4 T
J k=2
3_
3_
2
2 ——
1 I k=1
0
J K=0

Prolate Symmetric Top Energy Levels

E=BJ(J+1)+(A-B)K’
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The levels of an oblate symmetric top are shown in the figure below:

8§ —m g —
8_
8 —
T —
7_
7_
6 ——
6 —
5 —— 5 ____ 6
[
S P — 5 —
4
22— ,_ 3
5 1 2 3
J K=0 J K=1 J K=2 J K=3

Oblate Symmetric Top Energy Levels

E=BJ(J+1)+(C-B)K

3.4.2 Selection Rules and Spectra

| will not derive the selection rules for symmetric tops, but in principle it is no different than for a diatomic
molecule. One has to evaluate the transition moment integral using the appropriate eigenfunctions.

The result is A=%1 Am=0,+1 AK=0

This is for pure rotational spectra. We will soon see that the rotational selection rules will be different for
vibration-rotation spectra.

— The AJ selection rule is the same as a linear molecule.

— The Am selection rule has no effect on the spectra since the m levels are all degenerate.

— The AK selection rule restricts transitions to states within the same K stack. From a physical point of
view, the AK selection rule comes from the fact that because there is no dipole moment perpendicular
to the axis, you cannot induce any angular momentum parallel to the axis (which is what is needed to
change K).

Neglecting centrifugal distortion, the transition frequencies are simply given by
Viakeik = F(J + 1'K) _F(J'K)
=B(J+1)(J+2)+(A-B)K* -BJ(J+1)-(A-B)K®
=2B(J+1)

This is shown schematically below.
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4 A
\
3 ——
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i
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Y
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Note the superposition of several transitions at the same frequency. This is because the B constant is
independent of the value of K. If one takes into consideration centrifugal distortion, the overlapping transitions
will be shifted from one another.

3.4.3 Effects of Centrifugal Distortion

If we include the effects of centrifugal distortion of a symmetric top, the energy level expression becomes
F(J,K)=BJ(J+1)=D,J* (J+1) +(A—B)K* =D K" =D, J(J +1)K*

There are now 3 centrifugal distortion constants, D;, D, and Dy.

You can see that because of the selection rule AK = 0, all of the terms which depend only on K will drop out
when one takes the difference in energy levels. The transition frequencies are given by

Ve :F(j+1'K)_F(j'K)
=2B(J+1)-4D,(J+1)’ —2D, (J+1)K*

The constant Dy splits out the transitions with different K for a given J+1<J which in the absence of centrifugal
distortion would fall on top of one another.

K=0 K=0,1 K=0,1,2
J=1«0 J:2l<—1 J=3¢2
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| | !
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1
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Part of the microwave spectrum of cyanodiacetylne

3.5 Asymmetric Tops

Asymmetric top molecules have  [4</g< Ic with no two moments equal to one another.
The rigid rotor Hamiltonian can be written:

goda g
21, 21, 2

B C

The Schrodinger equation for the asymmetric top has no general analytical solutions and must be solved
numerically.

If two of the rotational constants are nearly equal, the spectrum will resemble that of a symmetric top with
some of the lines split due to asymmetry. One way to think of an asymmetric top is that the quantum numbers

corresponding to the +K and -K levels that were degenerate in the symmetric top are no longer degenerate.

The degree of asymmetry can be quantified by an asymmetry parameter, called "Ray's asymmetry parameter",
K, which can take values from -1 to +1. The asymmetry parameter is defined as

2B-A-C
K=—"—
A-C

You can see from this definition that for a: prolate top: B=Cand k= -1
oblate top: A=Band x=+1

For a slightly asymmetric top the splitting between these levels is given by

K |
Af— b (J+K)!

8 U=k [(k—1)T

With for a slightly asymmetric prolate top:

+1
L
K—3

Note that bp is zero for a prolate symmetric top and increases as the molecule becomes more asymmetric.

The corresponding definition for an oblate top is:
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If the asymmetry is somewhat small, the spectrum can be analyzed as a symmetric top spectrum taking the
asymmetry splitting into account.

The figure below shows this splitting for a slightly asymmetric prolate top (bp = 0.01). Here the energy levels

are plotted with the pure J contribution to the energy subtracted off.
There is no analytical formula, however, to relate the energies of the levels to the J and K quantum numbers.

Rotational levels of asymmetric tops only have only two "good" quantum numbers (that is quantum numbers
that correspond to conserved quantities), and that is the total angular momentum quantum number, J and the
projection of J on the space fixed z-axis, m.
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v] 5 10 15 2]

J
Rotational energy of a slightly asymmetric top (b about 0.01) as a i'unctio_n
of J. [The term -}(B + C)J(J + 1) is subtracted from the energy, i.e., the devi-
ations of the curves from horizontal lines represent the deviations from the levels of
the symmetric top.] (From Dieke and Kistiakowsky )

The quantum number K is no longer a good quantum number insofar as the projection of J on the principal axis
is no longer a conserved quantity. However, the levels of an asymmetric top are often labeled by the K
guantum numbers corresponding to the levels of a prolate or oblate symmetric top, Ka, and Kc.

A notation that you will often see is Je, k. tO designate the rotational levels of an asymmetric top.
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