

Spectroscopy

Exercises Chapter 2D

1. Calculate the fraction of H_2 and NaCl molecules in the ground vibrational state at 300 K. For H_2 , $\omega_e = 4159.2 \text{ cm}^{-1}$ and for NaCl , $\omega_e = 378.0 \text{ cm}^{-1}$.
2. Treating the rotational quantum number J as a continuous parameter, show that the value of J in the most populated rotational state is the nearest integer to

$$J_{max} = \frac{1}{2} \left(\sqrt{\frac{2k_B T}{B}} - 1 \right)$$

Calculate J_{max} for H^{35}Cl ($B = 10.6 \text{ cm}^{-1}$) and $^{127}\text{I}^{35}\text{Cl}$ ($B = 0.114 \text{ cm}^{-1}$) at 300 K.

3. The summation that occurs in the rotational Boltzmann distribution can be evaluated approximately by converting the summation to an integral. Show that

$$\begin{aligned} \sum_{J=0}^{\infty} (2J+1) e^{-\frac{BJ(J+1)}{k_B T}} &\approx \int_0^{\infty} e^{-\frac{BJ(J+1)}{k_B T}} d[J(J+1)] \\ &= \frac{k_B T}{B} = \frac{8\pi^2 c l k_B T}{h} \end{aligned}$$

This is an excellent approximation for values of $B/k_B T$ less than 0.05 or so. Using this result, calculate and plot the fraction of $^{127}\text{I}^{35}\text{Cl}$ molecules in the J^{th} rotational state versus J assuming a temperature of 25°C. ($B = 0.114 \text{ cm}^{-1}$)