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2 Overview of Molecular Spectroscopy 
When  discussing  molecular  spectroscopy  we  will  use  the  results  that  we  have  obtained  from  quantum 
chemistry quite frequently. I will start by giving you an overview of the field of molecular spectroscopy, dealing 
with issues that are common to all types of spectra. For this I will mostly use diatomic molecules as an example. 
We will  then become more  specific  and  consider particular  types of  spectroscopy  (i.e.,  transitions between 
different  types  of  energy  levels).  Occasionally  I will  need  to  introduce  new  concepts  related  to  quantum 
chemistry.  
 
Because  molecular  spectroscopy  involves  making  light‐induced  transitions  between  quantum  states  of  a 
molecule, you can see how the basis of molecular spectroscopy would be quantum chemistry. One needs to 
know  both  the  energy  levels  of molecules  and  their  wave  functions  to  be  able  to  predict  their  spectra. 
However, the spectra themselves provide the most powerful means to investigate the energy levels and wave 
functions of molecules. 
 
The approach of spectroscopy is to cause molecules to absorb and emit light and then measure the frequencies 
at which  those  transitions occur. The energy or  frequency of each  transition  corresponds  to a difference  in 
energy  levels.  Recall  that  the  separations  of  energy  levels  depends  upon  the  potential  energy  term  in  the 
Hamiltonian for the system. We saw this in the simple one‐dimensional problems such as the particle in a box 
and harmonic oscillator. For polyatomic molecules, this function is multidimensional. One of the primary goals 
of spectroscopy is to determine the multidimensional potential energy function, also called a potential energy 
surface,  for a molecule  from measuring these  levels. Recall that the bottom of the potential well  in a simple 
one‐dimensional potential  (i.e.,  for a diatomic molecule) gives us  the bond  length.  In a polyatomic case,  the 
global minimum of the potential energy surface gives the geometry of the molecule. 
 
After measuring  the energy  levels of a molecule, we  can  compare  them  to  those predicted  from  calculated 
potential energy surfaces. This allows us to go back and refine the techniques used to calculate the surface. The 
goal  would  be  to  calculate  these  potential  functions  accurately  enough  to  determine  accurate molecular 
geometries  and  predict  exactly  where  all  the  levels  would  be.  This  would  allow  us  to  predict  at  which 
frequencies molecules would absorb and emit light. 
 
 

2.1 Starting Point: The Born‐Oppenheimer Approximation 
At the end of the Quantum Chemistry course we were discussing ways of solving the Schrödinger Equation for 
simple molecules.  Although  I  didn’t make  it  so  clear  at  the  time,  this  is  only  one  part  of  the  Schrödinger 
Equation,  i.e.,  the  electronic  part.  As  you will  soon  see,  the  Born‐Oppenheimer  approximation  divides  the 
Schrödinger equation into two parts. 
 
Solving the electronic part of the Schrödinger Equation determines the potential energy curves (or surfaces) for 
the nuclei, i.e., the potential function in which the nuclei move. Hence we get the electronic (potential) energy 
as a function of the nuclear coordinates, the electronic wave functions, and, by analysis of the potential energy 
function,  the  geometry. This, however, does not  solve  for  the  total  energy of  the molecule,  since we have 
neglected  the nuclear  kinetic energy. We need  to  take  the  result of our  solution of  the electronic part  (the 
potential energy as a function of the position of the nuclei) and insert it into the nuclear part of the Schrödinger 
Equation  (together with  the  nuclear  kinetic  energy)  and  solve  this  equation.  The  solutions  of  the  nuclear 
Schrödinger Equation will give us the eigenvalues for the total energy. It is these eigenvalues that we measure 
in a spectroscopic experiment. 
 
Thus, the Born‐Oppenheimer approximation divides quantum chemistry (the electronic Schrödinger Equation) 
from molecular spectroscopy (the nuclear Schrödinger Equation) and hence lies at the foundation of the latter. 
 
Because  of  its  importance,  I would  like  to  go  back  and  look  at  the  Born‐Oppenheimer  approximation  in  a 
slightly more general way. After doing this, we will come back and  focus once again on the case of a simple 
diatomic molecule, using it to display many of the general principles about spectroscopy. 
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Let's write down (using atomic units) the Hamiltonian for a molecule neglecting relativistic interactions. 
 

    2 21 1 1 1ˆ
2 2

i
i i j i ji ij

Z Z Z
H

m r r r

  


       

             

 

denote nuclei; i,j denote electrons. 
r  is the distance between nucleus  and nucleus  
ri is the distance between electron i and nucleus  
rij  is the distance between electron i and electron j 
 
For understanding spectroscopy, we need to find both the wave functions and energies of a molecule.  
 
These are found from the Schrödinger Equation 
 

    ˆ ( , ) ( , )i iH q q E q q    

 
where qi represents the electron coordinates and q� the nuclei coordinates 
 
You can see how  things are getting pretty complicated  for atoms with more  than  two electrons. Solving  the 
Schrödinger Equation  for a molecule with more  than two atoms might appear hopeless. However,  the Born‐
Oppenheimer approximation  greatly  simplifies  the problem and  is quite accurate.  It essentially allows us  to 
separate both the Hamiltonian and its eigenfunctions into electronic and nuclear parts. 
 
Recall that the physical basis of the Born‐Oppenheimer approximation  lies  in the  fact that the masses of the 
nuclei are much greater than that of the electrons. The ratio of the rest mass of the proton to that of electron is 
 

    1835
p

e

m

m
  

 
 
The  ratio  of  the mass  of  a nucleus  containing  several  protons  and  neutrons  to  that  of  an  electron  is  even 
higher.  As  a  result  of  this  difference  in mass,  for  the  same  coulombic  forces  between  the  nuclei  and  the 
electrons, the electrons move much faster than the nuclei. To a very good approximation, the nuclei can be 
considered  to  be  fixed while  the  electrons  carry  out  their motions. Making  this  approximation  amounts  to 
neglecting the nuclear kinetic energy term from the Hamiltonian for electronic motion. 
 
We can then write the Schrödinger Equation for the electronic motion: 
 

      ˆ
el nucl el elH V U      

 
where  

    21 1ˆ
2

el i
i i j i ji ij

Z
H

r r


  

          

and       

    nucl

Z Z
V

r

 

   

  

 
The energy U  is the electronic energy  including nuclear repulsion. Remember that we only neglected nuclear 
kinetic energy, not the repulsion of the nuclei. 
 

Note  that  since we make  the approximation  that  the nuclei don't move,  then  raren't  really  variables but 
parameters. That is, we fix them and solve the electronic problem for fixed values of r.We choose values for 

the r (designated more generally by q), evaluate Vnuc, and then solve our electronic Schrödinger Equation. 

We must repeat this process for many values of the nuclear coordinates, q 



2  OVERVIEW OF MOLECULAR SPECTROSCOPY 

9 

 

Since the Hamiltonian depends on q , the energy we get will also depend parametrically on q. 
 

    ( )U U q    

 

So  for each  set of q we get a different Schrödinger equation, different energies U, and different electronic 
wavefunctions. 
 
    , ( ; )el el n iq q     

 

where n  is  the electronic quantum number, qi  are  the  electron positions  and  the  ;  signifies  that  the q  are 
parameters. 
 

Now, once we pick our q, the nuclear potential term Vnuc is constant. 
 

     ˆ
el nucl el elH V U      

 
We can write this like: 
 

       ˆ
el nucl el el nucl elH V E V       

 

where  elE  is simply the eigenvalue of  ˆelH  
 

     ˆ
el el el elH E     

 
We often call this equation the electronic Schrödinger equation. 
 
The total electronic energy, U, (including nuclear repulsion terms) is then given by 
     

el nuclU E V     

 
So we can  leave out Vnuc  from our Schrödinger equation and  simply add  it  to Eel after  solving  the electronic 
Schrödinger equation. 
 

Note that  ˆelH still contains inter‐electronic repulsion and attraction to the nucleus. 

 
Let's  say  for  the moment we  know  how  to  solve  the  electronic  Schrödinger  Equation  using  some  of  the 
techniques we discussed in our treatment of quantum chemistry. 
 

    ˆ
el el el elH E     

 
In practice,  this  is not  trivial, but assume we  can  find a way  to do  this,  for example using  the Hartree‐Fock 
method. Let us think about the procedure one would take in solving the full problem. 
 
Consider the case of a diatomic molecule. 
 

    Eel and  el depend on r 

 

First fix r at some value and solve this equation for Eel.  We will get a whole set of solutions  ,el n ,  ,el nE .  Let's 

now look only at the lowest energy state. 
 
U, the total electronic energy (including nuclear repulsion) is 
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    el nucl el

Z Z
U E V E

r

 



      

 

We then go through this procedure for a series of different r, each time finding a different value of Eel and 
hence another value  for U.  It  is  important  to  realize  that every  time we change  the nuclear coordinates, we 
must resolve the electronic Schrödinger Equation. 
 
If we plot U vs. r we get something like this: 

 
 

 
 
 
Once calls this plot a potential energy curve, since it represents the potential energy of interaction between the 
two nuclei. At each point along the curve (that  is, each value of r) we have solved the electronic Schrödinger 
equation and then added the nuclear repulsion to get the total electronic energy U. 
 
The fact that the electronic energy U has a minimum vs. r indicates that there is some equilibrium internuclear 
separation that corresponds to a state in which the two nuclei are bound and stable. 
 

One usually denotes the r�� at the minimum as re, and the difference between U at re and U at  as De. 
       

    ( ) ( )e eD U U r     

 
De  is the energy needed to separate the two atoms of the diatomic, or  in other words the binding energy or 
bond energy. 
 
Notice that our nuclear term is purely repulsive: 
 

    nucl

Z Z
V

r

 



   

 
 
Thus it is electronic energy, Eel, which gives you the minimum in the potential. 
 
There doesn't have to be a minimum in the potential. One can have an electronic state  in which the potential 
energy curve looks like the following: 
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This is a purely dissociative electronic state since it has no stable minimum (no value of re <  where the nuclei 
are at their lowest energy). This is the case for He2 for example. 
 
Molecules will in general have both bound and dissociative states. For stable molecules, obviously the ground 
state  is bound. However,  in the He dimer, He2, the first two potential curves  look something  like that shown 
below (we already saw this when we discussed molecular last semester): 
 

 
 
For this molecule, the lowest state is dissociative and first excited state is bound. A molecule that is bound in 
the excited state but dissociative in the ground state is called an excimer (or exciplex in the case where the two 
atoms are different). 
 
Each one of these curves represents an electronic state, in the same way that each energy of the particle in box 
represents a quantum mechanical state. There is therefore an entire ladder of electronic states. However, we 
have added an additional coordinate that the electronic energy depends upon, i.e., the internuclear separation. 
If we  take  a  cut  along  the  axis  representing  the  internuclear  separation, we  get  a  series  of  energy  levels 
corresponding to increasing values of the quantum numbers for electronic degrees of freedom. When I refer to 
an electronic state of a diatomic, I am speaking of the entire potential energy curve representing the electronic 
energy as a  function of  the  internuclear coordinates. Most of  the  time  I will only consider  the  lowest or  the 
lowest few potential curves (i.e., electronic states).  
 
Solving  the electronic part of  the Schrödinger equation  represents a  field one would call  chemical bonding, 
since it is the electronic part of the Schrödinger equation that results in stable minima between the atoms and 
hence a chemical bond. I will say more about this in a moment. 
 
The electronic part of the Schrödinger equation is only half the problem, however. We haven't yet considered 
nuclear motion. 
 
Since electrons move much faster than the nuclei, they are able to immediately readjust as the nuclei move. In 

the diatomic case, if the nuclei move from r to r, the electronic wave function changes from  ( ; )el iq r to 

'( ; )el iq r . The electronic energy changes smoothly  from U(r)  to U(r') as one moves along  the potential 

curve.  In effect, U(r)  (or  in  the general  case U(q)) becomes  the potential  in which  the nuclei move. One 

solves  the electronic Schrödinger equation  for different qand  then  fits  the  results  to  some  functional  form 
(one dimensional if diatomic; higher dimensional if more than two nuclei). 
 
The Schrödinger equation for nuclear motion can be written. 
 

    ˆ
nuc nuc Tot nucH E       

where     
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    21 1ˆ ( )
2

nucH U q
m

 
 

     

             
ETot is the total energy, electronic + nuclear, since we are including electronic terms in the Hamiltonian though 

the potential, U(q). 
 

For  a  diatomic,  the  potential, U(q),  is  a  one‐dimensional  curve  and  can  be  treated  like  our  simple model 
quantum mechanical systems.  
 
So you can see that we have  incorporated the solution to the electronic problem (i.e., the electronic energy) 
into the nuclear problem through this quantity U. The solution to the nuclear Schrödinger equation, which has 
the nuclear  kinetic  energy  added back  in, will  give us  the  total  energy  eigenvalues  for  the molecule.  If  the 
potential has a global minimum, these eigenvalues will be quantized. 
 
Remember that quantization of energy occurs upon application of the boundary conditions to the Schrödinger 
equations.  For  energies  below  the  asymptote,  the  energy will  therefore  be  quantized.  For  higher  energies 
(above  the asymptote),  there are no bound  states  (i.e., no quantized  energies). The  same holds  for   purely 
dissociative electronic states, here also there are no bound levels. 
 
Potential  curves  like  this  (or  in many  dimensions,  potential  energy  surfaces)  are  called  Born Oppenheimer 
potential surfaces, since in deriving them the Born‐Oppenheimer approximation is assumed. They allow us to 
solve each problem separately, using the eigenvalues from solving the electronic problem as the potential for 
the nuclear problem. 
 
So there are basically two sides of the Born‐Oppenheimer approximation. 
 
   

Electronic Part:           Nuclear Part: 
 

  ˆ
el el el elH E              ˆ

nuc nuc Tot nucH E   

 

  ( ) el nucU q E V             21 1ˆ ( )
2

nucH U q
m

 
 

     

                 
  Chemical Bonding          Molecular Spectroscopy 
  Electronic Structure Calculations 
 
      The connection between the two sides is the function U. 
 
The  electronic  part  is what  one would  call  chemical  bonding,  and  people who  do  research  in methods  for 
solving this part of the Schrödinger equation are called Electronic Structure Theoreticians or Quantum Chemists. 
The people who work on electronic structure calculations try to determine accurate potential energy surfaces, 
U, using ab initio methods, like for example Hartree‐Fock calculations. 
 
The  field  of  research  that  investigates  the  nuclear  part  of  the  Schrödinger  equation  is what we would  call 
Molecular  Spectroscopy  and  people who work  in  this  field  are  called molecular  spectroscopists. Molecular 
spectroscopists measure  energy  levels  (among  other  things)  and  from  their  experimental  data  can  provide 
potential  energy  functions  to  test  the  theoretical  calculations.  (Many  spectroscopists  also  do  electronic 
structure calculations, but  there  is a  real art  to  these calculations, and  those who do  it at  the highest  level, 
usually specialize in the field.) 
 
Thus, you can see that the Born‐Oppenheimer approximation serves as a dividing point in quantum chemistry 
between electronic structure calculations  (chemical bonding) and molecular spectroscopy.  It  is clear that the 

two branches must closely interact as they are connected to each other by U(q). 
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I  will  spend  most  of  this  semester  discussing  the  nuclear  side  of  the  Born‐Oppenheimer  approximation. 
Towards  the  end  of  the  course  I will  go  back  and  say more  about  the  electronic  part  of  the  Schrödinger 
equation when we need to treat electronic spectroscopy of polyatomic molecules. 
 

2.2 Nuclear Side of the Born‐Oppenheimer Approximation 

2.2.1 General Treatment 

We had reduced our nuclear problem to: 
 

    ˆ
nuc nuc Tot nucH E   

and  
   

    21 1ˆ ( )
2

nucH U q
m

 
 

       

 
 
Let us  confine our discussion  to diatomics  for  the moment,  realizing  that we  could  generalize  the  result  to 

larger molecules. For a diatomic, U(q) simply becomes U(R). 
 
Up to now we haven’t considered the center of mass motion explicitly. If we are going to use relative (internal 
coordinates), we must separate the center of mass part of the Hamiltonian. We know, however, that we can 
always do this, we simply get an additional (kinetic energy) term added to the internal energy. Let us assume 
that we have separated off the center of mass motion. In this case the translational energy will not be included 
in  our  expression  for  the  total  energy.  To  signify  that  we  use  relative  coordinates  we  will  denote  the 

corresponding wavefunction as   Int  

 
The function U(R) will consist of a constant part and a part which varies with R. Call the constant part U(Re) and 
the variable part U'(R) 
 

   
 
 
 

Thus we write:  ( ) ( ) ( )eU R U R U R   

 
We can easily evaluate U(Re) by our definition of U 
 

    el

Z Z
U E

R

      

 
U(Re) is simply U(R) evaluated at the minimum. 
 

Solving      ˆ
nuc TotH E Int Int        

 
with  
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ˆ ˆ ( )

ˆ ( ) ( )

nuc KE

KE e

H H U R

H U R U R

 

  
   

 

gives     ˆ ( ) ( )KE e Tot IntH U R U R E   Int    

 
and      

   ˆ ( ) ( )KE int Tot e Int

Int Int

H U R E U R

E

 



  


            

 

where     ( )Int Tot eE E U R    

 
 
One can then see that the total energy ETot can be written 
 

    ( )Tot Int eE E U R    

 
EInt is therefore found from the Hamiltonian  
 

    ˆ ( )KEH U R    

 
So the net result is that we separated the wave function into 
 

    el Int       

 
and the eigenvalues are 
 

    ( )Tot Int eE E U R   

 
where U(Re) is the constant part of the electronic energy (the absolute offset of the curve).  
 
Note that we have included some of the electronic energy in EInt in the sense that we used the part that varied 
with R as the potential for nuclear motion. One typically talks about the electronic energy as being that at the 
bottom of the potential well (i.e., the constant part U(Re)). The part that varies with R is considered the nuclear 
potential energy. This essentially says that the electronic and internal energies are separable. This allows us to 
draw potential curves and draw in energy levels which are solutions to the internal or nuclear motion problem, 
adding the electronic energy as a constant offset for all the vibrational levels. 
 
The  nuclear  Schrödinger  equation  for  a  diatomic  in  internal  or  relative  coordinates  (assuming  we  have 
separated the center of mass motion) is given by: 
 

   
2

2 ( ) ( , , ) ( , , )
2

Int Int IntU R R E R     


 
    

 


   

 
where µ is the reduced mass. 
 
We want to be able to solve this equation to get the values of EInt, and after doing so, we can add U(Re) to get 
the total energies.  
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2.2.2 Separation of Rotational Motion 

Starting with the Schrödinger equation for the nuclear motion as shown above we find: 
 

   
2

2 ( ) ( , , ) ( , , )
2

Int Int IntU R R E R     


 
    

 


   

 

Recall that in Cartesian coordinates, the operator is given by 
 

   
2 2 2

2

2 2 2x y z

  
   

  
   

 
Converting this operator to spherical polar coordinates gives 
 

   
2

2 2

2 2 2 2 2

1 1 1
sin

sin sin
R

R RR R R


   
                         

 

           

If we now substitute for 2 in spherical polar coordinates into the Schrödinger equation for nuclear motion we 
get 
 

 
2 2

2

2 2 2

1 1
sin ( ) ( , , ) ( , , )

sin2 sin
Int Int IntR U R R E R

R RR
      

    

                                 


 

 
Notice  that all  the angular dependence  is contained  in  the second and  third  terms.  If you  look back  in your 

lecture notes of Quantum Chemistry, you will see that the  2̂L  operator in spherical polar coordinates equals:  
 

   
2

2 2

2 2

1 1ˆ sin
sin sin

L 
    

                
    

 
Using this, one can write the Schrödinger equation as  
 

   
2 2

2

2 2

ˆ( , , )
( , , ) ( ) ( , , ) ( , , )

2 2
int

int int int int

R L
R R U R R E R

R RR R

  
        

 
         


 

 
Note  that  the  potential  is  only  a  function  of  R,  and  thus  falls  into  the  category  of  a  spherically  symmetric 
potential.  Recall  that whenever  the  potential  is  of  this  type  (such  as  the  rigid  rotor  or  the  hydrogen  atom 
problem), the solution to the angular part will always be the spherical harmonic functions. 
 
We can see this more clearly if we rearrange the above equation. 
 

     
2 2

2

2 2

ˆ( , , )
( , , ) ( ) ( , , ) 0

2 2
Int

Int Int Int

R L
R R U R E R

R RR R

  
     

 
          


 

 
If we multiply through by 2µR2 and rearrange, we get 
 

     2 2 2 2( , , ) ˆ ( , , ) 2 ( ) ( , , ) 0Int
Int int Int

R
R L R R U R E R

R R

  
      

          
  

 

You can see the only part of the operator that has angular dependence  is the  2̂L  term. We can therefore use 

the separation of variables and assume wave functions ( , , )Int R     of the form 
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    ( , , ) ( ) ( , )m
Int vib JR R Y         

  

where  the  ( , )m
JY     are  the  spherical  harmonics.  We  chose  the  spherical  harmonics  because  they  are 

eigenfunctions of  the  2̂L  operator. Please note  that  in spectroscopy often  the quantum number  J  is used  to 
describe angular momentum.  
 

     2 2ˆ ( , ) 1 ( , )m m
J JL Y J J Y        

 
The part of the Hamiltonian  that has derivatives with respect to R will do nothing to the angular part of the 
wave function. 
 

Substituting for  int and rearranging yields: 

 

   
 22

2

2 2

1( )
( ) ( ) ( ) ( )

2 2
vib

vib vib int vib

J Jd Rd
R R U R R E R

dR dRR R


  

 
      

 


 

      

                  
    This term is the   This term is simply    Potential Energy 
    radial KE   the rotational KE  
 
Note that we have made no other approximations other than the Born‐Oppenheimer to get to this point, and 
that one is very accurate.  
 
Since the rotational kinetic energy term depends on 1/R2, we cannot completely separate vibrational motion 
and  rotational  motion.  To  separate  the  vibrational  and  rotational  motion,  we  have  to  make  another 
approximation. This one  isn't particularly accurate, but  it can give a pretty good physical picture of diatomic 
energy levels. We will use it as a first order approximation. 
 
If we recognize that the vibrational amplitudes of most diatomic molecules are very small, one can replace the 
R in the denominator of the rotational kinetic energy by Re, the equilibrium internuclear distance. We can see 
that the rotational kinetic energy term now becomes 
 

   
 2

2

1

2
rot

e

J J
E

R





   

 
where this term is now independent of R. 
 
We can rewrite our equation: 
 

     
2

2

2

( )
( ) ( ) ( )

2
vib

vib Int rot vib

d Rd
R U R R E E R

dR dRR


 


      
 


 

   
or 

   
2

2

2

( )
( ) ( ) ( )

2
vib

vib vib vib

d Rd
R U R R E R

dR dRR


 


     
 


   

 
where  

    Int vib rotE E E   

 
This leaves us with 
     

    ( ) ( )Tot e Int e vib rotE U R E U R E E      (neglecting translation, as usual) 
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and 

    Tot el Int el vib rot            

 
So  to a  first  level of approximation, we  can  consider  the electronic, vibrational and  rotational motions of a 
molecule separately and write the total wave function as a product and the total energy as a sum. We can then 
solve each problem separately. 
 
Note that from this treatment, we found the rotational energy to be 
       

   
 2

2

1

2
rot

e

J J
E

R





   

 
and the rotational part of the wave functions to be the spherical harmonics: 
 

    ( , )m
rot JY     

 
Our  only  approximation  was  to  assume  that  the  bond  length  R  was  constant.  This  is  the  Rigid  Rotor 
approximation that we have already seen. We have already have solved the quantum mechanics of the Rigid 
Rotor model. 
 
Before  we  go  on  to  the  vibrational  part  of  the  nuclear  Schrödinger  Equation,  I  would  like  to  review  the 
quantum mechanics of the Rigid Rotor. 
 

2.2.2.1 REVIEW OF THE RIGID ROTOR MODEL 

We first wrote down the classical expression for the rotational kinetic energy 
 

   
2

21

2 2
classical

L
KE I

I
   

 
 

and then found the Hamiltonian by substituting the  2̂L  operator. 
 
The Schrödinger equation for rotational motion is then 
 

    ˆ ( , ) ( , )rot rot rotH E          

   
2

2

ˆ
( , ) ( , )

2
rot rot rot

L
E

R
     


    

 
where  there  is  no  R  dependence  of  the  wave  function  since  R  is  fixed.  The  solutions  to  this  are  the 

eigenfunctions of  2̂L  , which are the spherical harmonics,  ( , )m
JY   . 

 

Because the eigenvalues of  2̂L  are   2 1J J  , we can write 

 

   
 22

2 2

ˆ 1
( , ) ( , )

2 2
rot rot

J JL

R R
     

 





   

 
and thus 

   
   2 2

2

1 1

22
rot

J J J J
E

IR
 

 
 

     

 

Where     22I R  
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This is the same expression we obtained for our more general treatment when we assumed the bond length of 
a diatomic molecule to be fixed at R=Re. 
 
If  we define the rotational constant as,  
 

   
28

h
B

cI
      (note the conversion to units of cm‐1) 

 
We can write for the rotational energy expressed in cm‐1: 
 

     1 0,1,2,rotE B J J J       

 
Recall that the spherical harmonics can be written: 
 

   
   

 

1

2!2 1
( , ) (cos )

4 !

mm im
J J

J mJ
Y P e

J m

  


 
  

  
   

 

where the 
m

JP  are the Associated Legendre functions. 

 
The first few spherical harmonics are: 
 

      0
0

1

4
Y


  

    0
1

3
cos

4
Y 


  

    1
1

3
sin

8
iY e 


  

    1
1

3
sin

8
iY e 


   

 
Let's now recall the implications of the energy expression: 
 

     1 0,1,2,rotE B J J J       

 
The first level (J=0) occurs at an energy of 0. The second level occurs at 2B. The next at 6B. This is shown in the 
figure below. 
 

 
            Energy Levels   
 
 
Because the energy levels are spaced by BJ(J+1), the spacings between adjacent levels starts at 2B and increase 
by 2B for each successively higher level. We will use this result extensively when we begin to discuss rotational 
spectra.  

2B

6B

12B

20B

0

4B

2B

6B

8B

E0

E1

E2

E3

E4



2  OVERVIEW OF MOLECULAR SPECTROSCOPY 

19 

 

To understand the transitions between these states (i.e., upon the absorption of light), we must consider how 
light  interacts with molecules and  in particular we must discuss  the  subject of  selection  rules.  I will do  this 
shortly. 
 

2.2.3 The Vibrational Problem  

Once we  separated  off  rotational motion  by making  the  rigid  rotor  approximation, we were  left with  the 
following equation for the vibrational part of the wave function: 
 

   
2

2

2

( )
( ) ( ) ( )

2
vib

vib vib vib

d Rd
R U R R E R

dR dRR


 


     
 


   

 
To simplify this, let us expand the derivatives in the first term 
 

   

2
2 2

2 2 2

2

2

( ) ( ) ( )1 1
2

( ) ( )2

vib vib vib

vib vib

d R d R d Rd
R R R

dR dR dRR R dR

d R d R

R dR dR

  

 

      
   

 

   

 
So we can write for the Schrödinger Equation 
 

   
22

2

( ) ( )2
( ) ( ) ( )

2
vib vib

vib vib vib

d R d R
U R R E R

R dR dR

 
 


 

    
 


     

 

To simplify this a bit further, let us define a new function ( ) ( )vibR R R  . If we can find the function  ( )R  then 

we can go back and get the original function  ( )vib R by dividing by R. 

 

We can put this equation in terms of  ( )R  by substituting for the derivatives of  ( )vib R in terms of  ( )R . 

   

Since     ( ) ( )vibR R R     

 

and thus  
( )

( )vib

R
R

R

    

 
we find for the first derivative:   
  

   
2

( ) 1 ( ) 1
( )vibd R d R
R

dR R dR R

       

 
For the second derivative:  
 

   

2 2

2 2 2 3 2

2

2 2 3

( ) 1 ( ) 1 ( ) 2 1 ( )
( )

1 ( ) 2 ( ) 2
( )

vibd R d R d R d R
R

dR R dRdR R dR R R

d R d R
R

R dRdR R R

   

  

    

  

   

 
Substituting these back into the Schrödinger equation one gets: 
 

   
2 2

2 2 2 3

2 1 ( ) 1 1 ( ) 2 ( ) 2 ( ) ( )
( ) ( ) ( )

2
vib

d R d R d R R R
R R U R E

R R dR R dR R RR dR R R

     

                  


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After canceling a few terms, one gets 
 

   
2 2

2

1 ( ) ( ) ( )
( )

2
vib

d R R R
U R E

R R RdR

  


  


   

 
Finally, multiplying both sides by R gives 
 

   
2 2

2

( )
( ) ( ) ( )

2
vib

d R
U R R E R

dR

  


  


   

 
This  looks  like a simple one‐dimensional problem where the first term represents the kinetic energy, and the 
second term is the potential energy. Both the  internal kinetic energy (i.e., with the center of mass separated) 
and the potential energy depend only upon the separation of the nuclei, R. 
 
Remember where  the potential U'(R) comes  from.  It  is  the potential  that  results  from solving  the electronic 
part of the Schrödinger equation at a series of points (i.e., a number of values for the internuclear separation 
R). I distinguish U(R) from U'(R) in that the latter has the electronic energy at the minimum of the curve, U(Re), 

subtracted off. 
 
Because  U'(R)  is  a  parametric  function  of  R,  no  simple  analytical  form  exists.  Instead,  one  typically  uses 
empirical forms for U'(R). 
 

 
 
Let us use a Taylor series expansion for the potential U'(R) about the position R=Re, and then we can keep only 

as many terms as we like.  
 

       
2 3 4

2 3 4

2 3 4

( ) 1 ( ) 1 ( ) 1 ( )
( ) ( )

2! 3! 4!
e e e e

e e e e e

R R R R R R R R

dU R d U R d U R d U R
U R U R R R R R R R R R

dR dR dR dR   

   
          

 
Remember how we defined U'(R). We  introduced the prime when we subtracted off the electronic energy at 
the minimum in the potential, U'(Re). By definition therefore, U'(Re) = 0. 
 
Also, because we expanded the potential about the minimum, the first derivative 
 

   
( )

0
eR R

dU R

dR 


  

 
 
We are then left with 
 

         
2 3 4

2 3 4

2 3 4

1 ( ) 1 ( ) 1 ( )
( )

2! 3! 4!
e e e

e e e

R R R R R R

d U R d U R d U R
U R R R R R R R

dR dR dR
  

  
         
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We haven't introduced any additional approximations to this point. If the amplitude of the vibrational motion is 
sufficiently small, the  (R‐Re)2 term will be  larger than  the  terms  involving higher powers of  (R‐Re)  (i.e., cubic, 
quartic, etc.). As a first approximation, we can neglect these higher terms. We are then left with 
 

     
2

2

2

1 ( )
( )

2!
e

e

R R

d U R
U R R R

dR



        

 

If we define  ex R R      and    
2

2

( )

eR R

d U R
k

dR



  

We can then write: 
 

    21
( )

2
U x kx   

 
This is the equation for a parabola. What we are doing in neglecting higher order terms is to say that near the 
bottom of the well, the potential is well approximated by a parabola.  
 

 
 
This  expression  for  the  potential  energy  is  the  potential  for  a  simple  harmonic  oscillator.  To  a  first 
approximation,  the quantum mechanical harmonic oscillator  is a  reasonable model  for molecular vibrational 
motion. 
 

2.2.3.1 REVIEW OF THE HARMONIC OSCILLATOR MODEL 

I will briefly review the solutions (i.e., the eigenvalues and wave functions) to the Schrödinger equation for the 
harmonic oscillator:  
 

   
2 2

2

2

1
( ) ( )

2 2
vib

d
k x x E x

dx
 


 
   
 


 

  
 
Eigenvalues of the Quantum Mechanical Harmonic Oscillator 
 
The eigenvalues are given by: 
 

    v

1
v v 0,1,2,3,

2
E h     

 
  

where  

   
1

2

k
 

  

 

Note that is the same as the frequency of the classical harmonic oscillator. 
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If we superimpose these levels on the potential curve, they look as follows: 
 

 
 
There are several important things to note about the Harmonic Oscillator energy levels: 
 

1) The energy levels are equally spaced in integral units of the classical frequency.  
 

     
1

2

k
 


 

 
  Remember that k is related to the width of the potential (which is a parabola): 
 

      21
( )

2
U x kx 

 
2) The second point  to notice  is  that even when  the quantum number v=0,  there  is still energy  in  the 

amount of h�/2. This is called zero point energy. 
 
 
Eigenfunctions of the Quantum Mechanical Harmonic Oscillator 
 
Recall that wave functions corresponding to the eigenvalues Ev are non‐degenerate and are given by 

 

   
21 1

2 2( ) ( )
x

n n nx N H x e
      

 
where 

   
2

k 


  

 
The normalization constant Nn is  

 

   

1

41

2 !
n

n
N

n




   
 

   

 

and the 
1
2( )nH x  are polynomials called Hermite polynomials 

 
The first few Hermite polynomials are: 
 

0

1

2
2

3
3

( ) 1

( ) 2

( ) 4 2

( ) 8 12

H

H

H

H



 

 

  





 

 

    Note: 
1
2 x   
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The full harmonic oscillator wave functions look something like this: 
 

 
 

2.2.4 Vibration‐Rotation Interaction 

If one makes spectroscopic measurements with any reasonable degree of accuracy, one finds that these simple 
models for vibration and rotation are not very good. 
 
Thus, one must solve the coupled vibration‐rotation problem to account for the experimental observations.  I 
will not do this in class, but I will outline how it is done and give you the result. 
 
If you go back to the Schrödinger equation: 
 

   
 22

2

2 2

1( )
( ) ( ) ( )

2 2
vib

vib Int vib

J Jd Rd
R U R R E R

dR dRR R


 

 
        

    


 

 
As before, we can make the substitution  
 

   
( )

( )vib

R
R

R

    

 

to simplify the kinetic energy term and find a new equation for (R).  
 

   
 22 2

2 2

1( )
( ) ( ) ( )

2 2
int

J Jd R
U R R E R

dR R

  
 

 
    

  


   

 
Then,  rather  than  assuming  that  the  potential  is  harmonic, we  can  expand  U'(R)  in  a  Taylor  series  in  the 

displacement from Re,  ex R R  .  

 

   
2 3 4

2 3 4

2 3 4
0 0 0 0

( ) 1 ( ) 1 ( ) 1 ( )
( ) (0)

2! 3! 4!x x x x

dU x d U x d U x d U x
U x U x x x x

dx dx dx dx   

   
        

 
The first term is zero by definition, and the second is zero because we are expanding about the bottom of the 
well.  
 
We are then left with 
 

    2 3 41 1 1
( )

2 6 24
U x k x a x bx      

 
where we have simplified the coefficients of x 
 
One can also expand the 1/R2 term in a Taylor series in x.  
 

v=0

v=1

v=2

v=3

x = 0
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      22 2 2

2 2 2

2

1 1 1
1

2 2
2 1

ee

e

e

J J J J J J x

RR Rx
R

R

 



    

   
   

 
 

  
 

 
Note that 

          2 3
1 1 2

1 1
2! 3!

s s s s s s
y sy y y

  
       

 
We can therefore write  
 

   

          

     

2 2 32 2

2 2

2 2 2

2

2 3 4

1 1 2 3 2 3 4
1 1 2

2! 3!2 2

1 1 3 1

2 2

e e e ee e

e e e

J J J Jx x x x

R R R RR R

J J J J J J
x x

R R R

 

  

               
             
         

  
   

 


  


 

 
Putting it all together, we get something that looks like: 
 

 
     2 2 22 2

2 3 4 2

2 2 3 4

1 1 3 1( ) 1 1 1
( ) ( )

2 2 6 24 2 2
Int

e e e

J J J J J Jd x
k x ax bx x x x E x

dx R R R

  
   

   
         

  

      

 
where the constants k, a, b come from the expansion of U, and the 1/Re terms come from the expansion of the 

1/R2 term. 
 
After rearranging we get: 
 

     2 2 22 2
2 3 4

2 3 4 2

1 3 1 1( ) 1 1 1
( ) ( )

2 2 6 24 2
Int

e e e

J J J J J Jd x
x k x ax bx x E x

dx R R R

  
   

      
                     

     

 
We can simplify this expression by including the Rigid Rotor term (first term in expansion of the 1/R2 term) into 
the energy by defining   
 
    Int Int RigidRotorE E E    

 
and defining an effective force constant 
 

   
 2

4

3 1

e

J J
k k

R


  


 

 
This yields then 
 

   
 22 2

2 3 4

2 3

1( ) 1 1 1
( ) ( )

2 2 6 24
int

e

J Jd x
k x x ax bx x E x

dx R

  
 

 
        

  

   

 
You can see that this  looks  like a perturbed Harmonic Oscillator (a harmonic oscillator with a few extra small 
terms added into the potential). We can use perturbation theory to solve this problem. I will not go through the 
details of the perturbation theory solution to this problem, but using the tools that we already have developed 
(particularly the raising and lowering operators), it is not difficult. 
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The result for the energy EInt  (now also called EvJ) is as follows: 
   

     
2

22v 1 1 1
(v, ) v 1 v v 1 1

2 2 2
J

e e e e

E
F J B J J x J J DJ J

hc
                        

     
  

              
      HO   rigid         anharmonicity    vib‐rot  centrifugal 
       rotor            interaction  distortion 
       
where the constants are given in units of cm‐1.   
 

The constants e, Be, exe, , and D can be simply related to the coefficients in our Taylor series expansion of 

the potential and centrifugal term, a, b, k, Re. (i.e. related to the potential) 

 

This expression results from taking a certain number of terms in  Ĥ  in the perturbation theory treatment. If we 
were to take more terms, our energy expression would also contain more terms. You can see that the energy 
expression looks like a power series in the quantum numbers v and J(J+1), and one can take it to higher order. 
 
The terms that I have included here give a reasonably accurate expression for the energy levels of a diatomic 
molecule. How accurate you need to be depends upon how precisely you measure. However, the higher order 
terms begin to lose their physical significance. 
 
I would like you to have a good feel what these constants in the EvJ formula mean physically. 
 

1) 
1

v
2

e
  
 

    

  This term represents the vibrational energy. We know that  
 

   
1

2
e

k

c


 
   

 
  is the frequency of the classical harmonic oscillator (expressed  in units of cm‐1 ). Remember that k  is 

the width of the parabola, the force constant of vibration. Small k means that it is a wide parabola and 
a "loose" vibration. The wider the parabola the more closely spaced the levels. A thin parabola (large 
k) results in wide spacing and a "stiff" vibration. 

 
 

2)  1eB J J     

  This term gives the rotational energy. Remember that 
 

   
28

e

h
B

cI
      (in units of cm‐1 )   

   

where I is the moment of inertia  2
eI R . Remember the rigid rotor energy levels are given by:  

 

     1rotE BJ J  .  

 
  Consequently larger Be means more widely spaced levels.  This corresponds to smaller Re or smaller µ. 

Light atoms � large Be. H2 has the largest Be. 
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3) 
2

1
v

2
e ex    

 
 

  This term  is due to the anharmonicity of  the potential.  It accounts  for  lowering of the energy  levels 
due to the widening of the parabola:     

     
 
  As  the bond weakens as R  increases,  the potential gets  looser and  the  level spacing decreases. The 

negative sign in front of the term accounts for this decrease of the level spacings. 
 
 

4)  22 1DJ J   

  This term is named the centrifugal distortion term. Remember that 
 

   
28

h
B

cI
      (in units of cm‐1 )   

 
  As R increases due to rotation, B will decrease. So B will be smaller than Be , and the level spacings will 

be smaller than rigid rotor spacings. The minus sign in front of this term is responsible for reducing the 
level spacings with increasing rotation. 

   
  One could show that 
 

   
33

4 2 2 2
0

4

32
e

e

Bh
D

I ckR 
       

 
 

5)  1
v 1

2
J J     

 
  

  This term describes the vibration‐rotation  interaction. The rotational spacing depends on B which  in 
turn depends on R. Up to now we considered a rigid molecule with R fixed. 

 
  But the vibrational state affects the average value of R. 
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  R   changes  with  vibrational  state.  This  results  from  the  anharmonicity  of  the  vibration.  (If  the 

potential  were  a  parabola,  R   wouldn't  change.)  You  can  see  that  the  anharmonicity  and  the 

vibration‐rotation  interaction  are  related.  They  both  are  related  to  the  "a"  constant  in  the  power 
series expansion of U'(R). 

 
 
The best evidence for the fact that we solved the problem correctly  is that it works. Using this expression for 
the energy levels, one can account reasonably well for the measured energy spacings. 

 
 
One can measure these spacings very well using modern spectroscopic techniques. 
 

2.3 What is a Spectrum? 
Up  to  this point  I have  reviewed much of  the  important quantum mechanical background. All  I have  talked 
about,  however,  is  spacings  of  energy  levels.  I  have  said  little  about  spectroscopic  transitions.  The  field  of 
molecular  spectroscopy  involves  causing molecules  to make  transitions  from one  state  to  another,  and we 
must consider the details of how this occurs. 
 
Before I go any further, however, I want to define some of the terminology that we will be using. Much of the 
difficulty in understanding a subject is often simply understanding what the different terms mean. I will start by 
addressing the questions: 
 
What is a spectral line or spectral transition? and What is a spectrum?  
I will then go on to define what we mean by spectral  intensity or transition strength and the  linewidth of a 
transition. 
 
Before  I answer  these questions,  I need  to  remind you of a  few  things about  the nature of electromagnetic 
radiation or  light. Light usually  refers  to only visible wavelengths, but  I will often use  it  in  the more general 
sense meaning all electromagnetic radiation. 
 
In  a wave picture, electromagnetic  radiation  contains, as  its name  implies, oscillating  electric  and magnetic 
fields. These fields are oriented perpendicular to each other and perpendicular to the direction of propagation. 
This is best shown in the figure below, by considering linearly polarized light. 
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The magnitude of the electric and magnetic field vectors can be given by: 
 

    0( , ) sin(2 )xE z t E t kz        0( , ) sin(2 )yB z t B t kz     

 
with 

    0xE ,  0yB  the electric and magnetic field amplitudes, respectively ( 0 0 /y xB E c  ) 

   
c


     is the frequency of the  light, given by the speed of  light, c  , divided by the 

        wavelength of the light.   

   
2

k



     is called the wave vector 

        is the relative phase 
     
 
Recall that light can be treated either as a wave or as a particle. In the particle picture, light consists of photons 
with energy: 
    E h  

 
When  light  shines on a molecule  in a particular quantum  state,  it  is possible  for  that molecule  to  absorb  a 
photon. If the energy of the photon, defined by the expression  E h , corresponds precisely to the difference 
in energy between the quantum state that the molecule is in and some other quantum state, then it is possible 
for the molecule to absorb a photon and make a transition from the initial quantum state to the final quantum 
state. 
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Before After
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The frequency or energy of the photon must be such that 
 
    0photon final initialE h E E E        

or    
   

   
0

final initialE E

h



  

 
This expression is called the Bohr frequency condition 
 
Note that I said it was possible for the molecule to absorb the radiation. Whether it does or not depends upon 
several factors that we will consider shortly. 
 
A spectral  line  is what one calls a plot of  the absorption of  light by a molecule or atom as a  function of  the 
frequency of  that  light. This  is also  referred  to simply as a transition, although  this  latter  term  is used more 
generally to refer to the act of going from one state to the other. 
 
The intensity or strength of a transition is related to the probability that the molecule or atom will undergo the 
transition when illuminated by light at the proper frequency.  
 



2  OVERVIEW OF MOLECULAR SPECTROSCOPY 

29 

 

To be more specific, assume we have an absorption cell of length l containing a sample of the material which 
we are studying at concentration c in moles per liter. Let I0 be the intensity of light going into the cell (i.e. the 
number of photons per unit time per unit area) and I be the intensity of the light coming out.  
 
 

     
 
 
According to the Beer‐Lambert Law, the absorbance A is given by 
 

    0log ( )
I

A cl
I

    
 

       

 

( )   is a function of the frequency  and is called the molar absorption coefficient, c is the concentration and l 

the length of the cell. 
Often what we are plotting when we show a spectral line is the absorbance as a function of the frequency or 
sometimes the molar absorption coefficient as a function of frequency.  
 
 

A
bs

or
ba

nc
e

 0
 

  (FWHM) 

()cl 

max cl 

 
One  usually  plots  the  absorption  coefficient  as  a  function  of  the  frequency,  since  it  is  proportional  to  the 
absorbance and independent of c and l. It is a property of the molecule alone. 
 
This is what we would call a spectral line. The term comes from early experiments observing the emission from 
excited atoms. If I showed this spectral feature on a wide enough frequency scale, it would appear as a spike or 
a line. 
 
Strictly speaking, the  intensity of a transition or the transition strength  is proportional to the  integral of the 
function ���� across the entire profile 
 

   
2

1

Transition strength ( )d




     

 
I will not be so concerned with the units that we use for the intensity of a transition. 
 
As  we  will  as  the  course  progresses,  the  intensity  of  the  transitions  is  related  to  the  wavefunctions 
corresponding to the energy levels involved in the transition.  
 

Absorption cell

I0 I

 l 
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The linewidth, , of a transition is usually defined as the width at half the height of the maximum of the curve 
(Full Width Half Maximum or FWHM). We will see later that the linewidth can provides us information on the 
dynamics or kinetics of the molecules. 
 

The frequency of the line center,  provides information on the energy levels of the atom or molecule, and as 
we have seen  to  some degree already and will  see more  later,  this can  tell us  things  like  the geometry of a 
molecule, the vibrational force constants, etc. 
 
I still haven't defined the term spectrum. 
 
A spectrum is a collection of many spectral lines that results when one measures the absorption of a molecule 
as a  function of  frequency. As you will  see,  spectral  lines  tend  to be clumped  together  in certain  frequency 
regions   and a spectrum  is usually a measurement of an entire clump. However, one could call even a single 
spectral line a spectrum. 
We will consider 3 types of spectroscopic transitions (indicated on the figure below): 

1. pure rotational  microwave 

2. rotational‐vibrational  infrared 

3. rotational‐vibrational‐electronic  Visible‐UV 
 
Spectroscopic transitions occur at frequencies (energies) corresponding to the difference between two energy 
levels. For the most part, energy  level spacing for different types of motion are sufficiently different that  it  is 
straightforward to tell what type of transition one is observing given the frequency. 

 
 
 
 
It is important to have a good physical feel for the relative magnitudes of the transition frequencies (energies). 
 
Molecular process  Wavelength (m)  Wave number (cm‐1)  Region 

polyatomic rotation  0.3 ‐ 0.003  0.033 ‐ 3.3  Microwave 

rotation of small molecules  3x10‐3 ‐ 3x10‐5  3.3 ‐ 330  Far infrared 

vibrational motion  3x10‐5 ‐ 3x10‐6
 

330 ‐ 3300  Infrared 

electronic transitions  3x10‐6 ‐ 3x10‐8
 

3300 ‐ 3.3 x105  Visible and Ultraviolet 
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You  should  be  able  to  look  at  a  spectrum  and  immediately  tell  if  it  is  a  pure  rotational,  rovibrational,  or 
rovibronic (rotational‐vibrational‐electronic) spectrum. 
 
We will  spend much  time  later  in  the  semester  discussing  the  expected  frequencies  for  different  types  of 
transitions. This is simply a question of where the different energy levels occur. It will be specific to each type 
of motion and will have different patterns for different classes of molecules. 
 
In the present chapter, which  is meant as an overview of molecular spectroscopy, I will discuss the subject of 
spectroscopic  intensities and  linewidths. There are a number of different factors that determine the  intensity 
and linewidth of a spectral line. I will discuss them in a general sense now, and then we will apply these general 
concepts later to different types of spectroscopic transitions. 
 
 

2.4 Spectroscopic Intensities 

2.4.1 Kinetics of Optical Absorption 

Not all transitions occur with equal intensity. In fact, many transitions are completely forbidden. If this weren't 
the case, it would be much more difficult to interpret molecular spectra. 
 
To  fully understand  the  intensities of  transitions between discrete  states  in an atom or molecule, one must 
have some understanding of the interaction of radiation with matter. In particular, we must consider the rates 
of transitions from one state to another induced by electromagnetic radiation.  
 
In 1916, Einstein published a treatment of a quantum mechanical system (i.e., a system with discrete energy 
levels) in a classical radiation field. The following discussion follows his treatment.  
 
Let  us  start  by  considering  a  few  of  the  processes  that  could  occur when  light  interacts with  an  atom  or 
molecule (or any two level quantum mechanical system). I have already introduced to you the process that we 

call  absorption.  In  this  process,  a  photon with  energy  E h  which  is  equal  to  the  difference  in  energy 
between  state  1  and  state  2,  causes  the  system  to make  a  transition  from  state  1  to  state  2. During  this 
process, the photon is absorbed. 
 

 

state 1 

state 2 

state 1 

state 2 

Before After

E 1 

E 2 

E1

E2
h 

 
Now consider  the case  in which  the molecule  is  initially  in  the upper state  rather  than  starting  in  the  lower 
state.One process  that  can occur  in  this  situation  is  that  the molecule  can  spontaneously make a  transition 

from the upper state to the lower state, giving off a photon of energy E=h where this energy is equal to the 
difference  in  energy  between  the  two  levels.  This  process  is  called  spontaneous  emission.  The  term 
spontaneous  comes  from  the  fact  that  it  happens  without  any  external  influence  (i.e.,  not  initiated  by  a 
photon). 
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state 2 
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In a third type of process, the molecule initially in the excited state encounters a photon with energy equal to 
the separation between states 1 and 2. In this case, the photon can induce or stimulate a downward transition 
from state 2 to state 1. 
 

state 1 

state 2 

state 1 

state 2 

Before After

E 1

E 2

E1

E2
h 2h 

 
 
In this case, the original photon remains and is accompanied by the emission of a second photon of the same 
frequency. This process is called stimulated emission because the emission of the second photon is stimulated 
by  the  presence  of  the  first.  Stimulated  emission  is  essentially  the  inverse  process  of  absorption. Both  are 
induced by  the  radiation  field  (i.e.,  the photon).  In one case a photon  is destroyed,  in  the other a photon  is 
created. You can see from the conservation of energy that stimulated emission must be accompanied by the 
creation of a photon. 
 
With these three processes in mind, consider the following: 
Let's say we have a collection of N two level systems with lower level 1 and upper level 2. The energies of these 
states are given by W1 and W2  respectively  (I use W  rather  than E because we will use E  for electric  field). 
Assume that these systems are all at the temperature T and are put in a bath of ambient radiation of density 

 (the energy of radiation between frequencies and d in unit volume being d). The system is at 
equilibrium (i.e., no net change in the populations of levels 1 and 2). We will denote the populations of levels 1 
and 2 by N1 and N2. Consider  the  rates of  transitions between  these  states due  to absorption,  spontaneous 
emission, and stimulated emission. 

 
 
Absorption: 
The rate at which the systems are promoted from level 1 to level 2 due to absorption of radiation of the proper 
frequency must be proportional to  

1. the radiation density, 12 
2. the number of molecules  in state 1 (clearly,  if there were no molecules  in state 1 there would be no 

transitions from 1 to 2.). 
 
Thus we can write the rate of change of the population of state 2 due to absorption as 
 

    2
12 12 1( )

dN
B N

dt
   

 
where  B12  is  simply  the  rate  constant  or  proportionality  constant.  This  constant  is  called  the  Einstein  B 
coefficient. 
 
Spontaneous Emission: 
Spontaneous emission takes the systems initially in state 2 and brings them down to state 1.  

1. This process is independent of the radiation density, since it is spontaneous.  
2. It will be proportional to the number of systems in state 2 (clearly, if there were no       

systems in state 2, there would be no spontaneous transitions from 2 to 1). 

1

2

B12 A21 B21
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We can therefore write: 
 

    2
21 2

dN
A N

dt
   

 
 
where A21 is the proportionality constant or rate constant for spontaneous emission. This is called the Einstein 
A coefficient. The negative sign arises from the fact that state 2 is being depopulated by this process. 
 
Note  that  since  the  rate  of  spontaneous  emission  is  proportional  to  the  Einstein A  coefficient  and  not  the 
radiation density, the lifetime of a molecule in a particular state in the absence of radiation is given by 
     

   
21

1

A
     

 
Thus, the A coefficient is the inverse of the lifetime. 
 
 
Stimulated Emission: 
Finally, stimulated emission will induce transitions from state 2 to state 1.  

1. As in the case of absorption, it will be proportional to the radiation density.  
2. It will also be proportional to the number of systems in state 2. 

 
We can write: 

    2
21 12 2( )

dN
B N

dt
    

 
where B21 is the Einstein coefficient for stimulated emission. 
 
If the system is at equilibrium, the populations in systems 1 and 2 must not be changing. This means that the 
rate of transitions from 1 to 2 must be equal to the rate of transitions from 2 to 1. Another way to say this is 

that the net rate  2dN

dt
 (or  1dN

dt
) must equal zero. Thus we can sum all the contributions to  2dN

dt
 and set them 

equal to zero. 
 
We then have:   

      12 12 1 21 2 21 12 2( ) ( ) 0B N A N B N       

       
Rearranging, one gets:   
 

   

 

12 12 1 21 2 21 12 2

21 21 12 2

( ) ( )

( )

B N A N B N

A B N

   

 

 

 
 

             
 

or     

       
We know from statistical thermodynamics that the equilibrium populations of states 1 and 2 are related by the 
Boltzmann distribution law: 
 

   
2 1 12( )

2 2 2

1 1 1

b b

W W h

k T k TN g g
e e

N g g


 

   

 
where kb is the Boltzmann constant and g1 and g2 are the degeneracies of states 1 and 2. 

2 12 12

1 21 21 12

( )

( )

N B

N A B
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
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Thus, we can write  
       

   
12

12 12 2

21 21 12 1

( )

( )
b

h

k TB g
e

A B g

 
 






 

 

or solving for  

   

12

12

12

2
21

1
12

2
12 21

1
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1
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b
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h
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g







 












 

 
There  is one more  thing  that we  know.  I originally  stated  that  the  system was  bathed  in  radiation density 

We know from Planck's law of black body radiation that: 
 

   
3

12 3

8 1
( )

1b

h

k T

h

c
e



   



 

 

Setting the two expressions for  equal gives:  
 
 

   
12 12

3
12 21

3

1
12 21

2

8 1

1b b

h h

k T k T

h A

c g
e B e B

g

 

 


 

 

You can see that there are two conditions that must be met for this equality to hold: 
 

1. 1
12 21

2

g
B B

g
    (note that if g1 = g2 then B21 = B12) 

    this will always be true for non‐degenerate states since g1 = g2 = 1 
 

2. 
3
12 21

21 3

8 h B
A

c

 
  

 
The first tells us that for non‐degenerate states, the strength of the upward transition is equal to the strength 
of the downward transition. 
 
The second gives us a relationship between the strength of a transitions and the lifetime of the state, since A = 

1/.    Also,  note  the  3  factor  in  the  numerator.  This  says  that  as  the  frequency  increases,  the  rate  of 
spontaneous emission increases rapidly compared to stimulated emission. 
 
One  could  show  that  the Einstein B  coefficient  for absorption, B12  is directly  related  to  the  integrated band 
intensity:     

    12

12

ln10
( )

1000 A

B d
N h

  


   

 

where  is defined by 
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    ( )

0

10 clI

I
   

 
c is the concentration in moles per liter. NA is Avogadro’s number. 
 
I will demonstrate shortly how the Einstein coefficient  is directly related to properties of the molecular wave 
function.  
 

2.4.2 Time Dependent Perturbation Theory 

We now need to understand which levels can be connected by a spectroscopic transition. Up to now we have 
only considered the interaction between radiation and matter in a general way. We have not at all considered 
the  nature  of  the  quantum  mechanical  levels  (i.e.,  the  wave  functions).  We  now  need  to  connect  the 
expression for the band strength to properties of the wave functions. This will allow us to determine selection 
rules for spectroscopic transitions (i.e., the rules that tell us which transitions can occur). 
 
In order to do this, we need to use time dependent perturbation theory. 
 
The very nature of a spectroscopic transition implies a time‐dependent phenomenon, and so we must consider 
the time‐dependent Schrödinger equation. 
 

   
( , )ˆ ( , )
t

H t i
t


 


r

r   

 
If the Hamiltonian does not explicitly depend upon time, we know that 
 

    ( , ) ( )
niW t

n nt e


 r r   

 

where  ( )n r   is  the  solution  to  the Time  Independent Schrödinger Equation    (i.e.,  is an eigenfunction of  the 

Hamiltonian) and is called a stationery state (since  * *( , ) ( , ) ( ) ( )n n n nt t    r r r r  
 
When  we  consider  the  interaction  of  matter  with  radiation,  we  must  take  into  account  the  fact  that 
electromagnetic field depends upon time: 
 

    0 cos(2 )tE E    

 
In all the types of spectroscopy that we will consider, the electric field interacts with the molecule through its 
electric dipole moment. There are other  types of  interactions between a  radiation  field and a molecule, but 
these are much weaker in general. We will only consider electric dipole induced transitions. The electric dipole 
moment is defined as: 
 

    j j
j

qμ r  

 

where qj is the charge of particle j and  jr   its position. 

 
Knowing the charge of the electrons and of the nuclei this can also be written as: 
     

    i
i

e Z e 


   μ r r  

 

where  jr  is the position of electron i and Z� and  r  are the charge and position, respectively,  of nucleus . 
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If μ  is the dipole moment of the molecule, the interaction energy between the field and the molecule is 

 

    0
ˆ cos(2 )H t      μ E μ E    

 
We therefore need to solve 
 

   
( , )ˆ ( , )
t

H t i
t


 


r

r   

  
Where: 

     0 0 0
ˆ ˆ ˆ ˆcos(2 )H H t H H     μ E    

 
This looks like a problem for perturbation theory if the second term on the right is sufficiently small. 
 
Recall  that  in  Time  Independent  Perturbation  Theory, we  expressed  the  first  order  correction  to  the wave 
function as a linear combination of the zeroth‐order wave functions (since they form a complete orthonormal 
set). 

   
 

(1) (0) (0)

(0) (0)

mn
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m n m nn m
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E E
  

 


 


   

 
We can do the same thing here, but because the perturbation depends upon time, the expansion coefficients 
will also depend upon time in a manner more complex than the simple exponential time dependence we have 
discussed earlier. You can see how this might lead to transitions between zeroth‐order states. 
 
To  simplify matters,  let  us  consider  a  system  in which  the  unperturbed  problem  has  only  two  states.  (The 
development for a real molecule which has an infinite number of states is analogous to this simple case). 
 
For such a system: 
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t

H t i
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The stationery state solutions are 
 

   
1

1 1( , ) ( )
iW t

t e


 r r      and    
2

2 2( , ) ( )
iW t

t e


 r r   

     
We will assume that the wave function at any time t can be written as a linear combination of the zeroth‐order 
wave functions: 
 

    1 1 2 2( , ) ( ) ( , ) ( ) ( , )t a t t a t t    r r r    

 
where the expansion coefficient are time dependent. This is essentially saying that although the wave function 
is changing in time, at any instant it can be written as a linear combination of the zeroth‐order eigenfunctions. 
 
Assume that the system starts at t=0 in state 1 (i.e. in the ground state). 
 
This means that:   
     

    1( 0) 1a t       and     2( 0) 0a t    

 
To determine the time dependence of the expansion coefficients, we need to substitute  ( , )t r into the Time 

dependent Schrödinger equation: 
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Note that the first and second terms on the left hand side cancel with the third and fourth terms on the right 
hand side. 
This leaves: 

    1 2
1 1 2 2 1 2

( ) ( )ˆ ˆ( ) ( , ) ( ) ( , ) ( , ) ( , )
a t a t

a t H t a t H t i t i t
t t
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If we now multiply by  *
2  and integrate over spatial coordinates and use the fact that �1 and �2 are orthogonal 

we get (after some rearranging): 
 

   
 1 2
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Note  that  I  have  separated  the wave  functions 1  and 2  into  the  spatial  parts  and  the  exponential  time 
dependent part. 
 

Since  Ĥ   is  a  small  perturbation,  there  are  not  enough  transitions  out  of  state  1  that  a1  and  a2  differ 
significantly from their initial values. This approximation is called the “weak field limit”. 
 
Thus we can assume a1 ≈ 1 and a2 ≈ 0 at all times. This gives 
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Now, let us take the electric field to be in the z‐direction. (We need not do this, but it is easy to generalize to 
isotropic radiation). 
 
We then have 
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If we substitute this into the above equation we get the instantaneous transition rate: 
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where 
 

      *
2 121

ˆ( ) ( )z z d     r r r      

 

This  quantity,  
21z ,  is  the  z‐component  of  the  dipole moment matrix  element  (otherwise  known  as  the 

transition moment) between states 1 and 2. The rate of transitions out of state 1 into state 2 is proportional to 

 
21z . If this term is zero, transitions will not occur. 

 
It is this term that gives rise to the selection rules for transitions induced by electromagnetic radiation. We will 
show this more explicitly in a moment. However, first I will integrate the preceding equation for the duration of 
the perturbation (i.e. the finite time the molecule interacts with the field). This gives 



2  OVERVIEW OF MOLECULAR SPECTROSCOPY 

38 

 

     
   2 1 2 1

2 021
2 1 2 1

1 1 1
( )

2

i W W h t i W W h t

z z

e e
a t E

W W h W W h

 


 

    
          

 
 

 
Note that in each term within the brackets, the complex exponential can only vary between 1 and ‐1 (since a 
complex exponential  is simply sines and cosines). Thus,  the numerator of each of  these  terms can only vary 
between 0 and 2. For either one of these two terms to get large, the denominator must become very small. 
 

Because W2 > W1 , the second term gets much larger than the first when W2 – W1 = h. This occurs when the 
radiation is on resonance with an upward transition (i.e., leading to absorption). In this case one could neglect 
the first term.  
 
Note that the second term goes to infinity when the radiation is on resonance. This arises because we treated 
the field classically. Treating the electric field quantum mechanically will still give a resonance, but it won't go 
to infinity. 
 

The magnitude of the coefficient a2 depends strongly upon the frequency of the radiation, as 
2

2 ( )a t gives the 

probability that the system which started in state 1 will have made a transition to state 2 by time t. Thus, when 

the  radiation  is  tuned  to  a  resonance  (i.e., W2  – W1  =  h),  the  probability  of making  a  transition  is  at  a 
maximum. 
 
If  we  neglect  the  first  term  and  only  consider  the  absorption  process,  we  can  obtain  (after  some 
rearrangement): 
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This expression has been derived assuming an oscillating electric field at only a single frequency. In practice we 
always deal with a range of frequencies, and we must integrate this expression over the range of frequencies 

near the resonance condition. Because the integrand will only be significant over the region of  near 12, we 
can take  2

0zE  outside of the integral and evaluate it only at .  
 

We then have:       
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We can integrate this from ‐ to + because the integrand will only be significant near resonance. We can then 
make use of the fact that  
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 This gives us 
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One can easily show that for isotropic radiation, the z‐component of the electric field is related to the radiation 
density by 
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The probability of finding the system at time t in level 2 is then given by:   
       

       2 2

2 122 21
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The average transition rate  is the probability of making the transition during the time  interval t during which 
the perturbation exists. 
 
Thus we can write 
 

    transition rate     
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But recall that the rate of making an upward transition is related to the Einstein B coefficient 
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Therefore 
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Remember that we treated only polarized light in the z‐direction. The expressions for the x and y‐directions are 
completely analogous. We therefore have in general 
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Thus, we have  related  the absorption strength directly  to  the dipole moment matrix elements  (or  transition 
moments)  
 

      *
2 121

ˆ( ) ( )z z d     r r r    

 
and  likewise for the x and y components.  If we have an expression for the dipole moment of a molecule, we 
can calculate  the  intensity of  its spectroscopic  transitions. Selection  rules arise because  in certain situations, 
these integrals become identically zero. 
 
It is important to realize that dipole moment matrix elements such as these play an extremely important role in 
spectroscopy!  The  two most  important  features  in  a  spectrum  are  the  frequency  and  the  intensity  of  the 
transitions. The  frequencies  tell us about the spacing of the energy  levels and ultimately about the potential 
energy  surface. The  intensities are  related  to properties of  the wave  functions  through  this dipole moment 
integral. 
 
I would now  like  to discuss  some  general  considerations  in  evaluating  the  spectroscopic  selection  rules  for 
different kinds of spectroscopy. 
 

2.4.3 Spectroscopic Selection Rules 

I have  just  shown  that  the  transition probability or  transition  rate B12  is proportional  to  the  square of  the 
dipole moment matrix elements. This gives us a measure of the relative strength or intensity of a spectroscopic 
transition.  
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I  have  frequently  used  the  term  selection  rules  in  discussing  spectroscopic  transitions  but  I  haven't  clearly 
defined what I mean. Selection rules are restrictions on the changes  in quantum numbers between the  initial 
and final state in a spectroscopic transition.  
 
In other words, transitions are only allowed for certain changes  in the quantum numbers. The origin of these 
rules can be clearly seen by considering the integral of the dipole moment operator that we had to perform to 
determine the Einstein coefficient. 
 
That  integral will be non‐zero  for only certain allowed changes  in  the quantum numbers during a  transition. 
From  a  practical  point  of  view,  the  fact  that  transitions  are  not  allowed  between  all  levels  is  extremely 
important.  If all possibilities were allowed,  it might be hopeless to understand the pattern of transitions that 
one observes  in a spectrum. However, the  fact  that only a restricted number of  transitions occur makes  the 
pattern of lines simpler. 
 
Let us go back and consider the transition moment integral and see how it gives rise to several different types 
of selection rules. 
 
For plane polarized light in the z‐direction, 
 

       22 *
12 2 121

ˆ
z zB d        

 

where  ˆz  is the dipole moment operator. 

 
For any kind of dipole‐induced  transition between  two states  (i.e.,  rotational, vibrational, electronic) we can 
write to a first approximation: 
 

    * * * *
2 1 2 2 2 1 1 1
ˆ ˆ
z el vib rot z el vib rot el vib rotd d d d                

 
ˆ
z  is the dipole moment operator in the lab fixed frame. 

 
From the point of view of intensities, the rigid rotor and harmonic oscillator wave functions are good enough to 
use  in  these  integrals.  However,  the  breakdown  of  these  approximations  will  lead  to  certain  “forbidden” 
transitions having small intensities. 
 
When one thinks of dipole moments, one usually thinks  in the molecular frame. For a diatomic molecule, we 
can relate the z component of the dipole moment in the lab fixed frame to that in the molecule fixed frame by: 
  
    cosz       
 

where    is the dipole moment in the molecule fixed frame and  is the angle between the lab and molecule 

fixed z‐axis (z and  axes)). The cos is the direction cosine for the z‐component. If we were to use the x or y 

component, this factor would be the corresponding direction cosine. (For x: sin cos and for y: sin cos) 
 
It  is  important  to  realize  that   depends on  the position of  the electrons and nuclei and  therefore on  the 

electronic and vibrational coordinates. 
 

We can substitute the above expression for  z  into the integral to get: 

 

      * * *
2 2 1 1 2 121

ˆ cosz el vib el vib el vib rot rot rotd d d                     

             
The first integral of this expression will give us the selection rules for electronic and vibrational transitions. The 
second  integral will give us the same rotational selection rules for all types of transitions (between rotational 
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states, vibrational states, electronic states). We can evaluate this  integral by putting  in the eigenfunctions for 
the rigid rotor, i.e. the spherical harmonics. 
 
You can see that to determine spectroscopic intensities one must evaluate these integrals for different types of 
molecules in particular quantum states. 
 
As we discuss  each  type of  spectroscopy  in more  detail, we will  evaluate  these  integrals  to determine  the 
selection rules in a particular type of situation. We will also see that there are other factors that can determine 
whether the transition moment  integral  is non‐zero or not. In particular, the symmetry of the  integrand (and 
hence the symmetry of the wave functions) will often determine that the integral is equal to zero.  
 

2.4.4 State Populations 

An  additional  factor  that  clearly must  affect  the  intensities  of  spectroscopic  transitions  is  the  number  of 
molecules in the state from which the transition originates. In the limit that there are no molecules in the initial 
state,  the number of molecules  that absorb a photon and make a  transition  from  that state  to some higher 
state (and hence the intensity of the transition) must clearly equal zero. 
 
Thus,  we  have  to  incorporate  what  we  know  about  the  populations  of  quantum  states  at  a  particular 
temperature into our analysis of molecular spectra. 
 
The populations of quantized energy  levels can be determined using statistical mechanics.  I will only briefly 
discuss the results. 
 
If we have a set of quantized energy levels of a molecule, we need to know how many molecules are in level 1, 
how many are in level 2, etc..., at a particular temperature. 
 
This number of molecules in the ith level is given by statistical mechanics to be: 
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where c is a proportionality constant, gi is the degeneracy of the ith level, Ei is the energy of the i

th level, kb is the 

Boltzmann constant, and T is the temperature. 
 
We can determine the proportionality constant by summing over both sides of this equation and noting that  
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The result is    
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We can express the fraction of molecules in a particular state as       
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The denominator of this expression, is called the partition function, and is given the symbol Q 
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The partition function is a constant for a molecule at a certain temperature. Thus, at a given temperature, the 
fractional population of the ith state will decrease as the energy of that state increases.  
 
To evaluate this expression, one must evaluate the partition function Q for the system of interest. You can see 
that if the energy of the system (molecule) can be written as a sum of energies (e.g., electronic + vibrational + 
rotational), the total partition function will be a product of partition functions for each type of motion (since 
the exponential of a sum is a product of exponentials).  
 
If you have an explicit expression  for  the energies,  then one can evaluate  the sum. Otherwise one can do  it 
numerically. 
 
Let me have  a  look  at  two examples  in which  I  calculate  the  fraction of diatomic molecules  in  a particular 
vibrational  state  assuming harmonic oscillator energy  levels  and  a particular  rotational  state  assuming  rigid 
rotor energy levels.  
 
First for the vibrational level. The energy is given by: 
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 
     

 
Since it is a diatomic, the vibrational levels are non‐degenerate. We can therefore write: 
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The denominator of this expression can be evaluated by recognizing it to be a geometric series 
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We can therefore write 
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Putting this into the expression for the fraction of molecules in the vth state gives 
 



2  OVERVIEW OF MOLECULAR SPECTROSCOPY 

43 

 

   
v

v 1 b b

h h

k T k Tf e e

 
  

   
 

   

 
To find the fraction of molecules in the lowest level, we just let v=0. 
 

    0 1 b

h

k Tf e




     

 
A typical frequency for a diatomic molecule is 2000 cm‐1. 
 

Note: Rather than using h�, if we express kbT in cm‐1, we can just use the wavenumber in cm‐1. 

 
    kb = 0.69509 cm‐1 K‐1     
 
so     kbT = (0.69509 cm‐1 K‐1)(298 K) = 207.1 cm‐1 
 
 

Thus we have:  2000/207
0 1 0.99994f e    

 
Essentially, all the molecules will be  in their  lowest vibrational state at room temperature. This  is usually the 
case unless either the vibrational frequency is very low or the temperature is very high. 
 
Let us now do the same for the rotational levels. The energy of the rigid rotor is given by:  
 

( 1)JE BJ J   

 
The fraction of molecules in a particular rotational state J given by 
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Note that the 2J+1 factor comes from the m degeneracy, as m can take values from m=‐J, ‐J+1, …, 0,…,J‐1, J 

The probability distribution as a function of J is plotted below for the CO molecule (B = 1.9225 cm‐1) at 300K. 
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In contrast to vibrations, this function peaks away from zero. This  is caused by the (2J + 1) degeneracy factor 
which  is  increasing with  J and at  low  J  it dominates. At higher  J,  the exponential  factor wins and causes  the 
probability to decrease with J.  
 
As the energies for electronic states are in general much larger than the thermal energy only the lowest state 
electronic states will be populated at room temperature.  
 
It is important to realize that the intensity of the transition depends on the difference in populations between 
the upper and lower states. This is because the probability of making a transition from the upper state down to 
the  lower state  is the same as the upward transition. The downward transition results  in the emission of two 
photons  (the original one and  the one due  to stimulated emission).  If  there were equal populations  in both 
states, there would be no net absorption.   Clearly, this will only be a problem for  low energy transitions (i.e., 
those  in which  the upper state  is  low enough  in energy  to be  thermally populated). Thus,  it will never be a 
problem in electronic or vibrational spectroscopy, but may be in rotational spectroscopy. 
 
 

2.4.5 Nuclear Spin Statistics 

There is one more factor that affects the intensities of spectroscopic transitions that I have not yet mentioned 
related  to  the  degeneracy,  gI,  in  the  expression  for  the  state  populations.  It  arises  from  the  treatment  of 
indistinguishable particles in quantum mechanics. During the Quantum chemistry course the topic of the Pauli 
Principle was  extensively  discussed.  I will  briefly  review  the major  conclusions  and  then  apply  it  to  linear 
molecules. Similar arguments can be made for nonlinear polyatomics.  
 
The  interchange  of  identical  particles  cannot  affect  the  properties  of  a molecule.  Because  all  observable 

properties  are  related  to  the  square of  the wave  function,  * cannot  change when  identical particles are 

exchanged.  This  implies  that  the  wave  function   can  either  remain  unchanged  or  change  sign  upon 

interchange of indistinguishable particles.  
 
 
All known particles in nature can be divided into two groups:  

 Particles whose wave functions are symmetricwith respect to interchange (+ sign) are called Bosons. 

 Particles whose wave functions are antisymmetric ( ‐ sign) are called Fermions. 
 
According to the spin statistics theorem:  

 half integral spin particles (electrons, positrons, neutrons, protons) are Fermions 

 integral spin particles (photons, mesons) are Bosons 
 
Now let us consider what effect this has on the intensities of spectroscopic transitions. Consider a homonuclear 
diatomic molecule.  This  discussion  below  is  valid  for  any  linear molecule with  indistinguishable  nuclei  (i.e., 
HCCH, OCO, etc.), but for simplicity, we will treat a diatomic. 
 
Depending upon whether the  indistinguishable particles are Fermions or Bosons, the wave functions must be 
either  antisymmetric  or  symmetric  with  respect  to  interchange.  Because  rotation  of  a  molecule  can 
interchange two nuclei, one must consider the symmetry properties of the rotational wave functions. 
 
The overall wave function for a molecule can be written as a product of electronic (spatial + spin), rotational, 
and nuclear spin parts. 
Thus 

    Total el vib rot ns      

 
It  is  the overall wave  function  that must be  symmetric or antisymmetric. Assume  for  the moment  that  the 
electronic part of the wave function  is symmetric with respect to  interchange of the nuclei. This need not be 
the case, but our conclusion will just be reversed for the case of an antisymmetric electronic wave function. 
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The vibrational part of the wave function will be symmetric since the potential only depends upon the absolute 
value of the internuclear separation. 
 
For a  given electronic  state,  the  symmetry of  the overall wave  function will  therefore be  controlled by  the 
rotational and nuclear spin parts. 
 
Interchanging  identical nuclei  in a diatomic can be brought about by rotating the molecule by 180°. One can 

verify by examining  the  rigid  rotor wave  functions  that  changing  and by 180° multiplies  the  function by       
(‐1)J. 
 
This means that  
  ‐ for even J, the rotational wave function is symmetric with respect to particle interchange 
  ‐ for odd J, the rotational wave function is antisymmetric with respect to particle interchange 
 
The general phenomenon holds true for any molecule with indistinguishable particles. Moreover, nuclear spin 
statistics affect all types of spectroscopy insofar as it modifies the expected populations of states. 
 
Let us consider the simple case of the H2 molecule. 
A hydrogen atom has a nuclear spin  I = 1/2. This makes  it a Fermion. Thus, the overall wave  functions of H2 
must be antisymmetric. 
 
This introduces the requirement that even J levels (symmetric) must be paired with antisymmetric nuclear spin 
wave functions and odd J levels (antisymmetric) must be paired with symmetric wave functions. 
Let  us  think  about  nuclear  spin wave  functions  in  the  same way  as we  think  about  electronic  spin wave 
functions. With  I  =  1/2,  one  has  a  possibility  of  one  of  two  spin  states  for  each  nuclei,  each  representing 
different orientations of the angular momentum vector in space. 
 

Each nucleus can have either spin up (MI = 1/2) represented by , or spin down MI =‐1/2) represented by .  
 
This leads to 4 possibilities for combination of the two, 3 of which are symmetric, and one antisymmetric: 
 
     

   

 

(1) (2)

(1) (2)

1
(1) (2) (1) (2)

2

 
 

   









  symmetric, 3 with odd J's 

 
 

     1
(1) (2) (1) (2)

2
        antisymmetric, 1 with even J's 

 
 
To  result  in an overall wave  function  that  is antisymmetric,  the odd  J states must be paired with one of  the 
three  symmetric nuclear  spin  functions and  the even  J  states must be paired with  the antisymmetric wave 
function. You  can  see  that  there will be 3  times as many odd  J  states as  there will be even  J  states.  In  the 
absence of a magnetic field, the nuclear spin doesn't affect the energy. So the odd states are 3‐fold degenerate 
compared to the even states. 
 
This means that the odd J states will have 3 times the statistical weight as even J states. This will be reflected in 
a spectrum as a 3:1 intensity alternation between even and odd states. 
 
In  general,  the  levels with  the higher  statistical weight  are designated ortho  and  the  states with  the  lower 
statistical weight is designated para. 
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Hydrogen comes in two forms: ortho‐Hydrogen (odd J states) and para‐Hydrogen (even J states). 
The three nuclear spin states of ortho‐hydrogen correspond to having both nuclear spins parallel. That would 
give a net nuclear spin of 1 with projections 1, 0, ‐1. 
 
Para‐hydrogen has the two nuclear spins anti parallel giving a net spin of 0. 
 
It turns out that it is very difficult to interchange between ortho and para forms, not only spectroscopically, but 
by collisions or other means. If one starts out with pure para‐hydrogen, for example, and leaves it in a bulb, it 
can take weeks or months for a significant amount to convert to ortho. 
 
These  two  forms  of  hydrogen  are  basically  different molecules.  They  have  different  heat  capacities  at  low 
temperature and can be isolated. One method to convert ortho to para hydrogen is to use a charcoal catalyst 
at very low temperature. In this way one can produce pure para‐hydrogen. Once taken off the catalyst, this will 
remain in the para form for a long time, and one can measure its properties. 
 
Now consider the case of D2: 
Deuterium atoms have a nuclear spin I=1 and hence are Bosons. For the exchange of identical Bosons, the total 
wave  function must be  symmetric. Therefore, odd  J  states go with antisymmetric  spin  functions and even  J 
states go with symmetric spin functions (the opposite of the case of H2). 
 
Because  I=1,  there  are  now  three  orientations  of  the  angular momentum  vector  and  three  possible  spin 
functions corresponding to MI  = ‐1, 0, 1 
 

I  will  call  the  three  spin  functions  and  .  There  will  be  six  symmetric  spin  functions  and  three 
antisymmetric functions. 
 

symmetric         antisymmetric 
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   
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
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  6 with even J's          3 with odd J's 
Thus, there are twice as many molecules in even J states as in odd J states. This will give rise to a 2:1 intensity 
alternation in the spectra. 
 
General Case: 
In general, the number of orientations, or spin wave functions, for a specific nucleus of spin I is (2I+1)2. 
 

 The number of symmetric spin functions for two particles will always be (I+1)(2I+1) 

 The number of antisymmetric functions will be I(2I+1). 
 

The ratio of antisymmetric functions to symmetric functions is therefore: 
1

I

I 
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It is this factor that determines the intensity ratio. 
 
Note what happens when I = 0. If I=0, the number of antisymmetric spin functions = 0. Since an I = 0 particle is a 
Boson, the total wave function must be symmetric. Since there are no antisymmetric spin functions to combine 
with  the  odd  number  J  levels, which  are  antisymmetric,  it  is  impossible  to  construct  a  satisfactory wave 
function with odd J values!! 
 
CO2 is an example. Oxygen is an I = 0 particle. This means that there are no odd J values in CO2. As we will see 
shortly, the vibration‐rotation spectrum shows that all the odd J values are missing!! 
 
Nuclear  spin  statistics  affect  all  kind  of  spectra,  and  are  not  limited  to  diatomic  or  linear molecules.  For 
example,  the  hydrogen  atoms  in  NH3  are  indistinguishable  and  give  rise  to  certain  levels  having  higher 
statistical weight than others. 
 
I will not discuss these slightly more complicated situations, but I will refer to nuclear spin statistics and expect 
that you can appreciate the physical origin of these effects. 
 

2.5 Spectral Line Broadening 
There are several effects that give rise to a finite width in the spectral lines that one measures. I would like to 
briefly comment on three of them. 
 

2.5.1 Natural Line Broadening 

I pointed out previously that the lifetime of a molecule in a particular state (in the absence of radiation to cause 
stimulated emission) is inversely proportional to the Einstein A coefficient. 
 

   
1

A
 

 
 
This  is  the  average  time  that  a  molecule  remains  in  a  particular  level  before  it  undergoes  spontaneous 
emission, making a transition to a lower energy state. For this reason it is called the radiative lifetime. 
 
Analogous  to  the position‐momentum uncertainty principle there  is also a time‐energy uncertainty principle. 
Although the origin of this uncertainty principle  is different from that of the position‐momentum uncertainty 
principle, it has a similar form: 
 
    E t        

Because a molecule remains in a particular state for a finite amount of time, , there will be an uncertainty to 
the energy of that state. If we associate the lifetime,  with t, then we can write 
 

    E      or    E A    
 
This energy uncertainty will appear as a broadening of the spectral line that one measures.  
 
If we write  E h       
 
then 

   
1 1

2 2 2

h
h A A  

  
       

 
 
or in units of cm‐1 

   
1

2 c


 
   
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This is a fundamental limit to the line width of a spectral transition and is called the natural linewidth. There is 
nothing one can do to remove or reduce it. 
 
In practice, because vibrational and rotational  levels have  long  lifetimes, the natural  linewidth  is often much 
smaller than one's ability to measure it. 
 

However, recall that the Einstein A coefficient increases as Electronically excited states, which are at much 
higher energies, have short lifetimes. In this case, transitions to these states can be significantly broadened. 
 
This type of spectral broadening gives rise to a Lorentzian line shape: 
 

     

 

2.5.2 Other Types of Lifetime Broadening 

There are other mechanisms that can shorten the time a molecule remains in an particular quantum state, and 
each of these will give rise to lifetime broadening as determined by the time‐energy uncertainty principle. 

The  expression 
1

2



    holds  in  general,  although  the  details  of  the  proportionality  constant may  differ 

depending upon the form of the decay in time (i.e., exponential, square wave, etc.) 
 
For example, molecules can change quantum states as the result of a collision with another molecule or atom. 
If the  frequency of collisions  is sufficiently high, the average time between collisions can be short enough to 
broaden  the energy  levels. This  type of  spectral broadening  is called pressure broadening  since  it  increases 
with increasing pressure.  
 
 
We saw before that 
   

   
1

coll




   

And since    

   
1

coll
P

   

 
We find 
    bP   
     
where b is a pressure broadening coefficient and P is the pressure. The value of b can vary greatly, depending 
upon  the  type  of molecule  and  the  type  of  energy  level. A  typical  value,  assuming  the  collisions  between 
molecules are like those of hard spheres, is about 
 
    b ~ 10 MHz per mBar 
 
As in the case of natural line broadening, pressure broadening gives rise to a Lorentzian line shape.  
 
Pressure broadening can be eliminated by working at low enough pressure to make the average time between 
collisions very long. 
 
Another type of lifetime broadening is called power broadening. If one uses an intense light source such as a 
laser, one can pump a molecule up to the excited state and then stimulate  it back down to the ground state. 
The  rate at which a molecule performs  this cycle  limits  its  lifetime  in any one  state and hence gives  rise  to 
spectral broadening. 
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A fourth type of lifetime broadening is transit time broadening. This comes from the fact that a molecule may 
only be exposed to a light source for a finite amount of time due to its flight through the beam. In the reference 
frame of the molecule, the  light source seems pulsed, and hence has a  limited  linewidth by the  time‐energy 
uncertainty principle. 
 
In this case, the broadening is actually the broadening of the laser in the reference frame of the molecule and 
not actually a broadening of the levels. But the measured transition will be nonetheless broadened. 
 
With reasonable molecular velocities, the amount of transit time broadening it is usually very small. However, 
it must be taken into account when performing very high‐resolution measurements. 
 
Other processes that shorten a molecule's lifetime can also give rise to broadening. If in the excited state the 
molecule dissociates (i.e., breaks a chemical bond), this will also broaden the molecular energy levels. 
 
Lifetime broadened line widths can often provide important information on the rates of certain processes such 
as chemical reactions and collisional energy transfer. 
Natural line broadening, pressure broadening, power broadening, and transit time broadening are considered 
homogeneous  types of broadening. This means  that  if you were  to  take the spectrum of different  individual 
molecules, they would all show the same spectral width.  
 
This is to be contrasted with inhomogeneous types of broadening which arise from different molecules having 
slightly different  frequencies. Each  individual  transition may be sharp, but  the collection  together  result  in a 
broad spectral feature.  
 
Doppler Broadening and Other Types of Inhomogeneous Broadening 
The frequency at which radiation  is absorbed or emitted depends upon the velocity of the atom or molecule 
relative to the source or detector. It  is for this very same reason that a train whistle sounds to be at a higher 
pitch when it is approaching you and at a lower one as it moves away. This is known as the Doppler effect. 
 

If an atom or molecule is traveling towards the light source with a velocity va, then the frequency a at which a 
transition is observed to occur is related to the frequency 0 in a stationary atom or molecule by  
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where c is the speed of light. 
 
Because there is usually a spread of molecular velocities va in a sample, there will be a corresponding spread in 

the absorption frequencies. At thermal equilibrium, the velocity distribution in one dimension is given by  
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This Gaussian velocity distribution gives rise to a Gaussian frequency distribution for the spectral transition 
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This is characteristically different than the Lorentzian that one obtains for lifetime broadening. One can easily 
show that the width of the transition is given by 
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where m is the mass of the atom or molecule. 
 
We have 

     7
07.1 10

T

M
     

 
where M is in amu and T in Kelvin. 
 
Note  the  linear  dependence  on  the  frequency  (or wavenumber).  This means  that microwave  and  infrared 
spectra will have much less Doppler broadening than electronic spectroscopy in the visible or UV region. 
 
Doppler broadening  is a major source of spectral broadening and  is usually  far greater  than  the natural  line 
width.  
 
This type of broadening is inhomogeneous, since not all atoms or molecules have the same spectrum. Doppler 
broadening can be greatly reduced using one of several clever experimental techniques. 
 
If the molecules are not isolated, but rather solvated in a liquid or embedded in a solid (matrix) the transitions 
are often significantly broadened. This  line broadening can be caused by several effects. For example due to 
the interaction of the molecule with the environment, the excited state lifetime might be significantly reduced, 
giving rise to homogeneous lifetime broadening. The transition frequencies are also weakly modified due to the 
interaction  of  the  molecule  with  the  environment.    Since  the  environment  seen  by  the  molecule  is  not 
isotropic,  especially  in  solids,  inhomogeneous  line broadening  results. Of  course,  both  effects  are  generally 
present. Which one is the most important depends on the system.    
   


