2 Overview of Molecular Spectroscopy

When discussing molecular spectroscopy we will use the results that we have obtained from quantum
chemistry quite frequently. | will start by giving you an overview of the field of molecular spectroscopy, dealing
with issues that are common to all types of spectra. For this | will mostly use diatomic molecules as an example.
We will then become more specific and consider particular types of spectroscopy (i.e., transitions between
different types of energy levels). Occasionally | will need to introduce new concepts related to quantum
chemistry.

Because molecular spectroscopy involves making light-induced transitions between quantum states of a
molecule, you can see how the basis of molecular spectroscopy would be quantum chemistry. One needs to
know both the energy levels of molecules and their wave functions to be able to predict their spectra.
However, the spectra themselves provide the most powerful means to investigate the energy levels and wave
functions of molecules.

The approach of spectroscopy is to cause molecules to absorb and emit light and then measure the frequencies
at which those transitions occur. The energy or frequency of each transition corresponds to a difference in
energy levels. Recall that the separations of energy levels depends upon the potential energy term in the
Hamiltonian for the system. We saw this in the simple one-dimensional problems such as the particle in a box
and harmonic oscillator. For polyatomic molecules, this function is multidimensional. One of the primary goals
of spectroscopy is to determine the multidimensional potential energy function, also called a potential energy
surface, for a molecule from measuring these levels. Recall that the bottom of the potential well in a simple
one-dimensional potential (i.e., for a diatomic molecule) gives us the bond length. In a polyatomic case, the
global minimum of the potential energy surface gives the geometry of the molecule.

After measuring the energy levels of a molecule, we can compare them to those predicted from calculated
potential energy surfaces. This allows us to go back and refine the techniques used to calculate the surface. The
goal would be to calculate these potential functions accurately enough to determine accurate molecular
geometries and predict exactly where all the levels would be. This would allow us to predict at which
frequencies molecules would absorb and emit light.

2.1 Starting Point: The Born-Oppenheimer Approximation

At the end of the Quantum Chemistry course we were discussing ways of solving the Schrédinger Equation for
simple molecules. Although | didn’t make it so clear at the time, this is only one part of the Schrédinger
Equation, i.e., the electronic part. As you will soon see, the Born-Oppenheimer approximation divides the
Schrodinger equation into two parts.

Solving the electronic part of the Schrodinger Equation determines the potential energy curves (or surfaces) for
the nuclei, i.e., the potential function in which the nuclei move. Hence we get the electronic (potential) energy
as a function of the nuclear coordinates, the electronic wave functions, and, by analysis of the potential energy
function, the geometry. This, however, does not solve for the total energy of the molecule, since we have
neglected the nuclear kinetic energy. We need to take the result of our solution of the electronic part (the
potential energy as a function of the position of the nuclei) and insert it into the nuclear part of the Schrodinger
Equation (together with the nuclear kinetic energy) and solve this equation. The solutions of the nuclear
Schrédinger Equation will give us the eigenvalues for the total energy. It is these eigenvalues that we measure
in a spectroscopic experiment.

Thus, the Born-Oppenheimer approximation divides quantum chemistry (the electronic Schrédinger Equation)
from molecular spectroscopy (the nuclear Schrédinger Equation) and hence lies at the foundation of the latter.

Because of its importance, | would like to go back and look at the Born-Oppenheimer approximation in a
slightly more general way. After doing this, we will come back and focus once again on the case of a simple
diatomic molecule, using it to display many of the general principles about spectroscopy.
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Let's write down (using atomic units) the Hamiltonian for a molecule neglecting relativistic interactions.
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a, Bdenote nuclei; i,j denote electrons.

rep is the distance between nucleus o and nucleus S

rie is the distance between electron i and nucleus o

rj is the distance between electron i and electron j

For understanding spectroscopy, we need to find both the wave functions and energies of a molecule.

These are found from the Schrédinger Equation

Ayla,.q,)=Eva,q,)
where g; represents the electron coordinates and g the nuclei coordinates

You can see how things are getting pretty complicated for atoms with more than two electrons. Solving the
Schrodinger Equation for a molecule with more than two atoms might appear hopeless. However, the Born-
Oppenheimer approximation greatly simplifies the problem and is quite accurate. It essentially allows us to
separate both the Hamiltonian and its eigenfunctions into electronic and nuclear parts.

Recall that the physical basis of the Born-Oppenheimer approximation lies in the fact that the masses of the
nuclei are much greater than that of the electrons. The ratio of the rest mass of the proton to that of electron is
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The ratio of the mass of a nucleus containing several protons and neutrons to that of an electron is even
higher. As a result of this difference in mass, for the same coulombic forces between the nuclei and the
electrons, the electrons move much faster than the nuclei. To a very good approximation, the nuclei can be
considered to be fixed while the electrons carry out their motions. Making this approximation amounts to
neglecting the nuclear kinetic energy term from the Hamiltonian for electronic motion.

We can then write the Schrédinger Equation for the electronic motion:
(Hel + Vnucl )l//e/ = U(//el

where
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The energy U is the electronic energy including nuclear repulsion. Remember that we only neglected nuclear
kinetic energy, not the repulsion of the nuclei.

Note that since we make the approximation that the nuclei don't move, then rqsaren't really variables but
parameters. That is, we fix them and solve the electronic problem for fixed values of ros. We choose values for

the rqp (designated more generally by go), evaluate V.., and then solve our electronic Schrédinger Equation.
We must repeat this process for many values of the nuclear coordinates, qa.
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Since the Hamiltonian depends on g«, the energy we get will also depend parametrically on ga.
U=ulq,)

So for each set of g« we get a different Schrédinger equation, different energies U, and different electronic
wavefunctions.

We/ = We/,n (q/ ;qa )

where n is the electronic quantum number, g; are the electron positions and the ; signifies that the g« are
parameters.

Now, once we pick our g«, the nuclear potential term V. is constant.
(Hel + Vnucl )l//e/ = Ul//el
We can write this like:

(’:Iel Vo )‘//e/ :(Ee/ +Vnucl)l//el

where E,, is simply the eigenvalue of I:Ie, :

‘l:’le/‘//e/ =E, v,

We often call this equation the electronic Schrodinger equation.

The total electronic energy, U, (including nuclear repulsion terms) is then given by
U=E,+V,

nucl

So we can leave out V,, from our Schrédinger equation and simply add it to E. after solving the electronic
Schrodinger equation.

Note that H,, still contains inter-electronic repulsion and attraction to the nucleus.

Let's say for the moment we know how to solve the electronic Schrodinger Equation using some of the
techniques we discussed in our treatment of quantum chemistry.

I:IeIWeI = Eel l//e/

In practice, this is not trivial, but assume we can find a way to do this, for example using the Hartree-Fock
method. Let us think about the procedure one would take in solving the full problem.

Consider the case of a diatomic molecule.

Eesand y,, depend on rqp

First fix rop at some value and solve this equation for E... We will get a whole set of solutions v, , E,, . Let's

el,n

now look only at the lowest energy state.

U, the total electronic energy (including nuclear repulsion) is
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U=E,+V,

nucl

We then go through this procedure for a series of different rqs each time finding a different value of £, and
hence another value for U. It is important to realize that every time we change the nuclear coordinates, we
must resolve the electronic Schrédinger Equation.

If we plot U vs. r,swe get something like this:

_ Via goes to inifinity for small r,,

/
Separated atoms limit

r —— The attractive forces between the
electrons and nulcei cause a minimum

Once calls this plot a potential energy curve, since it represents the potential energy of interaction between the
two nuclei. At each point along the curve (that is, each value of r) we have solved the electronic Schrédinger
equation and then added the nuclear repulsion to get the total electronic energy U.

The fact that the electronic energy U has a minimum vs. r indicates that there is some equilibrium internuclear
separation that corresponds to a state in which the two nuclei are bound and stable.

One usually denotes the ragzat the minimum as r., and the difference between U at r. and U at « as D..
D, = U(w)-Ulr,)

D. is the energy needed to separate the two atoms of the diatomic, or in other words the binding energy or
bond energy.

Notice that our nuclear term is purely repulsive:

nucl

Thus it is electronic energy, E.;, which gives you the minimum in the potential.

There doesn't have to be a minimum in the potential. One can have an electronic state in which the potential
energy curve looks like the following:

u(r,g)

Tap

10
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This is a purely dissociative electronic state since it has no stable minimum (no value of r. < o0 where the nuclei
are at their lowest energy). This is the case for He, for example.

Molecules will in general have both bound and dissociative states. For stable molecules, obviously the ground
state is bound. However, in the He dimer, He,, the first two potential curves look something like that shown
below (we already saw this when we discussed molecular last semester):

Ulr,, |\]

aff

For this molecule, the lowest state is dissociative and first excited state is bound. A molecule that is bound in
the excited state but dissociative in the ground state is called an excimer (or exciplex in the case where the two
atoms are different).

Each one of these curves represents an electronic state, in the same way that each energy of the particle in box
represents a quantum mechanical state. There is therefore an entire ladder of electronic states. However, we
have added an additional coordinate that the electronic energy depends upon, i.e., the internuclear separation.
If we take a cut along the axis representing the internuclear separation, we get a series of energy levels
corresponding to increasing values of the quantum numbers for electronic degrees of freedom. When | refer to
an electronic state of a diatomic, | am speaking of the entire potential energy curve representing the electronic
energy as a function of the internuclear coordinates. Most of the time | will only consider the lowest or the
lowest few potential curves (i.e., electronic states).

Solving the electronic part of the Schrodinger equation represents a field one would call chemical bonding,
since it is the electronic part of the Schrédinger equation that results in stable minima between the atoms and
hence a chemical bond. | will say more about this in a moment.

The electronic part of the Schrodinger equation is only half the problem, however. We haven't yet considered
nuclear motion.

Since electrons move much faster than the nuclei, they are able to immediately readjust as the nuclei move. In
the diatomic case, if the nuclei move from rep to rap, the electronic wave function changes from v, (qg;;r,;) to

wala;ir,,) . The electronic energy changes smoothly from U(rap) to U(rap) as one moves along the potential

curve. In effect, U(rap) (or in the general case U(ga)) becomes the potential in which the nuclei move. One
solves the electronic Schrodinger equation for different gzand then fits the results to some functional form
(one dimensional if diatomic; higher dimensional if more than two nuclei).

The Schrédinger equation for nuclear motion can be written.

Hnucl//nuc = ETot Wnuc
where

11
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A 1 1,
Hnuc == _Va + U( a)
2 ; m g

a

Ero: is the total energy, electronic + nuclear, since we are including electronic terms in the Hamiltonian though
the potential, U(gs).

For a diatomic, the potential, U(ga), is a one-dimensional curve and can be treated like our simple model
guantum mechanical systems.

So you can see that we have incorporated the solution to the electronic problem (i.e., the electronic energy)
into the nuclear problem through this quantity U. The solution to the nuclear Schrédinger equation, which has
the nuclear kinetic energy added back in, will give us the total energy eigenvalues for the molecule. If the
potential has a global minimum, these eigenvalues will be quantized.

Remember that quantization of energy occurs upon application of the boundary conditions to the Schrédinger
equations. For energies below the asymptote, the energy will therefore be quantized. For higher energies
(above the asymptote), there are no bound states (i.e., no quantized energies). The same holds for purely
dissociative electronic states, here also there are no bound levels.

Potential curves like this (or in many dimensions, potential energy surfaces) are called Born Oppenheimer
potential surfaces, since in deriving them the Born-Oppenheimer approximation is assumed. They allow us to
solve each problem separately, using the eigenvalues from solving the electronic problem as the potential for
the nuclear problem.

So there are basically two sides of the Born-Oppenheimer approximation.

Electronic Part: Nuclear Part:

A =E, v, FrscV nse = Erot Ve

=€, v, b =23 197 g,
25 m,

Chemical Bonding Molecular Spectroscopy

Electronic Structure Calculations
The connection between the two sides is the function U.

The electronic part is what one would call chemical bonding, and people who do research in methods for
solving this part of the Schrédinger equation are called Electronic Structure Theoreticians or Quantum Chemists.
The people who work on electronic structure calculations try to determine accurate potential energy surfaces,
U, using ab initio methods, like for example Hartree-Fock calculations.

The field of research that investigates the nuclear part of the Schrédinger equation is what we would call
Molecular Spectroscopy and people who work in this field are called molecular spectroscopists. Molecular
spectroscopists measure energy levels (among other things) and from their experimental data can provide
potential energy functions to test the theoretical calculations. (Many spectroscopists also do electronic
structure calculations, but there is a real art to these calculations, and those who do it at the highest level,
usually specialize in the field.)

Thus, you can see that the Born-Oppenheimer approximation serves as a dividing point in quantum chemistry

between electronic structure calculations (chemical bonding) and molecular spectroscopy. It is clear that the
two branches must closely interact as they are connected to each other by U(q4).

12
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| will spend most of this semester discussing the nuclear side of the Born-Oppenheimer approximation.
Towards the end of the course | will go back and say more about the electronic part of the Schrédinger
equation when we need to treat electronic spectroscopy of polyatomic molecules.

2.2 Nuclear Side of the Born-Oppenheimer Approximation

2.2.1 General Treatment

We had reduced our nuclear problem to:

Hnucylnuc = ETD[ l//nuc
and

. 1o 1
A, =-=3—V2+U(q,)
nuc zgm a q(l

a

Let us confine our discussion to diatomics for the moment, realizing that we could generalize the result to
larger molecules. For a diatomic, U(g.) simply becomes U(R).

Up to now we haven’t considered the center of mass motion explicitly. If we are going to use relative (internal
coordinates), we must separate the center of mass part of the Hamiltonian. We know, however, that we can
always do this, we simply get an additional (kinetic energy) term added to the internal energy. Let us assume
that we have separated off the center of mass motion. In this case the translational energy will not be included
in our expression for the total energy. To signify that we use relative coordinates we will denote the
corresponding wavefunction as y,,,

The function U(R) will consist of a constant part and a part which varies with R. Call the constant part U(R.) and
the variable part U'(R)

- V, o goes to inifinity for small r,

UIR)
R
U(R}=U(R)-U(R,)
____ Absolute energy of the
U(R) | potential curve set to zero

Thus we write: U(R)=U'(R)+U(R,)
We can easily evaluate U(R.) by our definition of U

.7
U=E, +—=~
R

U(R.) is simply U(R) evaluated at the minimum.

Solving HoueWioe = Erot Wit

with

13
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A, =H, +UR)

=H,, +U'(R)+U(R,)

gives (’:/KE +U'(R)+U(R, ))‘//mt =BV

and
(’:IKE + U'(R))l//lnt = (ETot - U(Re ))Wlnt

= Elntl///nt

where E,. =E.. —UR,)

Int Tot

One can then see that the total energy Er: can be written

E. =E, +UR.)

Tot Int

Eint is therefore found from the Hamiltonian
A, +U'RR)
So the net result is that we separated the wave function into

l// :Well///nt
and the eigenvalues are

E,.=E,.+UR.)

Tot
where U(R.) is the constant part of the electronic energy (the absolute offset of the curve).

Note that we have included some of the electronic energy in Ej: in the sense that we used the part that varied
with R as the potential for nuclear motion. One typically talks about the electronic energy as being that at the
bottom of the potential well (i.e., the constant part U(R.)). The part that varies with R is considered the nuclear
potential energy. This essentially says that the electronic and internal energies are separable. This allows us to
draw potential curves and draw in energy levels which are solutions to the internal or nuclear motion problem,
adding the electronic energy as a constant offset for all the vibrational levels.

The nuclear Schrédinger equation for a diatomic in internal or relative coordinates (assuming we have
separated the center of mass motion) is given by:

i ,
|:_EVZ +U (R):|W/nt (R'gl ¢)) = E/ntl///nt (ngl ¢))

where u is the reduced mass.

We want to be able to solve this equation to get the values of E,:, and after doing so, we can add U(R.) to get
the total energies.

14
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2.2.2 Separation of Rotational Motion

Starting with the Schrodinger equation for the nuclear motion as shown above we find:

n? ,
|:_EVZ +U (R):|W/nt (R'Hl ¢)) = E/ntl///nt (R,H, ¢)

Recall that in Cartesian coordinates, the operator V2 is given by

N
=
x> oyt o7

Converting this operator to spherical polar coordinates gives

2
V? :izi[Rz ij+ - ! i(sinei}% 0 -
R“OR\  OR) R“sind06 00 ) R°sin”@\ 0¢

If we now substitute for V2 in spherical polar coordinates into the Schrédinger equation for nuclear motion we
get

#? o, 0 1 0 P 1 2
_ —| R"— |[+——| sinf0— |+ +U'(R R,0, =E, W R,0,
{ Zsz(aR[ aRJ sineae( aej Sinzg[a(pzD ()}l//m( ?)=E,.v,.(R,0,0)

Notice that all the angular dependence is contained in the second and third terms. If you look back in your
lecture notes of Quantum Chemistry, you will see that the I operator in spherical polar coordinates equals:

2
P2 =-n ii[sin@ij+ 1 [0
sin@ 06 00 ) sin*6\ 0¢

Using this, one can write the Schrédinger equation as

nw o _,0v,.(R0,0) I
- —| g2 it + (R,0,0)+U'(R)w. .(R,0,0)=E._w. (R0,
LR 6R[ R 2R Vi (R,0,0)+U' R, .(R,0,0)=E, v, .(R,0,0)

Note that the potential is only a function of R, and thus falls into the category of a spherically symmetric
potential. Recall that whenever the potential is of this type (such as the rigid rotor or the hydrogen atom
problem), the solution to the angular part will always be the spherical harmonic functions.

We can see this more clearly if we rearrange the above equation.

B 0(.0v.RO,0)) I :
o a2 (Rz Vin ? + 2l///nr(RIH'(p)+(U(R)_Elnr)W/nr(Rl€l¢):0

2uR’ R oR 2R
If we multiply through by 2uR? and rearrange, we get

_hZ E[RZ 6 l//lnt (R’ 01 w)

R R j+[‘z//,m (R,6’,(p)+2yR2(U'(R)—E,.m)‘//m (R,0,p0)=0

You can see the only part of the operator that has angular dependence is the 2 term. We can therefore use
the separation of variables and assume wave functionsy,.(R,8,9) of the form

15
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Vi (R,0,0)=w,,,(R)Y(0,0)

where the Y (6,p) are the spherical harmonics. We chose the spherical harmonics because they are

eigenfunctions of the 2 operator. Please note that in spectroscopy often the quantum number J is used to
describe angular momentum.

2y o,0)=1"1(1+1)Y(0,0)

The part of the Hamiltonian that has derivatives with respect to R will do nothing to the angular part of the
wave function.

Substituting for y,, and rearranging yields:

2 ) mJ(J+1
w_d (RZ d"’”“‘R’} VAL R U R R =Epr R

" 2uR* dR dR 24R?

) ) 0
This term is the This term is simply Potential Energy
radial KE the rotational KE

Note that we have made no other approximations other than the Born-Oppenheimer to get to this point, and
that one is very accurate.

Since the rotational kinetic energy term depends on 1/R?, we cannot completely separate vibrational motion
and rotational motion. To separate the vibrational and rotational motion, we have to make another
approximation. This one isn't particularly accurate, but it can give a pretty good physical picture of diatomic
energy levels. We will use it as a first order approximation.

If we recognize that the vibrational amplitudes of most diatomic molecules are very small, one can replace the

R in the denominator of the rotational kinetic energy by R, the equilibrium internuclear distance. We can see
that the rotational kinetic energy term now becomes

_RJ(J+1)

rot 2,uR§
where this term is now independent of R.

We can rewrite our equation:

2 d )
h d [RZ Mj""ul(R)l//w‘b (R) :(Elnt _Erot)l//vlb(R)

2R dR\T R
or

_%:_R(RZ %}r U'RW,,(R) =E,.¥,(R)
where

Epe =Ep +Eo

This leaves us with

E,. =UR,)+E, =UR,)+E, +E,, (neglecting translation, as usual)

16



2 OVERVIEW OF MOLECULAR SPECTROSCOPY

and
l//Tot = l//ell//lnt = V/ell//vibl//rot

So to a first level of approximation, we can consider the electronic, vibrational and rotational motions of a
molecule separately and write the total wave function as a product and the total energy as a sum. We can then
solve each problem separately.

Note that from this treatment, we found the rotational energy to be

_RI(J+1)
rot — ZIURZ

e

and the rotational part of the wave functions to be the spherical harmonics:
l/lfﬂt = ij (91 ¢)

Our only approximation was to assume that the bond length R was constant. This is the Rigid Rotor
approximation that we have already seen. We have already have solved the quantum mechanics of the Rigid
Rotor model.

Before we go on to the vibrational part of the nuclear Schrédinger Equation, | would like to review the
guantum mechanics of the Rigid Rotor.

2221 REVIEW OF THE RIGID ROTOR MODEL

We first wrote down the classical expression for the rotational kinetic energy

2

KE 1Ia) =

classical —

LZ
21
and then found the Hamiltonian by substituting the 2 operator.

The Schrddinger equation for rotational motion is then

I:Iy/rot (01 ¢)) = Erot l//mt (0' q))
2

L
2[17 (//rvt (9’ ¢) = Erctl//rot (0' ¢)

where there is no R dependence of the wave function since R is fixed. The solutions to this are the
eigenfunctions of >, which are the spherical harmonics, Y" (0, ¢).

Because the eigenvalues of [* are 7°J(J+ 1) we can write

i © )_h21(1+1) 0.0)
Z/JRZ l//rot ,(0 - Z/JRZ l//rot '¢
and thus
CRJ(J+1) RI(J+1)
o R 21
Where I =2uR’

17
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This is the same expression we obtained for our more general treatment when we assumed the bond length of
a diatomic molecule to be fixed at R=R..

If we define the rotational constant as,

h . .
B=—— (note the conversion to units of cm™)

 8x’cl
We can write for the rotational energy expressed in cm™:

roi

E.=BJ(J+1) 1=0,1,2,...

Recall that the spherical harmonics can be written:

N

— |
(2./+1) (J |m|)‘| Pj‘m‘(cosg)er‘m(p

\/J(e,q)):l: 4z (J+|m|)

|

where the P are the Associated Legendre functions.

The first few spherical harmonics are:

1
V=
Nar
3
Y, =,|-—cos
ar
Y= isiné’e"‘”
87
3 .
Y, ' =,[——sinfe™
8

Let's now recall the implications of the energy expression:

E.=BJ(J+1) 1=0,1,2,...

roi

The first level (J=0) occurs at an energy of 0. The second level occurs at 2B. The next at 6B. This is shown in the
figure below.

g, — 20B

8B
g, — 12B

6B
E, ———— 6B —

4B
Ef — 2B

2B
Ey =————— 0

Energy Levels

Because the energy levels are spaced by BJ(J+1), the spacings between adjacent levels starts at 2B and increase
by 2B for each successively higher level. We will use this result extensively when we begin to discuss rotational

spectra.
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2 OVERVIEW OF MOLECULAR SPECTROSCOPY

To understand the transitions between these states (i.e., upon the absorption of light), we must consider how
light interacts with molecules and in particular we must discuss the subject of selection rules. | will do this
shortly.

2.2.3 The Vibrational Problem

Once we separated off rotational motion by making the rigid rotor approximation, we were left with the
following equation for the vibrational part of the wave function:

” d ( )

N v +U'(R\w . (R)=E v .(R
ZﬂRZ dR dR J ( )l//v’b( ) wbl/lwb( )

To simplify this, let us expand the derivatives in the first term

1 dy,,(R)) _ 1(__dw,(R d’v,, (R
_Zi RZ l//wb( ) :_2 2R l//wb( )+R2 erbz( )
R” dR dR R dR dR

_2dp,R) Y, R)

R dR dR?

So we can write for the Schrodinger Equation

L [g dy,(R) &'y, (R)

2u\RdR dr? )JFU'(R)%(R)=Ev,-bl//w-b(R)

To simplify this a bit further, let us define a new function y(R) =Ry, (R) . If we can find the function y(R) then
we can go back and get the original function y, (R) by dividing by R.

We can put this equation in terms of y(R) by substituting for the derivatives of , (R) in terms of y(R).

Since ZR)=Ry,.,(R)
and thus l//vib(R):@

we find for the first derivative:

dR R drR R’

For the second derivative:

_1dxR)
R*> dR

d’v,,(R) 1dyR) 1d°y(R) 2
vi =—— +— +—x(R
dR’ R® dR R drR* R? ZR)
1d’y(R) 2 dy(R) 2

= —_—— +_

R dR® R* dR R®

Z(R)
Substituting these back into the Schrodinger equation one gets:

X(R) _

2R _p 2R
=

Ewb R

L Hlm_i (R)Hid 2R 2 dylR) 2

-— = 2R)||+U'R
2u\RLR drR R’ Raw R R RN )D ®
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After canceling a few terms, one gets

FLEHR R 2R)

2uR dR’ R R
Finally, multiplying both sides by R gives

1 d’x(R)
2u dR?

+U'(R) x(R)=E,;, x(R)

This looks like a simple one-dimensional problem where the first term represents the kinetic energy, and the
second term is the potential energy. Both the internal kinetic energy (i.e., with the center of mass separated)
and the potential energy depend only upon the separation of the nuclei, R.

Remember where the potential U'(R) comes from. It is the potential that results from solving the electronic
part of the Schrédinger equation at a series of points (i.e., a number of values for the internuclear separation
R). I distinguish U(R) from U'(R) in that the latter has the electronic energy at the minimum of the curve, U(Re),
subtracted off.

Because U'(R) is a parametric function of R, no simple analytical form exists. Instead, one typically uses
empirical forms for U'(R).

U'(R}

R R

€

Let us use a Taylor series expansion for the potential U'(R) about the position R=Re, and then we can keep only
as many terms as we like.

, , dU'(R) 1 d*U'(R) 2 1d°U'R) s 1d*U'R)
U'R)=U'(R)+—— R—R )+——— -R) +———— (R-R) +=
(R} =U1R) dR ( ) 2! dRr? ( :) 3!l dR? ( :) 4! dRr*

R=R, R=R, R=R, R=R,

(R-R,)" +...

Remember how we defined U'(R). We introduced the prime when we subtracted off the electronic energy at
the minimum in the potential, U'(R.). By definition therefore, U'(R.) = 0.

Also, because we expanded the potential about the minimum, the first derivative

dU'(R)
dR

R=R,
We are then left with

_1d°U'(R)
21 dR?

1 d’U'(R) s 1d*U'(R)
R-R Y +———" R-R =
( 9)+3! dr® ( :) +4! dR*

R=R, R=R, R=R,

U'(R) (R-R,) +...
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2 OVERVIEW OF MOLECULAR SPECTROSCOPY

We haven't introduced any additional approximations to this point. If the amplitude of the vibrational motion is
sufficiently small, the (R-R.)? term will be larger than the terms involving higher powers of (R-R.) (i.e., cubic,
quartic, etc.). As a first approximation, we can neglect these higher terms. We are then left with

1 d*U'(R
U'(R):—dU£ ) (R-R,)
21 drR® |,
2y !
If we define x=R-R, and k= d UER)
drR” | .
We can then write:
1
U'(x) ==kx*
(x) 5

This is the equation for a parabola. What we are doing in neglecting higher order terms is to say that near the
bottom of the well, the potential is well approximated by a parabola.

Uix) U'lx)=1/2 kex?

x=0 x

This expression for the potential energy is the potential for a simple harmonic oscillator. To a first
approximation, the quantum mechanical harmonic oscillator is a reasonable model for molecular vibrational
motion.

2.23.1 REVIEW OF THE HARMONIC OSCILLATOR MODEL

| will briefly review the solutions (i.e., the eigenvalues and wave functions) to the Schrodinger equation for the
harmonic oscillator:

2 2
{ h d—+§kx2}z(x):fwbz(x)

24 dx?

Eigenvalues of the Quantum Mechanical Harmonic Oscillator

The eigenvalues are given by:

Evzhv(v+%J v=0,1,2,3,...

where
1 |k

_;lu

Note that v is the same as the frequency of the classical harmonic oscillator.
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2 OVERVIEW OF MOLECULAR SPECTROSCOPY

If we superimpose these levels on the potential curve, they look as follows:

v=4

v=0

There are several important things to note about the Harmonic Oscillator energy levels:

1) The energy levels are equally spaced in integral units of the classical frequency.

1 |k
v=— |—
2r\ u

Remember that k is related to the width of the potential (which is a parabola):
1
U'(x)==kx*
(x) 5

2) The second point to notice is that even when the quantum number v=0, there is still energy in the
amount of hB)/2. This is called zero point energy.

Eigenfunctions of the Quantum Mechanical Harmonic Oscillator

Recall that wave functions corresponding to the eigenvalues E,, are non-degenerate and are given by

2, (X)=N.H, (oz%x)ef%‘“Z

/kﬂ
a= h—z

The normalization constant N, is

where

1
1 a

M @(Zj

and the H, (a%x) are polynomials called Hermite polynomials

The first few Hermite polynomials are:

Hy(g)=1
H(8)=2¢8
Note: &= aix
H,(£)=4¢" -2
H,(£)=8¢"-12¢
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2 OVERVIEW OF MOLECULAR SPECTROSCOPY

The full harmonic oscillator wave functions look something like this:

2.2.4 Vibration-Rotation Interaction

If one makes spectroscopic measurements with any reasonable degree of accuracy, one finds that these simple
models for vibration and rotation are not very good.

Thus, one must solve the coupled vibration-rotation problem to account for the experimental observations. |
will not do this in class, but | will outline how it is done and give you the result.

If you go back to the Schrédinger equation:

od( ,dy,R) nJ(J+1)
R = +|U(R)+———= v, (R)=E »(R
ZIURZ de dR ( ) Z,URZ y/wb( ) Intl//wb( )

As before, we can make the substitution

_xR)
W, (R)= R

to simplify the kinetic energy term and find a new equation for y(R).

1 d*y(R) , wi(J+1
B Ll S 17 (R)+(—z) 2R =E,.2(R)
24 dR 2uR
Then, rather than assuming that the potential is harmonic, we can expand U'(R) in a Taylor series in the
displacement from R, x=R—R, .

U'(X):U’(O)J,_du—’(x) X+im
dx

2, 1 d°U'(x)
2! dx?

14U
31 dx®

41 dx*

* o+

x=0

The first term is zero by definition, and the second is zero because we are expanding about the bottom of the
well.

We are then left with

1 1 1
U'lx)==kx>+=ax’ +—bx" +...
2 6 24

where we have simplified the coefficients of x

One can also expand the 1/R? term in a Taylor series in x.
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2 OVERVIEW OF MOLECULAR SPECTROSCOPY

WIU+1) B+ hZJ(J+1)[1+ X j‘z

24R’ S urf1a X P 2uR! R,
MR\ T g
Note that
s -1 -1 -2
(1+y) =1+sy+$(52| )2, 50 3)|(S )i

We can therefore write

e t] S 2

e e e

J(J+1) R(J+1) +3h21(1+1)
= - X
2uR? UR? 2uR’

e e

Putting it all together, we get something that looks like:

4

2 2 2
L loes Lo, I J(U+1) J(J+1)X+3h J(J+1)
2 6 24 24R; HR? 24R

x’ +~~1Z(X)=EWZ(X)

R AN,
2u dx?

where the constants k, a, b come from the expansion of U, and the 1/R, terms come from the expansion of the
1/R? term.

After rearranging we get:

2 2 2 2
W d Z(X)J{_h J+1), 1[k+3h J(4+1)

n*J(J+1) )
= —— | y(x
2u  dx? UR? UR? d

2uR?

2 1 3 l 4
X +—ax +—bx" +... |y(x)=|E,, —
] 6 24 20)=| Eu 2
We can simplify this expression by including the Rigid Rotor term (first term in expansion of the 1/R? term) into
the energy by defining
EY

Int

=E

Int ERigidRotor

and defining an effective force constant

, 3n*J(J+1)
kK'=k+——-7—=
HR,
This yields then
2 g2 Wi(4+1
—h—dLEX)+ 1k’x2 —#Hlax3 +ibx4 o | xX)=EL x(x)
2u dx 2 UR? 6 24

You can see that this looks like a perturbed Harmonic Oscillator (a harmonic oscillator with a few extra small
terms added into the potential). We can use perturbation theory to solve this problem. | will not go through the
details of the perturbation theory solution to this problem, but using the tools that we already have developed
(particularly the raising and lowering operators), it is not difficult.
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2 OVERVIEW OF MOLECULAR SPECTROSCOPY

The result for the energy E;: (now also called E,)) is as follows:

2
F(v,J):iza)e[v+1j+BeJ(J+1)—a)exe(v+1j —a(v+lJJ(J+l)—DJZ(J+1)2 +..
hc 2 2 2

) 0 ) ) )
HO rigid anharmonicity vib-rot centrifugal
rotor interaction distortion

where the constants are given in units of cm™.

The constants @, Be, WXe, @, and D can be simply related to the coefficients in our Taylor series expansion of
the potential and centrifugal term, a, b, k, R,. (i.e. related to the potential)

This expression results from taking a certain number of terms in A’ inthe perturbation theory treatment. If we
were to take more terms, our energy expression would also contain more terms. You can see that the energy
expression looks like a power series in the quantum numbers v and J(J+1), and one can take it to higher order.

The terms that | have included here give a reasonably accurate expression for the energy levels of a diatomic
molecule. How accurate you need to be depends upon how precisely you measure. However, the higher order
terms begin to lose their physical significance.

I would like you to have a good feel what these constants in the E,; formula mean physically.

1) we(v+lj
2

This term represents the vibrational energy. We know that

1 [k
¢ 2xc\u

is the frequency of the classical harmonic oscillator (expressed in units of cm™ ). Remember that k is
the width of the parabola, the force constant of vibration. Small k means that it is a wide parabola and
a "loose" vibration. The wider the parabola the more closely spaced the levels. A thin parabola (large
k) results in wide spacing and a "stiff" vibration.

2) BJ(J+1)

This term gives the rotational energy. Remember that

h

=— (in units of cm™)
8r“cl

e

where | is the moment of inertia / = uR? . Remember the rigid rotor energy levels are given by:

E..=BJ(J+1).

roi

Consequently larger B. means more widely spaced levels. This corresponds to smaller R. or smaller u.
Light atoms & large B.. H, has the largest Be.
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2 OVERVIEW OF MOLECULAR SPECTROSCOPY

2
3) -a.x, (v + 1)
2

This term is due to the anharmonicity of the potential. It accounts for lowering of the energy levels
due to the widening of the parabola:

|
\
\

As the bond weakens as R increases, the potential gets looser and the level spacing decreases. The
negative sign in front of the term accounts for this decrease of the level spacings.

4) -DP(J+1)

This term is named the centrifugal distortion term. Remember that

h

=— (in units of cm™)
8r’cl

As R increases due to rotation, B will decrease. So B will be smaller than B. , and the level spacings will
be smaller than rigid rotor spacings. The minus sign in front of this term is responsible for reducing the
level spacings with increasing rotation.

One could show that

h 4
D= =
327°I°ckR; o,

5) —a(v+%j](l+l)

This term describes the vibration-rotation interaction. The rotational spacing depends on B which in
turn depends on R. Up to now we considered a rigid molecule with R fixed.

But the vibrational state affects the average value of R.
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2 OVERVIEW OF MOLECULAR SPECTROSCOPY

<R> changes with vibrational state. This results from the anharmonicity of the vibration. (If the

potential were a parabola, <R> wouldn't change.) You can see that the anharmonicity and the

vibration-rotation interaction are related. They both are related to the "a" constant in the power
series expansion of U'(R).

The best evidence for the fact that we solved the problem correctly is that it works. Using this expression for
the energy levels, one can account reasonably well for the measured energy spacings.

Corrected equation \

rd } Harmonic oscillator equation

One can measure these spacings very well using modern spectroscopic techniques.

2.3 What is a Spectrum?

Up to this point | have reviewed much of the important quantum mechanical background. All | have talked
about, however, is spacings of energy levels. | have said little about spectroscopic transitions. The field of
molecular spectroscopy involves causing molecules to make transitions from one state to another, and we
must consider the details of how this occurs.

Before | go any further, however, | want to define some of the terminology that we will be using. Much of the
difficulty in understanding a subject is often simply understanding what the different terms mean. | will start by
addressing the questions:

What is a spectral line or spectral transition? and What is a spectrum?
| will then go on to define what we mean by spectral intensity or transition strength and the linewidth of a
transition.

Before | answer these questions, | need to remind you of a few things about the nature of electromagnetic
radiation or light. Light usually refers to only visible wavelengths, but | will often use it in the more general
sense meaning all electromagnetic radiation.

In a wave picture, electromagnetic radiation contains, as its name implies, oscillating electric and magnetic
fields. These fields are oriented perpendicular to each other and perpendicular to the direction of propagation.
This is best shown in the figure below, by considering linearly polarized light.

direction of propagation

AF,

z-axis
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2 OVERVIEW OF MOLECULAR SPECTROSCOPY

The magnitude of the electric and magnetic field vectors can be given by:

E(z,t)=E, ,sinQrvt + kz + @) B(z,t)=B,,sin2zvt + kz + §)
with
E,,, B,, the electric and magnetic field amplitudes, respectively (8, =£,, /¢ )
v :% is the frequency of the light, given by the speed of light, ¢, divided by the
wavelength of the light, A.
k= 277[ is called the wave vector
1/ is the relative phase

Recall that light can be treated either as a wave or as a particle. In the particle picture, light consists of photons

with energy:
E=hv

When light shines on a molecule in a particular quantum state, it is possible for that molecule to absorb a
photon. If the energy of the photon, defined by the expression E = hv, corresponds precisely to the difference
in energy between the quantum state that the molecule is in and some other quantum state, then it is possible
for the molecule to absorb a photon and make a transition from the initial quantum state to the final quantum
state.

Before After
photon in Ey ———— state 2 E, —@— state 2
E -E
v = Z27%
0 h Ei—@— statel Ey ——— statel

The frequency or energy of the photon must be such that

Ephoton = th = AE = Effna/ - E/'n/'tial

or

E

VO — final -

h

E

initial

This expression is called the Bohr frequency condition

Note that | said it was possible for the molecule to absorb the radiation. Whether it does or not depends upon
several factors that we will consider shortly.

A spectral line is what one calls a plot of the absorption of light by a molecule or atom as a function of the
frequency of that light. This is also referred to simply as a transition, although this latter term is used more

generally to refer to the act of going from one state to the other.

The intensity or strength of a transition is related to the probability that the molecule or atom will undergo the
transition when illuminated by light at the proper frequency.
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2 OVERVIEW OF MOLECULAR SPECTROSCOPY

To be more specific, assume we have an absorption cell of length / containing a sample of the material which
we are studying at concentration c in moles per liter. Let /p be the intensity of light going into the cell (i.e. the
number of photons per unit time per unit area) and / be the intensity of the light coming out.

Absorption cell

According to the Beer-Lambert Law, the absorbance A is given by
IO
A=log n =¢g(v)cl

g(v) is a function of the frequency v and is called the molar absorption coefficient, c is the concentration and /

the length of the cell.
Often what we are plotting when we show a spectral line is the absorbance as a function of the frequency or

sometimes the molar absorption coefficient as a function of frequency.

T e(v)cl

emax Cl Av (FWHM)

Absorbance

T
Vo

A% »
One usually plots the absorption coefficient as a function of the frequency, since it is proportional to the
absorbance and independent of c and /. It is a property of the molecule alone.

This is what we would call a spectral line. The term comes from early experiments observing the emission from
excited atoms. If | showed this spectral feature on a wide enough frequency scale, it would appear as a spike or

aline.
Strictly speaking, the intensity of a transition or the transition strength is proportional to the integral of the

function across the entire profile

Transition strength oc Js(v)dv

"1
| will not be so concerned with the units that we use for the intensity of a transition.

As we will as the course progresses, the intensity of the transitions is related to the wavefunctions
corresponding to the energy levels involved in the transition.
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2 OVERVIEW OF MOLECULAR SPECTROSCOPY

The linewidth, Av, of a transition is usually defined as the width at half the height of the maximum of the curve
(Full Width Half Maximum or FWHM). We will see later that the linewidth can provides us information on the
dynamics or kinetics of the molecules.

The frequency of the line center, w, provides information on the energy levels of the atom or molecule, and as
we have seen to some degree already and will see more later, this can tell us things like the geometry of a
molecule, the vibrational force constants, etc.

| still haven't defined the term spectrum.

A spectrum is a collection of many spectral lines that results when one measures the absorption of a molecule
as a function of frequency. As you will see, spectral lines tend to be clumped together in certain frequency
regions and a spectrum is usually a measurement of an entire clump. However, one could call even a single
spectral line a spectrum.
We will consider 3 types of spectroscopic transitions (indicated on the figure below):

1. pure rotational - microwave

2. rotational-vibrational — infrared

3. rotational-vibrational-electronic — Visible-UV

Spectroscopic transitions occur at frequencies (energies) corresponding to the difference between two energy
levels. For the most part, energy level spacing for different types of motion are sufficiently different that it is
straightforward to tell what type of transition one is observing given the frequency.

Rotation-vibration-electronic (rovibronic) transitions,
the rotational, vibrational and electronic quantum numbers change

| Rotation-vibration (rovibrational) transitions,
the rotational and vibrational quantum numbers change

Rotational transitions,
only the rotational quantum number changes

It is important to have a good physical feel for the relative magnitudes of the transition frequencies (energies).

Molecular process Wavelength (m) Wave number (cm?) Region

polyatomic rotation 0.3-0.003 0.033-3.3 Microwave

rotation of small molecules 3x1073 - 3x10° 3.3-330 Far infrared
vibrational motion 3x107° - 3x10°® 330-3300 Infrared

electronic transitions 3x10°° - 3x10°® 3300 - 3.3 x10° Visible and Ultraviolet
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2 OVERVIEW OF MOLECULAR SPECTROSCOPY

You should be able to look at a spectrum and immediately tell if it is a pure rotational, rovibrational, or
rovibronic (rotational-vibrational-electronic) spectrum.

We will spend much time later in the semester discussing the expected frequencies for different types of
transitions. This is simply a question of where the different energy levels occur. It will be specific to each type
of motion and will have different patterns for different classes of molecules.

In the present chapter, which is meant as an overview of molecular spectroscopy, | will discuss the subject of
spectroscopic intensities and linewidths. There are a number of different factors that determine the intensity
and linewidth of a spectral line. | will discuss them in a general sense now, and then we will apply these general
concepts later to different types of spectroscopic transitions.

2.4 Spectroscopic Intensities

2.4.1 Kinetics of Optical Absorption

Not all transitions occur with equal intensity. In fact, many transitions are completely forbidden. If this weren't
the case, it would be much more difficult to interpret molecular spectra.

To fully understand the intensities of transitions between discrete states in an atom or molecule, one must
have some understanding of the interaction of radiation with matter. In particular, we must consider the rates
of transitions from one state to another induced by electromagnetic radiation.

In 1916, Einstein published a treatment of a quantum mechanical system (i.e., a system with discrete energy
levels) in a classical radiation field. The following discussion follows his treatment.

Let us start by considering a few of the processes that could occur when light interacts with an atom or
molecule (or any two level quantum mechanical system). | have already introduced to you the process that we
call absorption. In this process, a photon with energy E=hv, which is equal to the difference in energy
between state 1 and state 2, causes the system to make a transition from state 1 to state 2. During this
process, the photon is absorbed.

Before After

h Ep——— state2 E, —@—— state 2
v

NV,

E; —@— state 1l Ef —————— statel

Now consider the case in which the molecule is initially in the upper state rather than starting in the lower
state.One process that can occur in this situation is that the molecule can spontaneously make a transition
from the upper state to the lower state, giving off a photon of energy E=hv where this energy is equal to the
difference in energy between the two levels. This process is called spontaneous emission. The term
spontaneous comes from the fact that it happens without any external influence (i.e., not initiated by a
photon).

Before After

E,—@— state2 E, ——— state 2
hv

NV,

E,— statel E, — @ — statel
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2 OVERVIEW OF MOLECULAR SPECTROSCOPY

In a third type of process, the molecule initially in the excited state encounters a photon with energy equal to
the separation between states 1 and 2. In this case, the photon can induce or stimulate a downward transition
from state 2 to state 1.

Before After

h E, —@— state2 E, ———— state 2
\%

Ej—— statel E, — @ — statel

In this case, the original photon remains and is accompanied by the emission of a second photon of the same
frequency. This process is called stimulated emission because the emission of the second photon is stimulated
by the presence of the first. Stimulated emission is essentially the inverse process of absorption. Both are
induced by the radiation field (i.e., the photon). In one case a photon is destroyed, in the other a photon is
created. You can see from the conservation of energy that stimulated emission must be accompanied by the
creation of a photon.

With these three processes in mind, consider the following:

Let's say we have a collection of N two level systems with lower level 1 and upper level 2. The energies of these
states are given by W, and W, respectively (I use W rather than E because we will use E for electric field).
Assume that these systems are all at the temperature T and are put in a bath of ambient radiation of density
(V) (the energy of radiation between frequencies vand v+ dvin unit volume being p(v)dV). The system is at
equilibrium (i.e., no net change in the populations of levels 1 and 2). We will denote the populations of levels 1
and 2 by N; and N,. Consider the rates of transitions between these states due to absorption, spontaneous
emission, and stimulated emission.

2

Biop

Absorption:
The rate at which the systems are promoted from level 1 to level 2 due to absorption of radiation of the proper
frequency must be proportional to
1. the radiation density, p(v12)
2. the number of molecules in state 1 (clearly, if there were no molecules in state 1 there would be no
transitions from 1 to 2.).

Thus we can write the rate of change of the population of state 2 due to absorption as

dN,
dt

=B, p(v,IN,

where Bi; is simply the rate constant or proportionality constant. This constant is called the Einstein B
coefficient.

Spontaneous Emission:
Spontaneous emission takes the systems initially in state 2 and brings them down to state 1.
1. This process is independent of the radiation density, since it is spontaneous.
2. It will be proportional to the number of systems in state 2 (clearly, if there were no
systems in state 2, there would be no spontaneous transitions from 2 to 1).
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2 OVERVIEW OF MOLECULAR SPECTROSCOPY

We can therefore write:

where A»; is the proportionality constant or rate constant for spontaneous emission. This is called the Einstein
A coefficient. The negative sign arises from the fact that state 2 is being depopulated by this process.

Note that since the rate of spontaneous emission is proportional to the Einstein A coefficient and not the
radiation density, the lifetime of a molecule in a particular state in the absence of radiation is given by

Thus, the A coefficient is the inverse of the lifetime.

Stimulated Emission:

Finally, stimulated emission will induce transitions from state 2 to state 1.
1. Asinthe case of absorption, it will be proportional to the radiation density.
2. It will also be proportional to the number of systems in state 2.

We can write:
dN,
dt

=-B, p(v;,)N,

where B, is the Einstein coefficient for stimulated emission.

If the system is at equilibrium, the populations in systems 1 and 2 must not be changing. This means that the
rate of transitions from 1 to 2 must be equal to the rate of transitions from 2 to 1. Another way to say this is

dN dn. dN
that the net rate 7 Z (or d—l) must equal zero. Thus we can sum all the contributions to d—2 and set them
t t t

equal to zero.

We then have:
B12P(V12 )Nl - A21N2 - Bnp(vu )Nz =0

Rearranging, one gets:
B,p(v, N, =A,N, + B, p(v,,) )N,

= [A21 + Bz1p(V12)]Nz

N B
or Ny _ 10(Vis)

N, - Ay +Byup(vy)

We know from statistical thermodynamics that the equilibrium populations of states 1 and 2 are related by the
Boltzmann distribution law:

(W, —w;) hviy

&_g_ze ke :g_ze kyT

N, g 9

where kp is the Boltzmann constant and g; and g, are the degeneracies of states 1 and 2.
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Thus, we can write

hvy,

Blzp(vu) _ 9 e kT

A21 + Ble(VIZ) gl

or solving for p

There is one more thing that we know. | originally stated that the system was bathed in radiation density
p(v). We know from Planck's law of black body radiation that:

8zhv? 1
plvy,)=—7—F%
(o

Setting the two expressions for p equal gives:

8zhvl, 1 A,

3 hvyy g hvy,
kT _ 21 o kT _
e 1 B,~e B,
2

You can see that there are two conditions that must be met for this equality to hold:

n 9 B, (note that if g1 = g» then Ba1 = B1)

2
this will always be true for non-degenerate states since g1 =g, =1

1. B

_ 87hv}B,,

21 3
C

The first tells us that for non-degenerate states, the strength of the upward transition is equal to the strength
of the downward transition.

The second gives us a relationship between the strength of a transitions and the lifetime of the state, since A =
1/t. Also, note the v? factor in the numerator. This says that as the frequency increases, the rate of
spontaneous emission increases rapidly compared to stimulated emission.

One could show that the Einstein B coefficient for absorption, Bi; is directly related to the integrated band
intensity:

_ In10

~ 1000N, hv,,

12

.[ &(v)dv

where ¢is defined by
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L _ lofs(v)cl
IO

c is the concentration in moles per liter. N, is Avogadro’s number.

| will demonstrate shortly how the Einstein coefficient is directly related to properties of the molecular wave
function.

2.4.2 Time Dependent Perturbation Theory

We now need to understand which levels can be connected by a spectroscopic transition. Up to now we have
only considered the interaction between radiation and matter in a general way. We have not at all considered
the nature of the quantum mechanical levels (i.e., the wave functions). We now need to connect the
expression for the band strength to properties of the wave functions. This will allow us to determine selection
rules for spectroscopic transitions (i.e., the rules that tell us which transitions can occur).

In order to do this, we need to use time dependent perturbation theory.

The very nature of a spectroscopic transition implies a time-dependent phenomenon, and so we must consider
the time-dependent Schrédinger equation.

T d )
ot

If the Hamiltonian does not explicitly depend upon time, we know that

iw,t

¥, (rt)=y, e

where i, (r) is the solution to the Time Independent Schrédinger Equation (i.e., is an eigenfunction of the

Hamiltonian) and is called a stationery state (since \I‘;(r,t)‘l—‘n(r,t) = l//; Ny, (r)

When we consider the interaction of matter with radiation, we must take into account the fact that
electromagnetic field depends upon time:

E=E,cos(2zvt)
In all the types of spectroscopy that we will consider, the electric field interacts with the molecule through its
electric dipole moment. There are other types of interactions between a radiation field and a molecule, but

these are much weaker in general. We will only consider electric dipole induced transitions. The electric dipole
moment is defined as:

m=>4qr

J
where g; is the charge of particle jand r; its position.

Knowing the charge of the electrons and of the nuclei this can also be written as:
=Y —er +Y Zer,

where r; is the position of electron i and Zzand r, are the charge and position, respectively, of nucleus .

35



2 OVERVIEW OF MOLECULAR SPECTROSCOPY

If u is the dipole moment of the molecule, the interaction energy between the field and the molecule is
A'=—p-E=—p- E, cos(2zvt)

We therefore need to solve

AW(rt) = aqg; ,4)

Where:
H=H, —n-E,cos(2zvt)=H, +H’
This looks like a problem for perturbation theory if the second term on the right is sufficiently small.
Recall that in Time Independent Perturbation Theory, we expressed the first order correction to the wave

function as a linear combination of the zeroth-order wave functions (since they form a complete orthonormal
set).

m#n m#n

(1) Z(E(o) E(o)) (0) z ml//r(r?)

We can do the same thing here, but because the perturbation depends upon time, the expansion coefficients
will also depend upon time in a manner more complex than the simple exponential time dependence we have
discussed earlier. You can see how this might lead to transitions between zeroth-order states.

To simplify matters, let us consider a system in which the unperturbed problem has only two states. (The
development for a real molecule which has an infinite number of states is analogous to this simple case).

For such a system:

A L P t)=i 6‘}:3(: ,t)

The stationery state solutions are

_imt Wyt

Y, (rt)=y,(r)e * and Y, (rt)=w,(r)e *

We will assume that the wave function at any time t can be written as a linear combination of the zeroth-order
wave functions:

Y(r,t)=a,(t)¥,(rt)+a,(t)¥,(rt)

where the expansion coefficient are time dependent. This is essentially saying that although the wave function
is changing in time, at any instant it can be written as a linear combination of the zeroth-order eigenfunctions.

Assume that the system starts at t=0 in state 1 (i.e. in the ground state).
This means that:
a,(t=0)=1 and a,(t=0)=

To determine the time dependence of the expansion coefficients, we need to substitute W(r,t)into the Time
dependent Schrodinger equation:
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a,(t)H, W, (r,t) +a, (t)H, P, (r,t) + a, (t)H"P, (r,t) + a, (t)H"P, (r,t) =

iy, (r,

( ) IR (rt) oa, (t) o, (0 2Falrt) oY (r t) + it t) oY, ir ,t)

Note that the first and second terms on the left hand side cancel with the third and fourth terms on the right
hand side.
This leaves:

a,(t) da, (t)

al(t)l:l"Ifl(r,t)+az(t)I:I"IJZ(r,t):ih‘Pl(r,t)a +il¥, (r,t)

If we now multiply by a//; and integrate over spatial coordinates and use the fact that &; and B, are orthogonal
we get (after some rearranging):

_iw Wz
in % _ a,(tle [v, 0"y, (e + 0, (0) [y, (A" 7, (n)le

Note that | have separated the wave functions y1 and y» into the spatial parts and the exponential time
dependent part.

Since H' is a small perturbation, there are not enough transitions out of state 1 that a; and a, differ
significantly from their initial values. This approximation is called the “weak field limit”.

Thus we can assume a1 = 1 and a, = 0 at all times. This gives

i(wy-Ws )t
ih%:e T [y Ay, (e

Now, let us take the electric field to be in the z-direction. (We need not do this, but it is easy to generalize to
isotropic radiation).

We then have
=—[E,, cos(2rvt)

_ _%:[leoz (ei27rvr ezt )

If we substitute this into the above equation we get the instantaneous transition rate:

oa ( l’) i (W, Wy +hv )t i(Wy Wy —hv )t

praaen COMH CEELE G

where
AL AAG

This quantity,(,uz) is the z-component of the dipole moment matrix element (otherwise known as the

217
transition moment) between states 1 and 2. The rate of transitions out of state 1 into state 2 is proportional to

(u, )21_ If this term is zero, transitions will not occur.

It is this term that gives rise to the selection rules for transitions induced by electromagnetic radiation. We will
show this more explicitly in a moment. However, first | will integrate the preceding equation for the duration of
the perturbation (i.e. the finite time the molecule interacts with the field). This gives
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(W, W +hv )t i(Wy Wy —hv )t

a(t)——l( ) l-e 7 +1—e h
? g He)n Foe W, -W,+hv W, W, —hv

Note that in each term within the brackets, the complex exponential can only vary between 1 and -1 (since a
complex exponential is simply sines and cosines). Thus, the numerator of each of these terms can only vary
between 0 and 2. For either one of these two terms to get large, the denominator must become very small.

Because W, > Wy, the second term gets much larger than the first when W, — W; = hv. This occurs when the
radiation is on resonance with an upward transition (i.e., leading to absorption). In this case one could neglect
the first term.

Note that the second term goes to infinity when the radiation is on resonance. This arises because we treated

the field classically. Treating the electric field quantum mechanically will still give a resonance, but it won't go
to infinity.

The magnitude of the coefficient a, depends strongly upon the frequency of the radiation, as |¢72(1‘)|2 gives the

probability that the system which started in state 1 will have made a transition to state 2 by time t. Thus, when
the radiation is tuned to a resonance (i.e., W, — W; = hv), the probability of making a transition is at a
maximum.

If we neglect the first term and only consider the absorption process, we can obtain (after some
rearrangement):

sin’ W, =W, —hv _hvt
2h

(W, =W, ~hv)

la, (0 = (0)a,(6)= (1, )., E2,

This expression has been derived assuming an oscillating electric field at only a single frequency. In practice we
always deal with a range of frequencies, and we must integrate this expression over the range of frequencies
near the resonance condition. Because the integrand will only be significant over the region of v near 11;, we
can take E2, outside of the integral and evaluate it only at vi2.

sin? (Wz _2;11 _hth
d

W, —W, —hv)’
(W, =W, —hv)

We then have: la, @) =(x, ), E2, (v ).[ v

We can integrate this from -oo to +oo because the integrand will only be significant near resonance. We can then
make use of the fact that

o0 .2
,[ sm2 X dx =1
coX
This gives us
1
|az (t)lz = ﬁ(ﬂz )21 E;z (V12 )t

One can easily show that for isotropic radiation, the z-component of the electric field is related to the radiation
density by

EL0)= 5 pv)

€o
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The probability of finding the system at time t in level 2 is then given by:

1
|a, () =W(ﬂz ) P(viy )t
0

The average transition rate is the probability of making the transition during the time interval t during which
the perturbation exists.

Thus we can write

2
transition rate = @ = %(yz ), P(vi2)

But recall that the rate of making an upward transition is related to the Einstein B coefficient

. 1 2
transition rate = B, p(v,,) = %(yz )y PV12)
Therefore
1 2
BlZ = 67126‘ (qu )21

0

Remember that we treated only polarized light in the z-direction. The expressions for the x and y-directions are
completely analogous. We therefore have in general

1
6h’s

0

B

12 =

(et o (o, o (11 |

Thus, we have related the absorption strength directly to the dipole moment matrix elements (or transition
moments)

(1), = [v; )it v, ()

and likewise for the x and y components. If we have an expression for the dipole moment of a molecule, we
can calculate the intensity of its spectroscopic transitions. Selection rules arise because in certain situations,
these integrals become identically zero.

It is important to realize that dipole moment matrix elements such as these play an extremely important role in
spectroscopy! The two most important features in a spectrum are the frequency and the intensity of the
transitions. The frequencies tell us about the spacing of the energy levels and ultimately about the potential
energy surface. The intensities are related to properties of the wave functions through this dipole moment
integral.

I would now like to discuss some general considerations in evaluating the spectroscopic selection rules for
different kinds of spectroscopy.

2.4.3 Spectroscopic Selection Rules

I have just shown that the transition probability or transition rate Bi,p is proportional to the square of the
dipole moment matrix elements. This gives us a measure of the relative strength or intensity of a spectroscopic
transition.
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| have frequently used the term selection rules in discussing spectroscopic transitions but | haven't clearly
defined what | mean. Selection rules are restrictions on the changes in quantum numbers between the initial
and final state in a spectroscopic transition.

In other words, transitions are only allowed for certain changes in the quantum numbers. The origin of these
rules can be clearly seen by considering the integral of the dipole moment operator that we had to perform to
determine the Einstein coefficient.

That integral will be non-zero for only certain allowed changes in the quantum numbers during a transition.
From a practical point of view, the fact that transitions are not allowed between all levels is extremely
important. If all possibilities were allowed, it might be hopeless to understand the pattern of transitions that
one observes in a spectrum. However, the fact that only a restricted number of transitions occur makes the
pattern of lines simpler.

Let us go back and consider the transition moment integral and see how it gives rise to several different types
of selection rules.

For plane polarized light in the z-direction,
2 o 2
By, (,uz )21 = (J.I//le'lz v, dT)

where /i, is the dipole moment operator.

For any kind of dipole-induced transition between two states (i.e., rotational, vibrational, electronic) we can
write to a first approximation:

JW; :&z ‘//1 dT = JW;elW;vibV/;rot /[lz ‘/IlelleilerotheldTvlderot
[, is the dipole moment operator in the lab fixed frame.

From the point of view of intensities, the rigid rotor and harmonic oscillator wave functions are good enough to
use in these integrals. However, the breakdown of these approximations will lead to certain “forbidden”
transitions having small intensities.

When one thinks of dipole moments, one usually thinks in the molecular frame. For a diatomic molecule, we
can relate the z component of the dipole moment in the lab fixed frame to that in the molecule fixed frame by:

#Z:#UCOSG

where p, is the dipole moment in the molecule fixed frame and @is the angle between the lab and molecule

fixed z-axis (z and 77 axes)). The cos@is the direction cosine for the z-component. If we were to use the x or y
component, this factor would be the corresponding direction cosine. (For x: sin@ cos@ and for y: sin& cos )

It is important to realize that z, depends on the position of the electrons and nuclei and therefore on the

electronic and vibrational coordinates.

We can substitute the above expression for 4, into the integral to get:

(;uz )21 = J.J.l//;ell//;vib:[lr] l/llell/llvibdreldrvfbj.yjz*mt COSH‘//lmtdrrot

The first integral of this expression will give us the selection rules for electronic and vibrational transitions. The
second integral will give us the same rotational selection rules for all types of transitions (between rotational
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states, vibrational states, electronic states). We can evaluate this integral by putting in the eigenfunctions for
the rigid rotor, i.e. the spherical harmonics.

You can see that to determine spectroscopic intensities one must evaluate these integrals for different types of
molecules in particular guantum states.

As we discuss each type of spectroscopy in more detail, we will evaluate these integrals to determine the
selection rules in a particular type of situation. We will also see that there are other factors that can determine
whether the transition moment integral is non-zero or not. In particular, the symmetry of the integrand (and
hence the symmetry of the wave functions) will often determine that the integral is equal to zero.

2.4.4 State Populations

An additional factor that clearly must affect the intensities of spectroscopic transitions is the number of
molecules in the state from which the transition originates. In the limit that there are no molecules in the initial
state, the number of molecules that absorb a photon and make a transition from that state to some higher
state (and hence the intensity of the transition) must clearly equal zero.

Thus, we have to incorporate what we know about the populations of quantum states at a particular
temperature into our analysis of molecular spectra.

The populations of quantized energy levels can be determined using statistical mechanics. | will only briefly
discuss the results.

If we have a set of quantized energy levels of a molecule, we need to know how many molecules are in level 1,
how many are in level 2, etc..., at a particular temperature.

This number of molecules in the it level is given by statistical mechanics to be:

E

i

_ k,T
N, =cge ™

where c is a proportionality constant, g; is the degeneracy of the i*" level, E; is the energy of the it level, k; is the
Boltzmann constant, and T is the temperature.

We can determine the proportionality constant by summing over both sides of this equation and noting that

Thus
_E'
DN, =N=c) ge"
or
_ N
c= 3
nge kT
The result is
,E'
k, T
e
N =N-Z

We can express the fraction of molecules in a particular state as
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E

i

N ge "

_E
2.9.e
i

The denominator of this expression, is called the partition function, and is given the symbol Q

E!
Q= Zg,.e kT
The partition function is a constant for a molecule at a certain temperature. Thus, at a given temperature, the
fractional population of the /" state will decrease as the energy of that state increases.
To evaluate this expression, one must evaluate the partition function Q for the system of interest. You can see
that if the energy of the system (molecule) can be written as a sum of energies (e.g., electronic + vibrational +

rotational), the total partition function will be a product of partition functions for each type of motion (since
the exponential of a sum is a product of exponentials).

If you have an explicit expression for the energies, then one can evaluate the sum. Otherwise one can do it
numerically.

Let me have a look at two examples in which | calculate the fraction of diatomic molecules in a particular
vibrational state assuming harmonic oscillator energy levels and a particular rotational state assuming rigid

rotor energy levels.

First for the vibrational level. The energy is given by:

E, = (v +1jhv
2

Since it is a diatomic, the vibrational levels are non-degenerate. We can therefore write:

1 1
+— | el
e kT kT e kT e kT
Y (vé]hv Ly o M o W
T Bev
kyT e kT
e v=0 v=0

where x=e

We can therefore write

. vhv
SV -—s
hv
v=0

1_eka

Putting this into the expression for the fraction of molecules in the v state gives
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LU N
f = 1_e b | K7

To find the fraction of molecules in the lowest level, we just let v=0.

_w
f=1-e "

A typical frequency for a diatomic molecule is 2000 cm™.

Note: Rather than using h, if we express k»T in cm™, we can just use the wavenumber in cm™-
k»=0.69509 cm K1

Sso k»T = (0.69509 cm™ K*)(298 K) = 207.1 cm™

Thus we have:  f, =1-e7*"*” =0.99994

Essentially, all the molecules will be in their lowest vibrational state at room temperature. This is usually the
case unless either the vibrational frequency is very low or the temperature is very high.

Let us now do the same for the rotational levels. The energy of the rigid rotor is given by:
E, =BI(J+1)
The fraction of molecules in a particular rotational state J given by

_BI(4+1)
(27+1)e ©T
QRot

=

where
BJ(J+1)

Q=D (2 +1)e T =
J

k,T

B
Note that the 2/+1 factor comes from the m degeneracy, as m can take values from m=-J, -/+1, ..., 0,....J-1, J
The probability distribution as a function of J is plotted below for the CO molecule (B = 1.9225 cm™1) at 300K.

0.07 [} [ ]
0.06
0.05

f, 004 .
0.02 .

001 o .
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0.00 ®eccee
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In contrast to vibrations, this function peaks away from zero. This is caused by the (2J + 1) degeneracy factor
which is increasing with J and at low J it dominates. At higher J, the exponential factor wins and causes the
probability to decrease with J.

As the energies for electronic states are in general much larger than the thermal energy only the lowest state
electronic states will be populated at room temperature.

It is important to realize that the intensity of the transition depends on the difference in populations between
the upper and lower states. This is because the probability of making a transition from the upper state down to
the lower state is the same as the upward transition. The downward transition results in the emission of two
photons (the original one and the one due to stimulated emission). If there were equal populations in both
states, there would be no net absorption. Clearly, this will only be a problem for low energy transitions (i.e.,
those in which the upper state is low enough in energy to be thermally populated). Thus, it will never be a
problem in electronic or vibrational spectroscopy, but may be in rotational spectroscopy.

2.4.5 Nuclear Spin Statistics

There is one more factor that affects the intensities of spectroscopic transitions that | have not yet mentioned
related to the degeneracy, g, in the expression for the state populations. It arises from the treatment of
indistinguishable particles in quantum mechanics. During the Quantum chemistry course the topic of the Pauli
Principle was extensively discussed. | will briefly review the major conclusions and then apply it to linear
molecules. Similar arguments can be made for nonlinear polyatomics.

The interchange of identical particles cannot affect the properties of a molecule. Because all observable
properties are related to the square of the wave function, i’ cannot change when identical particles are
exchanged. This implies that the wave function i can either remain unchanged or change sign upon
interchange of indistinguishable particles.

All known particles in nature can be divided into two groups:
—  Particles whose wave functions are symmetricwith respect to interchange (+ sign) are called Bosons.
—  Particles whose wave functions are antisymmetric ( - sign) are called Fermions.

According to the spin statistics theorem:
— half integral spin particles (electrons, positrons, neutrons, protons) are Fermions
— integral spin particles (photons, mesons) are Bosons

Now let us consider what effect this has on the intensities of spectroscopic transitions. Consider a homonuclear
diatomic molecule. This discussion below is valid for any linear molecule with indistinguishable nuclei (i.e.,
HCCH, OCO, etc.), but for simplicity, we will treat a diatomic.

Depending upon whether the indistinguishable particles are Fermions or Bosons, the wave functions must be
either antisymmetric or symmetric with respect to interchange. Because rotation of a molecule can
interchange two nuclei, one must consider the symmetry properties of the rotational wave functions.

The overall wave function for a molecule can be written as a product of electronic (spatial + spin), rotational,
and nuclear spin parts.
Thus

l//Tata/ = We/inb l//rat Wns

It is the overall wave function that must be symmetric or antisymmetric. Assume for the moment that the
electronic part of the wave function is symmetric with respect to interchange of the nuclei. This need not be
the case, but our conclusion will just be reversed for the case of an antisymmetric electronic wave function.
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The vibrational part of the wave function will be symmetric since the potential only depends upon the absolute
value of the internuclear separation.

For a given electronic state, the symmetry of the overall wave function will therefore be controlled by the
rotational and nuclear spin parts.

Interchanging identical nuclei in a diatomic can be brought about by rotating the molecule by 180°. One can
verify by examining the rigid rotor wave functions that changing 6 and ¢ by 180° multiplies the function by
(-1).

This means that
- for even J, the rotational wave function is symmetric with respect to particle interchange
- for odd J, the rotational wave function is antisymmetric with respect to particle interchange

The general phenomenon holds true for any molecule with indistinguishable particles. Moreover, nuclear spin
statistics affect all types of spectroscopy insofar as it modifies the expected populations of states.

Let us consider the simple case of the H, molecule.
A hydrogen atom has a nuclear spin / = 1/2. This makes it a Fermion. Thus, the overall wave functions of H,
must be antisymmetric.

This introduces the requirement that even J levels (symmetric) must be paired with antisymmetric nuclear spin
wave functions and odd J levels (antisymmetric) must be paired with symmetric wave functions.

Let us think about nuclear spin wave functions in the same way as we think about electronic spin wave
functions. With | = 1/2, one has a possibility of one of two spin states for each nuclei, each representing
different orientations of the angular momentum vector in space.

Each nucleus can have either spin up (M, = 1/2) represented by a, or spin down M, =-1/2) represented by f.

This leads to 4 possibilities for combination of the two, 3 of which are symmetric, and one antisymmetric:

al)a(2)
£(1)5(2) symmetric, 3 with odd J's

%[aum(z)wu)aa)]

%[a(l)ﬂ(Z) - A1) (2)] antisymmetric, 1 with even J's

To result in an overall wave function that is antisymmetric, the odd J states must be paired with one of the
three symmetric nuclear spin functions and the even J states must be paired with the antisymmetric wave
function. You can see that there will be 3 times as many odd J states as there will be even J states. In the
absence of a magnetic field, the nuclear spin doesn't affect the energy. So the odd states are 3-fold degenerate
compared to the even states.

This means that the odd J states will have 3 times the statistical weight as even J states. This will be reflected in
a spectrum as a 3:1 intensity alternation between even and odd states.

In general, the levels with the higher statistical weight are designated ortho and the states with the lower
statistical weight is designated para.
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Hydrogen comes in two forms: ortho-Hydrogen (odd J states) and para-Hydrogen (even J states).
The three nuclear spin states of ortho-hydrogen correspond to having both nuclear spins parallel. That would
give a net nuclear spin of 1 with projections 1, 0, -1.

Para-hydrogen has the two nuclear spins anti parallel giving a net spin of 0.

It turns out that it is very difficult to interchange between ortho and para forms, not only spectroscopically, but
by collisions or other means. If one starts out with pure para-hydrogen, for example, and leaves it in a bulb, it
can take weeks or months for a significant amount to convert to ortho.

These two forms of hydrogen are basically different molecules. They have different heat capacities at low
temperature and can be isolated. One method to convert ortho to para hydrogen is to use a charcoal catalyst
at very low temperature. In this way one can produce pure para-hydrogen. Once taken off the catalyst, this will
remain in the para form for a long time, and one can measure its properties.

Now consider the case of D,:

Deuterium atoms have a nuclear spin /=1 and hence are Bosons. For the exchange of identical Bosons, the total
wave function must be symmetric. Therefore, odd J states go with antisymmetric spin functions and even J
states go with symmetric spin functions (the opposite of the case of H,).

Because /=1, there are now three orientations of the angular momentum vector and three possible spin
functions correspondingto M, =-1,0, 1

I will call the three spin functions a, 8, and y. There will be six symmetric spin functions and three
antisymmetric functions.

symmetric antisymmetric
a(l)a(2)
A)BQ2)

1

Yy [2(1)A(2) - al2)5(1)]

&

%[a(l)ﬂ(ZHa(Z)ﬂ(l)] [c(1)7(2) - )]

-

1

> [By(2)- p2)y1)]

%[a(l)y(z)m(z)m)]

5

%[ﬂ(1)7(2)+/3(2)y(1)]

6 with even J's 3 with odd J's
Thus, there are twice as many molecules in even J states as in odd J states. This will give rise to a 2:1 intensity
alternation in the spectra.

General Case:
In general, the number of orientations, or spin wave functions, for a specific nucleus of spin / is (2/+1)2.

—  The number of symmetric spin functions for two particles will always be (/+1)(2/+1)
—  The number of antisymmetric functions will be /(2/+1).

/
The ratio of antisymmetric functions to symmetric functions is therefore: —1
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It is this factor that determines the intensity ratio.

Note what happens when I = 0. If /=0, the number of antisymmetric spin functions = 0. Since an / = 0 particle is a
Boson, the total wave function must be symmetric. Since there are no antisymmetric spin functions to combine
with the odd number J levels, which are antisymmetric, it is impossible to construct a satisfactory wave
function with odd J values!!

CO; is an example. Oxygen is an | = 0 particle. This means that there are no odd J values in CO,. As we will see
shortly, the vibration-rotation spectrum shows that all the odd J values are missing!!

Nuclear spin statistics affect all kind of spectra, and are not limited to diatomic or linear molecules. For
example, the hydrogen atoms in NHs; are indistinguishable and give rise to certain levels having higher
statistical weight than others.

| will not discuss these slightly more complicated situations, but | will refer to nuclear spin statistics and expect
that you can appreciate the physical origin of these effects.

2.5 Spectral Line Broadening

There are several effects that give rise to a finite width in the spectral lines that one measures. | would like to
briefly comment on three of them.

2.5.1 Natural Line Broadening

| pointed out previously that the lifetime of a molecule in a particular state (in the absence of radiation to cause
stimulated emission) is inversely proportional to the Einstein A coefficient.

1
rT==—
A
This is the average time that a molecule remains in a particular level before it undergoes spontaneous
emission, making a transition to a lower energy state. For this reason it is called the radiative lifetime.

Analogous to the position-momentum uncertainty principle there is also a time-energy uncertainty principle.
Although the origin of this uncertainty principle is different from that of the position-momentum uncertainty
principle, it has a similar form:

AEAt > h
Because a molecule remains in a particular state for a finite amount of time, 7, there will be an uncertainty to
the energy of that state. If we associate the lifetime, 7, with At, then we can write

AET>h or AE > hA

This energy uncertainty will appear as a broadening of the spectral line that one measures.

If we write AE =hAv
then
hAvZLA - sziA - szi
27 27 2rt

or in units of cm™
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This is a fundamental limit to the line width of a spectral transition and is called the natural linewidth. There is
nothing one can do to remove or reduce it.

In practice, because vibrational and rotational levels have long lifetimes, the natural linewidth is often much
smaller than one's ability to measure it.

However, recall that the Einstein A coefficient increases as V*. Electronically excited states, which are at much
higher energies, have short lifetimes. In this case, transitions to these states can be significantly broadened.

This type of spectral broadening gives rise to a Lorentzian line shape:

Av

(v=v, )’ +(A2V)

2.5.2 Other Types of Lifetime Broadening

There are other mechanisms that can shorten the time a molecule remains in an particular quantum state, and
each of these will give rise to lifetime broadening as determined by the time-energy uncertainty principle.

9(v) =

The expression szzi holds in general, although the details of the proportionality constant may differ
T

depending upon the form of the decay in time (i.e., exponential, square wave, etc.)

For example, molecules can change quantum states as the result of a collision with another molecule or atom.
If the frequency of collisions is sufficiently high, the average time between collisions can be short enough to
broaden the energy levels. This type of spectral broadening is called pressure broadening since it increases
with increasing pressure.

We saw before that

1
AV oc—
z-z:oll
And since
Tcol/ o«
We find
Av =>bP

where b is a pressure broadening coefficient and P is the pressure. The value of b can vary greatly, depending
upon the type of molecule and the type of energy level. A typical value, assuming the collisions between
molecules are like those of hard spheres, is about

b~ 10 MHz per mBar
As in the case of natural line broadening, pressure broadening gives rise to a Lorentzian line shape.

Pressure broadening can be eliminated by working at low enough pressure to make the average time between
collisions very long.

Another type of lifetime broadening is called power broadening. If one uses an intense light source such as a
laser, one can pump a molecule up to the excited state and then stimulate it back down to the ground state.
The rate at which a molecule performs this cycle limits its lifetime in any one state and hence gives rise to
spectral broadening.
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A fourth type of lifetime broadening is transit time broadening. This comes from the fact that a molecule may
only be exposed to a light source for a finite amount of time due to its flight through the beam. In the reference
frame of the molecule, the light source seems pulsed, and hence has a limited linewidth by the time-energy
uncertainty principle.

In this case, the broadening is actually the broadening of the laser in the reference frame of the molecule and
not actually a broadening of the levels. But the measured transition will be nonetheless broadened.

With reasonable molecular velocities, the amount of transit time broadening it is usually very small. However,
it must be taken into account when performing very high-resolution measurements.

Other processes that shorten a molecule's lifetime can also give rise to broadening. If in the excited state the
molecule dissociates (i.e., breaks a chemical bond), this will also broaden the molecular energy levels.

Lifetime broadened line widths can often provide important information on the rates of certain processes such
as chemical reactions and collisional energy transfer.

Natural line broadening, pressure broadening, power broadening, and transit time broadening are considered
homogeneous types of broadening. This means that if you were to take the spectrum of different individual
molecules, they would all show the same spectral width.

This is to be contrasted with inhomogeneous types of broadening which arise from different molecules having
slightly different frequencies. Each individual transition may be sharp, but the collection together result in a
broad spectral feature.

Doppler Broadening and Other Types of Inhomogeneous Broadening

The frequency at which radiation is absorbed or emitted depends upon the velocity of the atom or molecule
relative to the source or detector. It is for this very same reason that a train whistle sounds to be at a higher
pitch when it is approaching you and at a lower one as it moves away. This is known as the Doppler effect.

If an atom or molecule is traveling towards the light source with a velocity vg, then the frequency v, at which a
transition is observed to occur is related to the frequency v in a stationary atom or molecule by

v -1
_ a
Ve =Vo T
c

where c is the speed of light.

Because there is usually a spread of molecular velocities v, in a sample, there will be a corresponding spread in
the absorption frequencies. At thermal equilibrium, the velocity distribution in one dimension is given by

P(v)= |——e 2T
27k, T

This Gaussian velocity distribution gives rise to a Gaussian frequency distribution for the spectral transition

2
mcz 7mcz(v7v20)
e 2k, Tvy

g,V =
? v, \ 27k, T

This is characteristically different than the Lorentzian that one obtains for lifetime broadening. One can easily
show that the width of the transition is given by

Ay [2k,TIn2
Cc m
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where m is the mass of the atom or molecule.

T
Av=7.1-10"v,,|—
M

where M is in amu and T in Kelvin.

We have

Note the linear dependence on the frequency (or wavenumber). This means that microwave and infrared
spectra will have much less Doppler broadening than electronic spectroscopy in the visible or UV region.

Doppler broadening is a major source of spectral broadening and is usually far greater than the natural line
width.

This type of broadening is inhomogeneous, since not all atoms or molecules have the same spectrum. Doppler
broadening can be greatly reduced using one of several clever experimental techniques.

If the molecules are not isolated, but rather solvated in a liquid or embedded in a solid (matrix) the transitions
are often significantly broadened. This line broadening can be caused by several effects. For example due to
the interaction of the molecule with the environment, the excited state lifetime might be significantly reduced,
giving rise to homogeneous lifetime broadening. The transition frequencies are also weakly modified due to the
interaction of the molecule with the environment. Since the environment seen by the molecule is not
isotropic, especially in solids, inhomogeneous line broadening results. Of course, both effects are generally
present. Which one is the most important depends on the system.
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