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Preface

This book is a brief expositionof the principles of beamphysics andparticle accelerators
with emphasis on numerical examples employing readily available computer tools. The
samebasic ideas canbe foundwithdifferent styles and emphasis inanumberof excellent
books on beam and accelerator physics: Bryant-Johnsen, Chao, Davidson-Qin,
Edwards-Syphers, Lawson, Lee, Reiser, Rosenzweig, Wangler, Wiedemann, Wille,
to name a few, and in countless online documents from accelerator schools (USPAS
and CERN). However, we avoid detailed derivations, instead inviting the reader to
use general high-end languages such as Mathcad and Matlab, as well as specialized
particle accelerator codes (e.g. MAD, WinAgile, Elegant, and others) to explore the
principles presented. This approach allows the student to readily identify relevant
design parameters and their scaling. In addition, the computer input files can serve as
templates that can be easily adapted to other related situations.

The examples and computer exercises comprise basic lenses and deflectors, fringe
fields, lattice and beam functions, synchrotron radiation, beam envelope matching,
betatron resonances, and transverse and longitudinal emittance and space charge.
The last chapter presents examples of two major types of particle accelerators: radio
frequency linear accelerators (RF linacs) and storage rings. Lastly, the appendix gives
the reader a brief description of the computer tools employed and concise instructions
for their installation and use in the most popular computer platforms (Windows,
Macintosh and Ubuntu Linux). Hyperlinks to websites containing all relevant files are
also included. An essential component of the book is its website (actually part of the
author’s website at the University of Maryland). It contains the files that reproduce
results given in the text as well as additional material such as technical notes and
movies. We will add new or updated material as it is developed. Although we have
chosen Mathcad for most examples, we will add Matlab and Python scripts in the
near future.
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Chapter 1

Rays and matrices

To understand particle accelerators and their components, we need to study and
solve the equations of motion of charged particles in external electromagnetic fields.
In their most general form, these equations contain terms involving all orders in the
coordinates and velocities of the particles [1, 2]. However, if the particles are
confined to small distances from a reference orbit and with small angles relative to
the same orbit, a linear equation of motion resembling a simple pendulum (or mass-
on-a-spring) equation results. This is the basis for the paraxial approximation
presented in section 1.1. The ‘spring constant’ in the equation of motion can be
generalized to include a piecewise focusing function whose form depends on the type
of external fields present. In addition to the paraxial approximation, the focusing
elements of particle accelerators can be treated as thin or thick lenses, depending on
whether the focal length is large or comparable to the physical axial extent of the
external fields. We discuss thin and thick lenses in sections 1.2 and 1.3. For both thin
and thick lenses, a matrix description of particle motion is both convenient and
powerful.

1.1 Paraxial approximation
The linearized equation of motion for a charged particle in the presence of external
fields represented by the focusing function κ(s) is given by:

κ″ + =x s s x s( ) ( ) ( ) 0, (1.1.1)

where primes indicate derivatives with respect to the axial distance ‘s’ measured
along the reference trajectory. For now, we consider just one of the transverse
coordinates for particle motion, say the horizontal component (or radial in a local
curvilinear coordinate system).

Note that equation (1.1.1), known as Hill’s equation, is a homogeneous, second-
order ODE with a coefficient, the focusing function, which is not constant in general.
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The solution will depend on the initial conditions ′x x(0), (0), and on the form of
κ s( ), but not on any higher orders of either x(0) or ′x (0). This latter condition is the
essence of the paraxial approximation; it is the equivalent of using θ instead of sin θ
in Snell’s law of standard optics.

The general solution of equation (1.1.1) is studied in great detail in many
textbooks (e.g. [2]). The solution can be written as a superposition of cosine-like
C(s) and sine-like S(s) functions:

= + ′
′ = ′ + ′ ′

x s x C s x S s
x s x C s x S s

( ) (0) ( ) (0) ( ),
( ) (0) ( ) (0) ( ),

(1.1.2)

such that = =C S(0) 1, (0) 0, ′ = ′ =C S(0) 0, (0) 1. In matrix form, equation (1.1.2)
reads:

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥
⎡
⎣⎢

⎤
⎦⎥′

=
′ ′ ′

x s
x s

C s S s
C s S s

x
x

( )
( )

( ) ( )
( ) ( )

(0)
(0)

. (1.1.3)

In a more compact form we can write

′ = ′Mx s x s x x[ ( ), ( )] [ (0), (0)] . (1.1.4)T T

The space spanned by the coordinates ′x s x s( ), ( ) for an ensemble of particles is
called trace space or, more commonly, phase space. Strictly speaking, this phase
space would be the projection on the ′x x( , ) plane of the full phase space. In the
simple situations whereby no radiation, acceleration, or particle losses occur, the
area in phase space is conserved under transformations represented byM. The latter
statement is known as Liouville’s Theorem, which we will revisit in chapter 4. As a
consequence of this theorem, the determinant of M is equal to 1, i.e. ∣ ∣ =M 1.

The simplest case of a focusing function would be the ‘point’ lens, a mathematical
construct whereby κ δ=s s f( ) ( )/ . δ represents the Dirac delta function and f is a
constant. By integration of equation (1.1.1) with this focusing function, it is easy to
see that f represents the focal length of a zero-length lens located at s = 0. Figure 1.1
illustrates the zero-length or point lens.

By studying equations (1.1.2) for a point lens, we can identify the principal
trajectories or rays illustrated in figure 1.1: the first ray has ′ = =x x x(0) 0, (0)1 1 10,

Figure 1.1. The point lens at s = 0. The red and blue rays represent the principal trajectories or rays.
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leading to ′ = −x s x f( ) (1/ )1 10 , = −x s x s f( ) (1 / )1 10 , for s > 0; and the second ray has
= ′ = ′x x x(0) 0, (0)2 2 20, leading to = ′x s x s( )2 20 . Thus, the matrix M is in this case:

⎡
⎣⎢

⎤
⎦⎥= −M

f
1 0
1 1

. (1.1.5)f

Note that the first column in M represents ray 1 (coefficients multiplying initial
conditions), while the second column represents ray 2.

An equally important transfer matrix represents the ray transformation over a
drift of length L:

⎡
⎣⎢

⎤
⎦⎥=M L1

0 1
. (1.1.6)L

The matrices in equations (1.1.5) and (1.1.6) are the building blocks for trans-
forming rays in systems with multiple lenses.

1.2 Thin lens
If the extent of a real lens, as quantified by the effective length leff of the profile of the
focusing function κ s( ), is much smaller than the focal length, then the lens is
considered to be thin. (The point lens introduced above is an extreme example of a
thin lens because it remains so for any f > 0). A useful construction that applies
especially to lenses whose profiles κ s( ) are not dominated by fringe fields, i.e.
extended ‘tails’, is the hard-edge model. Figure 1.2 shows an example of an actual
axial profile (of a magnetic field) related to κ s( ) and the corresponding hard-edge
model.

The effective length of the hard-edge model is defined by:

∫κ
κ κ≡ =

−

+
l s s

f
l

1
( )d ,

1
. (1.2.1)

s

s

eff
peak

eff peak
1

1

Therefore, the condition for thin lens is κ ≪ l1/peak eff
2 . By this criterion, a very

strong lens can have a focal length comparable to its effective length, in which case
the lens is not thin; otherwise, the lens can be weak and have a very long focal length,
satisfying the condition of a thin lens.

Figure 1.2. Actual axial profile of magnetic field (related to focusing function) and corresponding hard-edge
model (red broken curve).
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Ray tracing for a thin lens proceeds just as for the point lens (figure 1.1), so, for
example, the exit x-coordinate of a given ray is unchanged after traversing the lens.
Thus, the basic transfer matrix that connects ray coordinates on both sides of the
lens is the same as in equation (1.1.5).

1.3 Thick lens
Thick lenses in charged-particle optics can be treated just as thick lenses in standard
optics. Concepts such as principal planes, nodal points, etc apply to magnetostatic or
electrostatic lenses as well [3]. The principal planes of a thick lens or system of lenses
are two hypothetical planes that connect locations of unit magnification, i.e. an
object located at one plane is imaged at the second plane and with the same size.
Figure 1.3 illustrates the primary and secondary principal planes, H and ″H , for a
system of two focusing thin lenses separated by a distance d and having the same
focal lengths. Ray tracing is done by using the method of parallel rays [4].

We can use equations (1.1.5) and (1.1.6) to find the matrix for the lens system in
figure 1.3:

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥
⎡
⎣⎢

⎤
⎦⎥
⎡
⎣⎢

⎤
⎦⎥= = − −M

M M
M M f

d
f

1 0
1 1

1
0 1

1 0
1 1 , (1.3.1)11 12

21 22 2 1

or,

⎡

⎣

⎢⎢⎢
⎛
⎝⎜

⎞
⎠⎟

⎤

⎦

⎥⎥⎥
=

−

− + − −
M

d f d

f f
d

f f
d f

1

1 1
1

. (1.3.2)
1

1 2 1 2
2

By multiplyingM with a drift matrix (length = l1) on the left and another one (length
l2) on the right, we obtain a new matrix M̄ :

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥¯ ¯ ¯

¯ ¯= = + + + +
+

M
M M
M M

M l M M l M l M l l M
M M l M

. (1.3.3)11 12

21 22

11 2 21 12 1 11 2 22 1 2 21

21 22 1 21

Figure 1.3. The system of two positive thin lenses is equivalent to a thick lens with the principal planes H and
″H shown. Note that the focal lengths of the system are measured from the principal planes.
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Now, by setting ¯ =M 011 we obtain the distance from the second lens to the second
focal point of the system, ″F [5]:

⎛
⎝⎜

⎞
⎠⎟
⎛
⎝⎜

⎞
⎠⎟= − = − + −

−

l
M
M

d
f f f

d
f f

1
1 1

. (1.3.4)2
11

21 1 1 2 1 2

1

The second factor on the right of equation (1.3.4) gives the inverse effective object
and image focal lengths f, ″f of the lens combination [4]:

⎛
⎝⎜

⎞
⎠⎟= + − =

″f f f
d

f f f
1 1 1 1

. (1.3.5)
1 2 1 2

The focal lengths f and ″f are measured from the corresponding principal planes, as
shown in the figures.

Now assume that the second lens is divergent but that the two lenses have the
same strength, i.e. the same focal lengths in magnitude: f1 = −f2 > 0. Then, from
equation (1.3.5), the effective focal length is simply:

= =f
f

d

f

d
. (1.3.6)1

2
2
2

Furthermore, from equations (1.3.4) and (1.3.5), the second focal point of the
system, ″F , as measured from the second lens is

⎛
⎝⎜

⎞
⎠⎟= −l f

f

d
1 . (1.3.7)2 1

1

This quantity is positive, indicating a convergent equivalent thick lens for the two-
lens system if f1 > d. Thus, we arrive at the important result that the combination of
two lenses, one convergent (positive) and the other divergent (negative), and having
the same strengths leads to net focusing if their separation is smaller than the positive
focal length f1. This has an important implication for strong focusing in particle
accelerators, as discussed in chapter 3.

Figure 1.4 shows the action of the focusing–defocusing lens combination for two
values of their separation d. The geometrical construction for finding the principal
planes uses the method of parallel rays, as discussed in the standard optics book by
Jenkins and White [4], but examination of the figures may reveal the basic ideas.
Note that the principal planes lie outside the space between the lenses in figure
1.4(a), unlike figure 1.3 for a pair of converging lenses with the same separation as in
figure 1.4(a).

Additional relationships between the elements of the matrix in equation (1.3.3)
and important optical properties of a general lens system are discussed in the article
by Halbach [6] and in appendix D of [5].

Computer resources

Matrix multiplication, both symbolically and numerically, can be readily imple-
mented in either Mathcad or Matlab or their freeware counterparts Smath Studio
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and Octave (see appendix). Many standalone optics design programs are also
available, but most are either too expensive or for professional use. Some software of
this type is available as packages for codes like Mathematica (e.g. Optics Lab).

We found the free program Optgeo (see appendix) to be instructive and relatively
easy to use; in particular, the ray tracing in figures 1.3 and 1.4 can be reproduced
without too much effort. We include two Optgeo files in the book’s website.
Alternatively, for Mathcad users we recommend a very well designed program for
2D optics called 2D Optical Ray Tracer, which is written by Valter Kiisk of the
University of Tartu (Estonia) and available online for free. We include in our
website a version with input that reproduces closely the results shown in figure
1.4(a). It is important to keep the lens thicknesses small relative to their focal lengths
for comparison with figure 1.4, but we can also explore easily thick-lens combina-
tions. Figure 1.5 illustrates typical output.

Another program that we found useful to illustrate the two-thin lens combination
is Ray Optics for Android devices (there is a ‘Pro’ version that adds details of
the calculations). Figure 1.6 shows a typical screen from Ray Optics. Note that the
object is on the right and that ray tracing goes from right to left, unlike the rest of the
figures in the chapter (however, object and image can be exchanged).

RayLab, a free app for Apple’s IOS devices, looks very professional and rather
challenging as an educational tool for geometrical optics.

Thin magnetostatic lenses can be implemented in several of the most popular
codes for particle accelerator design. (In fact, in some cases thin lenses are required
for some operations such as tracking in the code MAD). We include in our website

Figure 1.4. Combination of convergent (lens 1) and divergent (lens 2) lenses with the same strengths. In (a) the
spacing d is smaller than the individual focal lengths (f1 = −f2 > 0); in (b) the spacing d is larger than the
individual focal lengths. Note how the principal planes H and H″ are found from the parallel ray technique.
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three example files for the program Winagile (see appendix). The first file illustrates
the implementation of one thin quadrupole lens; the other two files are examples of
two thin-quadrupole combinations. The files illustrate the concepts of this chapter
and also serve as a preamble to quadrupole focusing (chapter 2) and to alternating
gradient, or strong focusing (chapter 3). In the appendix we indicate how to
download, install and run Winagile. In figure 1.7 we show a screen from Winagile
for trajectory tracking with a two thin-quadrupole combination.

Figure 1.5. Graphics from 2D optics Mathcad program 2D Optical Ray Tracer by Valter Kiisk. Distances are
in mm.

Figure 1.6. Screen from the free Ray Optics app for the Android OS. Magnification is close to unity in the
example shown.
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Finally, ‘Thin Lens Simulation with Python’ (Frant’z blog, April 2011), a Python
program for ray tracing through a system of four lenses, can be used to learn both
optics and Python (see appendix).
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Chapter 2

Linear magnetic lenses and deflectors

Charged-particle beams in accelerators can be focused and guided by means of
electrical or magnetic elements. We restrict the discussion in this chapter to
magnetic elements because they are far more common in high-energy accelerators,
but the electrical counterparts have essentially the same mathematical treatment.
In some cases the same magnet provides both deflection and focusing (combined-
function magnet), but most modern machines employ separated-function
magnets. In other words, beam deflection and focusing are, ideally, completely
independent of each other. We discuss in this chapter solenoids, magnetic
quadrupoles and dipole deflectors. Solenoids are not commonly employed as
main lattice elements, but mostly to manipulate electron bunches near the source
and for other specialized applications. Solenoid focusing per se is an interesting
but not straightforward concept, which we illustrate in detail and contrast with
the idealized particle motion in a uniform B-field. Magnetic quadrupoles, on the
other hand, are the most widely used lattice elements in accelerators; they provide
linear strong focusing when paired in the alternating-gradient scheme (chapter 3).
Naturally, important non-linear focusing elements (e.g. sextupoles and octupoles)
are also part of many accelerators, but we will not discuss their principles here.
We also present the Kerst–Serber equations and weak focusing in section 2.4. In
section 2.5, we discuss dipole magnets and edge focusing, and in the last section
we give examples of calculations of effective hard-edge models in solenoid and
quadrupole magnets.

2.1 Magnetic rigidity, momentum, and cyclotron frequency
A charged particle moving in the presence of a uniform B-field follows a circular
trajectory. By equating the Lorentz force, υ= ×F Bq , for a particle of charge q and
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velocity υ = βc θ̂ (c = speed of light in vacuum, θ̂ = unit vector in the azimuthal
direction), to the centripetal force we obtain

υ γ υ
ρ

=q B
m

, (2.1.1)
2

where ρ is the radius of the circular orbit, m is the rest mass, and γ is the relativistic
mass factor γ β= − −(1 )2 1. Therefore, if the relativistic linear momentum is defined
as p = γmυ, we have

ρ =B
p
q

. (2.1.2)

The quantity Bρ is called the magnetic rigidity, and its units are Tm (Tesla-meter, in
SI units), or Gcm (Gauss-cm, in CGS units). The reason for that name is that
particles with higher energies and therefore higher Bρ are harder to ‘bend’: a higher
field would be required for a fixed orbit radius ρ. It is strange (and sometimes
confusing) to name the product of two quantities with a single name, but it is almost
universal usage in the accelerator-related literature. Perhaps only Wollnik [1] uses a
single symbol (χB) for magnetic rigidity.

From the special theory of relativity, the relativistic momentum, total energy E
and rest mass energy E0 = mc2 are connected by the relation

= + ≈E p c E p c . (2.1.3)2 2 2
0
2 2 2

The last equality is valid for highly relativistic particles, i.e. particles for which
E ≫ E0. For reference, E0 = 0.511 MeV for the electron, and E0 = 938 MeV, or
0.938 GeV, for the proton.

As an example, if B is given in Tesla (T) units and ρ in meters, we can write the
following relation for relativistic electrons:

ρ =B p c c[T] [m] 0.3 [GeV/ ] , (2.1.4)

where the momentum p is given in units of GeV/c and c is the speed of light. Thus, a
300 MeV electron will move on a circular trajectory of 1 m radius in a 1 T B-field. As
an exercise, the reader can write the corresponding relation for the magnetic rigidity
of relativistic protons.

Finally, by writing υ ρ θ ρω= =t(d /d ) C , we obtain from equation (2.1.1) the
expression for the angular frequency of revolution of a particle of charge q in a
uniform field B0. It is called the cyclotron frequency:

ω
γ

= qB
m

. (2.1.5)C
0

A related frequency, which we will use later, is the Larmor frequency:

ω ω=
2

. (2.1.6)L
C
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2.2 Solenoid focusing
Solenoids for particle accelerators are built from coils of normal conducting or
superconducting wires and fed with very high dc currents to produce central B-fields
of up to several tesla (T). (For reference, 1 T = 10 000 gauss, and the magnitude of
the Earth’s B-field is 0.5 gauss, approximately).

From the discussion in the previous section, we can understand that charged
particles in the central region of a solenoid of field B follow spiral trajectories that
enclose the B-field lines as in figure 2.1. This motion in itself does not constitute
focusing; the focusing effect occurs at the edges of the solenoid where the B-field has
a radial component. In those fringe regions the Lorentz force produces an azimuthal
acceleration which in turn leads to radially symmetric focusing. To see this in detail,
consider the passage of a particle through the fringe field region depicted in figure
2.2. Let us assume that the particle starts moving in a region at s = s0 with B = 0, and
with a velocity along the solenoid axis, i.e. with θ ̇ = 00 , but with an offset radius ρ0
near r = 0.

Therefore, the initial canonical angular momentum θp is zero, or, explicitly

γ θ ̇ + =θmr qrA 0, (2.2.1)2

where = =θA r z rB r z( , ) ( 0, )/2 is the component of the vector potential that leads
to a rotationally symmetric field ρ⃗ = ˆ + ˆB r z B B z( , ) r z (recall that = ∇ ×B A). The
rotation frequency of particle motion inside the fringe region is then

Figure 2.1. Motion of a positively-charged particle in uniform B-field. The blue arrow represents the B-field,
while the green one indicates the velocity direction. Source: from ‘Charged Particle in a Uniform Magnetic
Field’ from the Wolfram Demonstrations Project http://demonstrations.wolfram.com/ChargedParticleIn
AUniformMagneticField/. Contributed by: Jeff Bryant and Oleksandr Pavlyk.

A Practical Introduction to Beam Physics and Particle Accelerators

2-3

http://demonstrations.wolfram.com/ChargedParticleInAUniformMagneticField/
http://demonstrations.wolfram.com/ChargedParticleInAUniformMagneticField/
http://demonstrations.wolfram.com/ChargedParticleInAUniformMagneticField/


θ
γ γ

ω̇ = − = − = ∓θ
q
mr

A
qB

m
1
2

, (2.2.2)L
0

from equations (2.2.1), (2.1.5) and (2.1.6). The sign in front of ωL in equation (2.2.2)
is negative if q and B have the same signs and positive if they have opposite signs.

The radius of gyration can be found from the change in azimuthal or transverse
linear momentum, Δ ⊥p , not to be confused with θp , in the transition from ‘B = 0’
space into the fringe region:

∫ ∫υΔ = =⊥p q B z t q B z z( )d ( )d , (2.2.3)
0 0

t

z r

z

r

1 1

which can be further evaluated from ≅ − ∂ ∂ =B r B Z( /2)( / )r z r 0. The latter result follows
from the assumption of a linear radial fringe field =B B rr 0 , rotational symmetry, and
∇ ⋅ =B 0 in cylindrical coordinates. (Alternatively, we can use Gauss’ Law and the
pillbox indicated in figure 2.2, see the article by McDonald [2]). We obtain

ρΔ = −⊥p q B /20 0 , which implies a radius of gyration equal to ρ /20 . Furthermore, the
opposite change in transverse linear momentum occurs in the transition from inside the
solenoid to the region of ‘B = 0 space’ on the opposite end of the solenoid.

In conclusion, particles moving initially parallel and near the axis in a solenoid
rotate with the Larmor frequency and with a radius equal to one-half the initial
offset; this implies that the particles cross the solenoid axis at r = 0 periodically. It is
important to understand that particles rotate with the cyclotron frequency around
the center of their individual orbits, but the rotations around the solenoid axis occur
at the Larmor frequency. The geometry of these rotations is illustrated in figure 2.3.
Additional insights on solenoid focusing can be found in an American Journal of
Physics article by Vinit Kumar [3] and in a workshop presentation on ‘Solenoid
Dynamics’ by R B Palmer [4].

It is convenient to describe the motion in a reference frame that rotates with the
Larmor frequency θ ,̇ equation (2.2.2). It is clear that particles follow simple harmonic

Figure 2.2. Geometry of field lines in fringe region of solenoid lens. Gauss’ law applied to the pillbox near the
axis provides a way to show that ≅ − ∂ ∂ =B r B z( /2)( / )r z r 0.

A Practical Introduction to Beam Physics and Particle Accelerators

2-4



motion in both transverse coordinates. Thus, the wavenumber along the X or Y axis
in the Larmor frame is

ω
υ ρ

= =k z
z B z

B
( )

( ) 1
2

( )
( )

. (2.2.4)X Y
L

z
,

Finally, from equation (2.2.4) and the paraxial equation of motion (1.1.1), the
transverse focusing function for a solenoid can be written as

κ
ρ

=s
B s
B

( )
1
4

( )
( )

, (2.2.5)S

2

2

where Bρ is the magnetic rigidity which was defined in equation (2.1.2), and we have
reverted to using s instead of z for the axial coordinate. Note that solenoid focusing
is always positive.

2.3 Quadrupole focusing
In the absence of electrical currents in the region traversed by a beam inside a
magnetic lens, the B-field can be derived from a scalar potential: ⃗ = −∇ΦB . In
addition, if the lens is long compared to its aperture, we can ignore any dependence
of Φ on the axial coordinate z. We have in effect a 2D problem and the scalar
potential in cylindrical coordinates can be written as [5]

⎡⎣ ⎤⎦∑ ∑θ θ θΦ = Φ = −
=

∞

=

∞

r a r n b r n( , ) cos( ) sin( ) , (2.3.1)
n n1 1

n n
n

n
n

which is applicable inside the magnet. The term n = 1, corresponds to a linear potential,
i.e. a constant (dipole) field. The term n = 2 yields a quadratic (in r) potential

θ θ θΦ = −r a r b r( , ) cos(2 ) sin(2 ). (2.3.2)2 2
2

2
2

The part of the potential proportional to b2 is called the normal quadrupole
component, while the part proportional to a2 is the skew quadrupole component.
The normal component has the form

Φ = − b xy2 , (2.3.3)Normal 2

Figure 2.3. Orbit geometry in solenoid focusing of particles with an initial offset equal to ρ0 and no canonical
angular momentum. ‘O’ is on the axis of the solenoid and ‘C’ is the center of the individual orbit.
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in Cartesian coordinates. Therefore, the x-component of the Lorentz force on a
particle moving initially with velocity υ along the +z-axis is

υ υ= − = −F q B q b x2 . (2.3.4)x y 2

Similarly, the y-component of the force is

υ υ= =F q B q b y2 . (2.3.5)y x 2

We can see from equations (2.3.4) and (2.3.5) that an ideal normal quadrupole
provides linear focusing in the horizontal plane and linear defocusing in the vertical
plane. This latter statement assumes that the product qb2 is positive and that υ is
along the +z direction. Figure 2.4 illustrates the B-field geometry and the forces in
such a situation.

To make the connection with equation (1.1.1) and find the form of the focusing
function κ s( ), we first realize that the time and axial derivatives of x are related
through

υ υ̇ = ′ ̈ = ″x x x x, , (2.3.6)2

so Newton’s second law yields

ρ ρ
″ = − = −x

b
B

x
g

B
x

2
( ) ( )

, (2.3.7)x2

and similarly for the y-direction, except for the sign on the right-hand-side. The B-field
gradients in the x and y-directions (see equations (2.3.4) and (2.3.5)) are defined by

=
∂
∂

= ∂
∂

g
B

x
g

B
y

, . (2.3.8)x
y

y
x

Figure 2.4. Quadrupole magnet for horizontal focusing of beams of positively-charged particles. The red
arrows indicate the magnetic forces acting on particles moving out of the plane of the figure.
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We generalize and include an axial dependence for the field gradients and write

κ
κ

″ + =
″ − =

x s s x s
y s s y s

( ) ( ) ( ) 0,
( ) ( ) ( ) 0, (2.3.9)

x

x

where

κ
ρ

=s
B

g s( )
1

( )
( ). (2.3.10)x x

Then, the magnitude of the focal length is related to the integrated gradient by:

∫ρ ρ
= =

f B
g s s

B
g l

1 1
( )

( )d
1

( )
, (2.3.11)0 eff

where leff is the effective length and g0 is the peak on-axis gradient.
Typically, magnetic quadrupole lenses, based on either permanent magnets or

electromagnets, are employed for focusing of relativistic particles, while electrostatic
quadrupoles (based on electric field gradients) are used at low energies. Quadrupole
focusing is termed ‘strong’ focusing because it is more efficient than focusing based
on fringe effects (e.g. solenoid focusing or focusing in cyclotron magnets). We can
see this by comparing the focal lengths of a quadrupole doublet and a solenoid when
both have the same peak B-fields and same overall lengths. If the quadrupoles have
aperture a, the magnitude of their peak fields is g0a = B0 (ideal linear quadrupoles);
further, if their separation is 2leff, with leff defined in equation (2.3.11), and the
solenoid has an effective length equal to 2leff and the same field B0, then

≈
f

f
l
a

4
, (2.3.12)solenoid

quad doublet

eff
2

2

as the reader can verify from equations (1.3.6) (chapter 1), (2.2.5) and (2.3.11). Since
ordinarily a ≪ leff, the doublet is significantly stronger than the equivalent solenoid.

2.4 The Kerst–Serber equations and weak focusing
The discussion in section 2.1 of particle motion in a uniform B-field led to the
formula for the cyclotron frequency, equation (2.1.5), which can be complemented
with the cyclotron radius or radius of the design orbit R0:

γ υ ρ= =R
m

qB
B
B

( )
. (2.4.1)0

0 0

Although equation (2.4.1) may seem tautological, it must be understood that
specifying the magnetic rigidity of a particle does not yield automatically either
the actual design orbit radius or the B-field.

An important question regarding circular accelerators is the stability of the
orbits. Using cylindrical coordinates (r, θ, z), the radial equation of motion is
γ γ θ θ̈ − ̇ = ̇mr mr qr Bz

2 . We recover equation (2.4.1) if r = R0, Bz = B0, constant, and
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θ υ̇ = −r . The latter choice of sign indicates that the unit vectors θˆ ˆ ˆr z, , form a
right-handed coordinate system, with θ increasing in the counterclockwise
direction, so a positively charged particle moves in a clockwise direction if
the B-field is pointing in the +z direction. Figure 2.5 illustrates the geometry of
the problem.

Let us now assume that the particle moves off the design orbit with a small offset x,
so that r=R0+ x, with x≪R0. Furthermore, let us expand the verticalB-field in x and
keep only the linear term:

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟= + ∂

∂
= −

=
B r x B x

B
r

B n
x

R
( , ) 1 , (2.4.2)z

r R
0 0

0

z

0

where we have introduced the field index n defined by

⎜ ⎟⎛
⎝

⎞
⎠≡ − ∂

∂ =
n

R
B

B
r

. (2.4.3)
r R

0

0

z

0

With these definitions, an equation of motion for x can be easily derived [6, 7]:

″ + − =x s
R

n x s( )
1

(1 ) ( ) 0. (2.4.4)
0

2

Similarly, for the vertical motion we have

″ + =z s
n

R
z s( ) ( ) 0. (2.4.5)

0
2

Equations (2.4.4) and (2.4.5) are called the Kerst–Serber equations after
D Kerst and R Serber who in 1941 studied the stability of transverse motion in
the betatron accelerator. The equations indicate that particles executes harmonic
oscillations around the design orbit both radially and in the vertical plane but with
different frequencies. These oscillations are called betatron oscillations. Further,
the motion is stable if the associated focusing function (see equation (1.1.1)) is
κ > < <n0, i.e. for 0 1.x z,

Figure 2.5. Reference orbit and cylindrical coordinate system. The particle is positively charged.
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In the radial direction, equation (2.4.4), the focusing function has two parts, one
proportional to 1/R0

2 and the other to −n. The first part is a completely geometrical
effect and corresponds to what is known as weak focusing, while the second part
arises because of the appearance of a radial component of the B-field that varies
linearly with the height z over the orbit plane. The latter effect can be seen from
∇ × =B 0, which implies ∂ ∂ = ∂ ∂B z B r/ /r z , or = −B B R nz( / )r 0 0 . In the vertical plane
there is no geometrical focusing but a focusing function proportional to +n (see
equation (2.4.5)), the opposite of the situation in the horizontal plane. We can recast
equation (2.4.4) to see the quadrupole term more clearly (see equation (2.3.8)):

⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠ρ

″ + + = = ∂
∂ =

x s
R

g

B
x s g

B
x

( )
1

( )
( ) 0, , (2.4.6)x

x
z

x0
2

0

since B0R0 = Bρ, and we are using z instead of y for the vertical coordinate.
Furthermore, from equation (2.4.4), the wavenumber associated with the radial

motion is κ= = −k n R(1 ) /x x
1/2

0. Thus, the number of radial oscillations per turn,
which defines the radial betatron tune, νx, is

ν π
λ

= = = −R
k R n

2
(1 ) . (2.4.7)x

x
x

0
0

1 2

Similarly for the vertical betatron tune:

ν = =k R n . (2.4.8)z z 0
1 2

We see that with weak focusing the betatron tunes, as the field index, cannot be
larger than 1 if the orbits are to be stable. This limitation is overcome in a different
scheme, strong focusing, discussed in chapter 3.

2.5 Dipoles and edge focusing
Let us assume that a charged particle of magnetic rigidity Bρ moves through a
region of uniform field ΔB and length L. By equating the centripetal force to the
Lorentz force and recalling that θ θ υ̇ = ′ and the definition of magnetic rigidity, we
find the deflection angle Δθ caused by this dipole field:

θ
ρ

Δ = Δ ⋅B L
B( )

. (2.5.1)

(Alternatively, we can simply use θ ρΔ = Δs/ , where Δs is the arc length, and
multiply by ΔB B/ with the understanding that ΔB= B for a uniform field.)
More generally, we can write

∫θ
ρ

Δ =
B

B s s
1

( )
( )d , (2.5.2)

s

s

1

2

for the deflection through a non-uniform field B(s). Note that we can obtain
equation (2.5.2) by setting ρ θ=s sd ( )d , and using ρ ρ=B s s B( ) ( ) , for all s, the latter
equality being valid without acceleration (other than centripetal). Here we see the
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potential for confusion because we need to distinguish B(s) in the integrand in
equation (2.5.2) from B in the factor outside the integral. The latter B is not to be
taken separately, because the actual factor is Bρ = p/q, constant. Note also that the
net deflection is proportional to the ‘integral Bds’, regardless of the details of how the
field varies along the trajectory through the dipole magnet.

Motion through the boundary regions in a real dipole magnet leads to focusing
effects. In essence, a particle moving with a (transverse) offset distance from the
reference trajectory can see either a ‘deficit’ or an ‘excess’ of integrated transverse
magnetic field. Equivalently, from equation (2.5.1), particles are deflected by an
angle proportional to the traversed distance L in the boundary region, which in turn
is to first order proportional to the transverse offset. We can see this explicitly with
help from figure 2.6(a), which represents the effect of either edge in the dipole
magnet depicted in figure 2.6(b).

Figures 2.6(b) and 2.6(c) show reference trajectories forming an angle ∣α∣ with the
normal to the pole faces. The intermediate case between figures 2.6(b) and 2.6(c) is
not shown but we can deduce that it corresponds to α = 0: the reference trajectory
enters and exits the pole faces along the normal to the faces. This latter magnet is
called a sector magnet. Thus, the thin wedge magnet of figure 2.6(a) is designed so
that it subtracts from the field of an ideal sector magnet on the upper part (of the
reference trajectory, at the boundary), but adds to the field on the lower part. In
other words, the magnet of figure, 2.6(b) is equivalent to the superposition of a sector
magnet and a thin wedge magnet (figure 2.6(a)) at each end. Furthermore, the
distance in the thin wedge of figure 2.6(a) is α α= ∣ ∣ ≅ ∣ ∣L x x2 tan( /2) tan . Therefore,
from equation (2.5.1) we can write

θ
α

ρ
Δ =

B

B
x

tan

( )
. (2.5.3)y

Figure 2.6. Edge focusing of a positively-charged particle: (a) thin magnetic wedge, (b) magnet with horizontal
edge-defocusing, and (c) magnet with horizontal edge-focusing. The blue traces in (b) and (c) indicate the
reference trajectories (radius ρ).
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By convention the angle α for the magnet in figure 2.6(b) is positive, so equation
(2.5.3) implies that net defocusing results (i.e. positive slope for particles moving
from right to left). In contrast, the magnet in figure 2.6(c) has a negative α and yields
focusing. To summarize, edge focusing is represented by the matrices

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥α

ρ
α

ρ
= + = −R R

1 0
tan

1 ,
1 0

tan
1 . (2.5.4)xx yy[wedge] [wedge]

Rxx and Ryy represent thin lenses for the horizontal and vertical planes, respectively.
Although no edge focusing occurs for a sector magnet, the magnet provides net

focusing in the horizontal plane. This is just a geometric effect that corresponds to
the weak focusing discussed in connection with equation (2.4.4); the focusing
constant is then κ ρ= =R1/ 1/0 . In the vertical plane, the sector magnet is
represented by a drift. In matrix form (see equation (3.2.1)), a horizontal sector
magnet is represented by the matrices

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

⎡
⎣⎢

⎤
⎦⎥

θ ρ θ
θ

ρ
θ

ρθ= − =R R
cos sin
sin

cos
,

1
0 1

. (2.5.5)xx yy[sector] [sector]

If ∣α∣ in a magnet is one-half of the bending angle θ, we have a rectangular magnet.
It can be shown by matrix multiplication that in this case the geometric and edge
effects exactly balance each other out yielding no net focusing in the horizontal
plane. In the vertical plane (perpendicular to the bending plane), however, the
rectangular magnet can be shown to introduce edge focusing.

The section on computer resources at the end describes exercises to illustrate edge
focusing, sector and rectangular magnets.

2.6 Effective hard-edge model of fringe fields in focusing magnets
The standard hard-edge model of the focusing function κ s( ) was illustrated in figure 1.2.

It has a length equal to the effective length as defined in equation (1.2.1) and a top
value that coincides with the maximum value of κ s( ). However, the hard-edge model
constructed in this way will not give correct answers in general. For this reason, other
models have been devised to take into account the smooth wings of an actual κ s( )
profile. An example is the linearization of the end fields. But for basic design
calculations it is still more convenient to implement hard-edge models in computer
codes to track particle trajectories or trace beam envelopes.

The correct approach to constructing a hard-edge model consists in dividing the
focusing function profile into a number of thin slices representing individual lenses
and then multiplying out all the individual matrices to obtain a transfer matrix
whose elements can be related to the effective length and strength of the magnet
[8, 9]. This method of ‘slicing’ the focusing profile is quite general and is especially
suited for cases when the profile has extended wings.
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We illustrate here the slicing method using the focusing function for a solenoid.
The function is proportional to the square of the on-axis z-component Bz of the
solenoid B-field—see equation (2.2.5):

⎜ ⎟ ⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠
⎤
⎦⎥= − +B s B

s
d

h
s
b

c h
s
b

( ) exp sec sin , (2.6.1)Z 0

2

2 0
2

where B0 is the peak field, i.e. the axial field at the middle plane of the solenoid (z = 0),
and d, b, and c0 are constants. Equation (2.6.1) can be used to fit very accurately actual
magnetic field data for a solenoid used to focus low energy electrons [10]. Figure 2.6
illustrates the κ s( ) profile.

The profile in figure 2.7 is divided into N = 203 slices with a width δ = 0.001 m thus
covering L = 0.203 m well into the wings where κ≪ 1% κ0. Each slice is represented by
the following matrix, following equation (3.1.1) (see also (1.1.1)–(1.1.3)):

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

κ δ
κ

κ δ

κ κ δ κ δ
=

−

( ) ( )

( ) ( )
M

s
s

s

s s s

cos ( )
1

( )
sin ( )

( ) sin ( ) cos ( )

. (2.6.2)slice

Multiplication of all N matrices leads to:

⎡
⎣⎢

⎤
⎦⎥= … =M M M M

M M
M M

. (2.6.3)N1 2
11 12

21 22

The effective length of the solenoid is then found from [9]:

θ θ= −l
M
sin

, (2.6.4)eff
21

where θ is the root (nearest to zero) of the transcendental equation

Figure 2.7. Analytical axial profile of focusing function for a short solenoid. The profile is proportional to the
square of Bz(s) in equation (2.6.1) with particular values of fit constants and a peak value κ0 = 200 m−2. See also
Mathcad document.
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θ θ θ+ − + =M LMcos
1
2

sin
1
2

0. (2.6.5)11 21

L is the extent of the slicing. Furthermore, the effective strength of the solenoid is:

κ θ=
l

. (2.6.6)eff

2

eff
2

The method just described yields hard-edge models whose hard-top value does not
coincide in general with the peak value of the smooth profile. This is illustrated in
figure 2.8. Furthermore, there is a slight dependence of the effective length and hard-
top strength on the peak strength of the smooth profile κ s( ). Explicitly, we obtain
leff = 0.0651 m, and κeff = 138.62 m−2 for the profile illustrated in figure 2.7 for which
κ0 = 200 m−2. Additional details are included in the references as well as in the
Mathcad document mentioned in the next section.

A similar ‘slicing’ procedure is applicable to quadrupole lenses, but two slightly
different effective lengths are obtained, one for the focusing plane (lf) and another
one for the defocusing plane (ld). Likewise, two effective quadrupole strengths result
from the analysis. Thus, instead of equation (2.6.4) and (2.6.5) we have:

θ θ θ θ= − = −l
F

l
D

sin
,

sinh
, (2.6.7)f

f f

21
d

d d

21

where θf, θd are solutions of the transcendental equations

θ θ θ

θ θ θ

+ − + =

− − + =

F LF

D LD

cos
1
2

sin
1
2

0,

cosh
1
2

sinh
1
2

0. (2.6.8)

f f f 11 21

d d d 11 21

The corresponding effective focusing constants are related to θf, θd through
θ κ= ∣ ∣ l1/2 . The effective lengths lf, ld vary linearly with quadrupole peak gradient in
such a way that the average effective length lave = (lf + ld)/2 is nearly independent of

Figure 2.8. Hard-edge models for the normalized focusing function of a short solenoid. The dotted blue line
follows the prescription of equation (1.2.1), while the dashed black line results from the slicing method described
in the text. From [10]. Used under CC‐BY 3.0, http://creativecommons.org/licenses/by/3.0/deed.en_US

A Practical Introduction to Beam Physics and Particle Accelerators

2-13

http://creativecommons.org/licenses/by/3.0/deed.en_US


the quadrupole peak gradient. An average effective quadrupole focusing constant is
also defined. An example for short magnetic quadrupoles is illustrated in a Mathcad
document available in the book’s website.

Computer resources

The motion of a charged particle in a uniform B-Field can be explored using the
Wolfram Demonstrations Project ‘Charged Particle in a Uniform Magnetic Field’
(see figure 2.1), which is freely available and requires the Wolfram CDF Player.

Particle trajectories in a sector magnet (section 2.5) can be studied numerically
using a Mathcad program freely available from the University of Colorado: http://
cips.colorado.edu/mathcad/mathcad.html. Scroll down to chapter 3 and download
3_Lorentz_Bending_Magnet.xmcd. Note that q = 1, m = 1 and the special
construction of the sector: the bending radius originates at the apex of the magnet.
Thus, with the default values in the program, the inverse focal length (equation
(2.5.5)) is just °θ ρ= = =f1/ sin / sin 30 0.5, since ρ = 1 (SI units implied).

The Winagile (see appendix) files S-bend.lat and R-bend.lat contain single 10°
bends and help to understand the matrix representation and focusing properties of
sector and rectangular magnets with ‘flat’ fields. Run either file as a ‘transfer line’
and click on the last row to reveal the matrix elements. Figure 2.9, top, shows the

Figure 2.9. Output from Winagile file R-bend.lat. Top: matrix elements. Note in particular the element -vv21;
it is the inverse of the focal length in the vertical plane. Particle tracking in the vertical plane is shown on the
bottom graph.
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output to expect for a rectangular magnet. Furthermore, doing tracking with a particle
starting at +0.005 m in the vertical plane illustrates vertical focusing (figure 2.9,
bottom).

The Mathcad files SOLENOID-SmoothAndHE.xmcd, and QUAD-Smooth
AndHE.xmcd illustrate the method described in section 2.6 to calculate the effective
length and strength of solenoids and quadrupoles with fringe fields. Figures 2.7 and
2.8 for the solenoid case can be reproduced.
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Chapter 3

Periodic lattices and functions

A periodic lattice consists of a repeating focusing structure composed of one or more
lenses, not all necessarily identical, whose function is to allow the transport of
charged-particle beams over long distances. The repeating structure or cell con-
stitutes one lattice period; the focusing function introduced in chapter 1 then
becomes a periodic function. Further, if focusing is axisymmetric, focusing of
particles occurs with equal strengths (and signs) in both transverse planes; this is
the case with a solenoid lattice, which requires a single focusing function. We
consider a periodic linear solenoid lattice in the first section. Although not
commonly used, the solenoid lattice provides a simple system to study stable
beam transport and to introduce the phase advance per period without space charge.
In the second section we analyze the alternating gradient (AG) focusing system,
which consists of quadrupoles paired with opposite gradient polarities. If the
strengths of the quadrupoles are the same (except for the sign), the configuration
is called symmetric FODO for ‘FOcusing–DefOcusing’. For various reasons,
however, it is customary to power the two quadrupoles per FODO cell with
different strengths; this case is also considered. In section 3.3, we summarize the
classic Courant–Snyder theory, the ‘bread-and-butter’ theory of accelerator physics.
In section 3.4, we introduce the uniform-focusing approximation, an idealized
constant focusing function which is widely used for theoretical and computational
studies. Section 3.5 covers linear dispersion and section 3.6 additional important
concepts especially applicable to rings. Finally, the last section covers computer
resources and exercises.

3.1 Solenoid lattice
Focusing by a single solenoid was discussed in section 2.2. The transfer matrix for
the solenoid in the Larmor frame of reference can be written as
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⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

θ
θ

θ

θ θ θ
=

−
M

l

l

cos sin

sin cos
, (3.1.1)S

S

S

where θ κ= lS S, κS is given in equation (2.2.5) and lS is the effective length of the
solenoid. It is possible to write a matrix that describes the ray transformation in the
laboratory frame, i.e. a transformation that includes rotation; the derivation is
discussed in the book by Banford [1]. It is implicit in equation (3.1.1) that κ κ≡ s( )S S ,
i.e. the focusing function can vary with distance. Note that in the limit of small θ,
the matrix MS reduces to the thin lens form given by equation (1.1.5). In that limit,
cos θ = 1, sin θ = θ, and κ =l f1/S S .

Let us now consider N solenoids in a linear configuration and with a spacing L
between them. Then, the matrix corresponding to one period of the solenoid lattice is
the product MSML, where ML is the matrix representing a drift (equation (1.1.6)).
Let us write the one-period matrix in the form

⎡
⎣⎢

⎤
⎦⎥= =M M M A B

C D
, (3.1.2)S L1

so a ray + +′r r[ , ]s s1 1 at a plane labelled s+ 1 is related to a ray at plane s by

= +
= +

+ ′

+′ ′

r Ar Br

r Cr Dr

,

. (3.1.3)
s s s

s s s

1

1

From these relations, a difference equation can be easily obtained:

− + =+ +r br r2 0, (3.1.4)s s s2 1

where we have used b = (A+D)/2 ≡ (1/2)Tr[M1], and AD−BC = 1. The symbol Tr
stands for ‘trace’, while the last equality is equivalent to det[M1] = 1 (see chapter 1
and section A.0 in appendix). We now look for a periodic ray solution of the form

=r r es
sq

0
i (naturally, only the real—or the imaginary—part of r is physical). When rs

is substituted in equation (3.1.4), we find = ± −b be i 1qi 2 . By setting σ=b cos ,0
we see that σ0 is real and the ray solution is confined if ∣ ∣ ⩽b 1, i.e. if the trace of the
one-period matrix satisfies

⩽MTr[ ] 2. (3.1.5)1

The quantity σ0 is the change in phase of the ray when advancing one period; thus, it
is called the phase advance per period. In practice, the phase advance σ0 is specified,
and the required strength of the magnet is obtained by solving for θ κ= lS S the
equation

σ − =Mcos
1
2

Tr[ ] 0. (3.1.6)0 1
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From the product of the solenoid and drift matrices, equations (3.1.1) and (1.1.6),
we can identify θ=A cos , θ θ θ= +B L lcos ( / )sinS , θ θ= −C l( / )sinS , and

θ θ θ= −D L lcos ( / )sinS , so the condition 3.1.5 is, explicitly,

θ θ θ= − ⩽M
L
l

1
2

Tr[ ] cos
2

sin 1. (3.1.7)
S

1

In the limit of thin lenses we have

− ⩽L
f

1
2

1, (3.1.8)

from which the condition ⩽L f4 easily follows. In chapter 1 we had found that a
combination of positive and negative lenses with the same strength lead to net
focusing if their separation is smaller than one focal length. Clearly, the combination
of only positive lenses like solenoids allows a greater separation.

As an example, let us consider a periodic lattice with solenoids having an effective
length lS = 0.065 m, and a drift space L = 0.10 m. If we specify a phase advance
per period σ0 = 30°, we obtain θ = 0.3272 from equation (3.1.6), and κ = −25.35 mS

2

(see definitions below equation (3.1.1)). Ray propagation in this lattice is illustrated
in figure 3.1.

3.2 FODO lattice
A symmetrical FODO lattice is realized with paired quadrupole lenses that have the
same strength but opposite gradients (polarities). Figure 3.2 shows a schematic
representation of a symmetrical FODO lattice.

In the same vein as equation (3.1.1) for a solenoid lens, a quadrupole that is
focusing in the horizontal or x-plane is represented by the matrix

Figure 3.1. Ray propagation in a periodic lattice with 36 solenoids. Three rays with different initial conditions
(r0, r′0) start at n = 0. The phase advance per period is σ0 = 30°.
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⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

θ
θ

θ

θ θ θ
=

−
M

l

l

cos sin

sin cos
, (3.2.1)F

q

q

where θ κ= + lq q, κq is positive and given by equation (2.3.10) for a magnetic
quadrupole, and lq is the effective length of the quadrupole. If the quadrupole is
focusing in the vertical or y-plane, it will be defocusing in the horizontal plane, with a
corresponding matrix given by

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

θ
θ

θ

θ θ θ
=M

l

l

cosh sinh

sinh cosh
. (3.2.2)D

q

q

Therefore, the matrix corresponding to one symmetrical FODO cell as in figure
3.2 is

⎡
⎣⎢

⎤
⎦⎥= =M M M M M A B

C D
. (3.2.3)L D L FFODO

Matrix multiplication leads to

σ

θ θ
η

θ θ θ θ θ

η
θ θ θ

=

= + −

−

Mcos
1
2

Tr[ ]

cos cosh
1

[cos sinh sin cosh ]

1
2

sin sinh , (3.2.4)

0 FODO

2
2

with

η = =
−

l

L

l

S l( /2)
(3.2.5)q q

q

defining the fill factor.

Figure 3.2. Focusing functions of one-and-a-half cells of a symmetrical FODO (FOcusing–DefOcusing) lattice.
Notice that κqX = −κqY: there is focusing in the horizontal plane and defocusing in the vertical plane. The full-
lattice period is S.
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As an example, let us consider a symmetric periodic FODO lattice with magnetic
quadrupoles having an effective length lq = 0.0516 m, and a full-lattice period
S = 0.32 m. If we specify a phase advance per period σ0 = 30°, we obtain θ = 0.4341
from equation (3.2.4), and κ = −70.78 mq

2 (see definitions below equation (3.2.1)).
Note that κ = −70.78 mq

2 is the value of the focusing (piecewise) constant in the
horizontal x-plane; correspondingly, the focusing (piecewise) constant in the vertical
y-plane will be −κq. Ray propagation in this lattice is illustrated in figure 3.3 for the
x and y components of just one ray.

If the strengths of the 2 quadrupoles in a FODO cell are different, the FODO
lattice is asymmetrical. The focusing function for such a lattice would be schemati-
cally represented as in figure 3.4.

In this case, we need to define separate strength variables θ for the two
quadrupoles (figure 3.4): θ κ θ κ= + = +l l, .q q1 1 2 2 With these definitions, matrix
multiplication as for equation (3.2.3) leads to [2]:

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

σ θ θ
η

θ θ

θ θ θ
θ

θ
θ η

θ θ
η

θ θ

= −

+ − − +

cos( ) cosh( ) cos( )
1

sin( )

sinh( )sin( )
1
2

1
2

1
cot( ) , (3.2.6)

x0 2 1 1 1

2 1
2

1

1

2
2 1 2 2 1

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

σ θ θ
η

θ θ

θ θ θ
θ

θ
θ η

θ θ
η

θ θ

= +

+ − − −

cos( ) cos( ) cosh( )
1

sinh( )

sinh( )sin( )
1
2

1
2

1
coth( ) . (3.2.7)

y0 2 1 1 1

1 2
1

2

2

1
2 1 2 2 1

As an example, let us consider a periodic FODO lattice with the same geometry
as before but with different quadrupole strengths so that the phase advances per

Figure 3.3. Example of ray propagation in symmetrical FODO lattice with 36 periods. Both the x and y
components of a ray starting with components (x0, x′0) = (0.0012, 0) m, and (y0, y′0) = (0.0012, 0) m have phase
advances of 30° per period.
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period in the two transverse planes are σ X0 = 30°, and σ Y0 = 45°. By solving
equations (3.2.6) and (3.2.7) simultaneously for θ1, θ2, we obtain θ1= 0.4748, and
θ2= 0.50135, which correspond to κ1= 84.67 m−2, and κ2= 94.40 m−2. Clearly, a
stronger second quadrupole in a FODO in the scheme of figure 3.4 is needed for a
larger phase advance in the vertical y-plane.

3.3 Lattice and beam functions
The matrix treatment of the previous two sections describing paraxial ray prop-
agation in periodic lattices is equivalent to solving the second-order homogeneous
differential equations

κ
κ

″ + =
″ + =

x s s x
y s s y

( ) ( ) 0,
( ) ( ) 0.

(3.3.1)x

y

For a solenoid lattice, only one equation would be needed, with the function κ(s)
representing focusing in the radial direction. Inspired by the simple harmonic
oscillator equation, the general solution of the first of equations (3.3.1) can be
written as

ψ ϕ= +x s Cw s s( ) ( )cos[ ( ) ], (3.3.2)

where w(s) is the amplitude function, ψ(s) is the phase function, and C and ϕ are
constants that depend on the initial conditions x(0) and x′(0). Differentiation of
equation (3.3.2) and substitution into the first of equations (3.3.1) yields

γ α β+ ′ + ′ =x xx x C2 , (3.3.3)2 2 2

where α, β, γ define the Courant–Snyder (C–S) [3], or Twiss parameters, and C is the
Courant–Snyder invariant, sometimes also called ‘single-particle emittance’.

The C–S parameters are functions of s and can be related to the amplitude
function and its derivative:

β α γ= = − ′ = + ′w ww
w

w, ,
1

. (3.3.4)2
2

2

Figure 3.4. Focusing functions of two cells of an asymmetrical FODO lattice. Notice that κ1 ≠ κ2, but still
κqX = −κqY for each quadrupole.
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(It will be clear from the context of any discussion whether β and γ refer to the
standard relativistic quantities or to the C–S parameters). Only two of the C–S
parameters are independent because they are connected by the equation

βγ α− = 1, (3.3.5)2

which can be easily verified from equation (3.3.4).
Two additional important equations can be easily obtained from equations (3.3.2)

and (3.3.1):

κ″ + − =w s s w s
w s

( ) ( ) ( )
1
( )

0, (3.3.6)x 3

and

ψ ψ
β

′ = =s
s

ds s
( )

d ( ) 1
( )

. (3.3.7)

Equation (3.3.3) represents a tilted ellipse in trace space (x, x′), although it is
common to call this space ‘phase space’. Figure 3.6 shows the ellipse and its relation
to the C–S parameters. The ellipse size and shape at a given s are determined by the
constant C and coefficients α(s) and β(s). In a single-pass machine, a particle is
represented by only one point on the ellipse at a given location s. If the structure is
periodic, however, the particle coordinates (x, x′) will trace the ellipse discontinu-
ously. This is illustrated in figure 3.7 for the periodic solenoid lattice; we have used
the same parameters for the calculation of ray propagation illustrated in figure 3.1.
Alternatively, we can construct the trace-space ellipses from equation (3.3.3) and the
C–S parameters. These parameters can be related to the ABCD matrix in equation
(3.1.2) by the following relations:

α
σ

β
σ

γ
σ

= − = = −s
A D

s
B

s
C

( )
2 sin

, ( )
sin

, ( )
sin

. (3.3.8)
0 0 0

Figure 3.5. Example of ray propagation in asymmetrical FODO lattice with 36 periods. The x-component of a
ray starting with components (x0, x′0) = (0.0012, 0) m, and (y0, y′0) = (0.0012, 0) m has a phase advance of 30°
per period, while the y-component has a phase advance of 45° per period.
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(See also expressions in the discussion before equation (3.1.7)). The values of the
C–S invariant C in equation (3.3.3) can be determined from the initial conditions.
This is shown numerically in one of the examples mentioned in the section on
‘Computer Resources’ below. The relations in equations (3.3.8) are a special case of
the general matrix for linear ray transformation between two planes 1 and 2 in terms
of the corresponding C–S parameters:

Figure 3.6. Trace-space ellipse (equation (3.3.3) in the horizontal plane at a given location s along the beam
line. The size and orientation of the ellipse are related to the C–S parameters (equation (3.3.4)).

Figure 3.7. Trace-space ellipses corresponding to the rays in figure 3.1 for a periodic solenoid lattice. n is the
period number. Note that the points overlap after 12 periods because the phase advance per period is σ0 = 30°.
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⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥

β
β

ψ α ψ β β ψ

α α ψ α α ψ
β β

β
β

ψ α ψ
=

Δ + Δ Δ

− Δ − + Δ Δ − Δ
→M

(cos sin ) sin

( )cos (1 )sin
(cos sin )

, (3.3.9)1 2

2

1
1 2 1

1 2 1 2

2 1

1

2
2

where ψΔ is the phase advance from plane 1 to plane 2. The derivation of equation
(3.3.9) employs equation (3.3.2) and its derivative; details can be found in many
textbooks (e.g. [4, 5]).

So far, we have discussed the propagation of a single particle or ray. In a particle
beam, different particles will have different values of C and phase ϕ, leading to
different ellipse sizes at a location s. But the functions α(s) and β(s) depend entirely
on the lattice geometry and magnet strengths through the function κx(s), and for this
reason are called machine or lattice functions.

The general solution equation (3.3.2) is valid for periodic or non-periodic lattices;
only when κ κ= +s s S( ) ( )x x , we have periodic focusing. Naturally, in this latter case
the C–S parameters are also periodic, indicating that at a given instant the trace-
space ellipse repeats itself with period S along the reference trajectory. But a beam
injected into a periodic system will not follow the machine ellipse unless the beam is
matched. When the beam is mismatched, we can still define beam functions αΒ(s),
βΒ(s), γΒ(s) and a corresponding beam ellipse, to be distinguished from the machine
(or lattice) counterparts. The beam functions can be identified with those of the
particle with the maximum C–S invariant, but a proper discussion of beam matching
normally involves the beam emittance and a beam ellipse in the manner described in
chapter 6.

3.4 Uniform-focusing (‘smooth’) approximation
From equation (3.3.7) we can write an expression for the single-particle phase
advance per period, introduced in section 3.1 in the matrix treatment of the solenoid
lattice but now made more general in the context of the Courant–Snyder theory:

∫ ∫σ ψ
β

= ′ =s s
s
s

( ) d
d
( )

. (3.4.1)0
Per. Per.

Furthermore, we can substitute an effective uniform-focusing lattice for the periodic
lattice. The uniform-focusing lattice will have a constant focusing function κ0 and
constant amplitude function w. If we set ″ =w 0, we find from equation (3.3.6) an
expression for κ0 in terms of the constant amplitude function, or the betatron
parameter β:

κ
β

= =
w
1 1

. (3.4.2)0 4 2

Now we can relate the phase advance per period of the actual lattice (with
period S) to the constant focusing function of the uniform-focusing lattice.
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From equation (3.4.1), the integral over one period of the inverse betatron
function can be written as:

σ
β

κ= ¯ =S
S . (3.4.3)0 0

Finally, we introduce κ≡k0 0 , so σ = k S0 0 . An additional related concept, the
betatron tune or number of betatron oscillations per turn, can be defined for a
circular lattice of radius Rm:

∮ν
π β β

= = ¯
s
s

R1
2

d
( )

, (3.4.4)0
m

which can be written also as ν=k R/ .0 0 m

The uniform-focusing or ‘smooth’ approximation is a very useful construction
for theoretical as well as computational studies in accelerator and beam physics. We
will return to thismodelwhenweconsider emittance and space charge in thenext chapter.

3.5 Linear dispersion
The single-particle equations of motion, equations (3.3.1), assume mono-energetic
particles so that the focusing represented by κ(s) is defined for a single momentum p0.
If, however, there is a momentum spread Δp around the design value p0, the
equations are modified. For the horizontal motion (radial in a circular machine) we
have the inhomogeneous equation (see e.g., [6] page 46):

κ δ″ + = −x s s x
R s

( ) ( )
1
( )

, (3.5.1)x

where δ = Δp p/ 0, and R(s) is the local orbit radius. A major assumption here is that
x(s)≪ R(s), so we can neglect the weak focusing term 1/R2 discussed in section 2.4. It
is straightforward to show, from the definition of magnetic rigidity in equation
(2.1.2), that the momentum error is equivalent to a magnet error, i.e.
Δ = Δp p B B/ /0 0. The general solution of equation (3.5.1) is

δ= +βx s x s D s( ) ( ) ( ) , (3.5.2)x

where βx s( )is the solution of the homogeneous equation (3.3.1), and D(s) defines the
linear dispersion function. D(s) satisfies the equation (see e.g. [6] page 49)

⎡
⎣⎢

⎤
⎦⎥κ+ − = −″D s

R s
s D s

R s
( )

1
( )

( ) ( )
1
( )

. (3.5.3)x x x2

Normally, the weak focusing term 1/R2(s) can be neglected as in equation (3.5.1).
Thus, using the smooth-approximation whereby →″D s( ) 0x , we obtain for the
average dispersion:

κ ν
¯ = =D

R
R1

, (3.5.4)x
x m

m

0
2

the last equality following results from the previous section. Therefore, larger circular
machines normally need to operate at larger tunes to reduce dispersion effects. Note
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the resemblance of equation (3.5.4) to the equation for the average beta function
β ν¯ = R /m 0, from equation (3.4.4). In circular machines, the term βx s( ) in equation
(3.5.2) defines the design reference orbit; with momentum error, the dispersion
function can be interpreted as the reference orbit for off-momentum particles.

3.6 Momentum compaction, transition gamma, and chromaticity
In general, the change in orbit radius due to a momentum error cannot be neglected.
Thus, we define the momentum compaction factor as the fractional change in
equilibrium radius per fractional change in momentum:

α ≡ R R
p p

d
d

, (3.6.1)c
0

0

with p0, R0 defining design values. Rewriting equation (2.1.2) for the magnetic
rigidity in the form

= =R p B
p

qB
R

p

qB
( , ) , , (3.6.2)0

0

0

and taking logarithmic derivatives on both sides we get = −R R p p B Bd / d / d /0 0 0.
(Note that we are evaluating the derivatives, i.e., ∂ ∂ ∂ ∂R p R B/ , / , at the equilibrium
values p0, R0). Therefore, by using the definition of the field index, equation (2.4.3),
we find:

− =R
R

n
p

p
d

(1 )
d

. (3.6.3)
0 0

The momentum compaction is then

α =
− n
1

1
. (3.6.4)c

Further, if C denotes the length of the orbit over the beam line for a particle of
coordinate x, and C0 is the length of the reference orbit (for which x = 0 by
definition), then αc = (dR/R0)δ

−1 = (dC/C0)δ
−1, and to first order in x we can write

(see e.g. [7], or [4]):

∫α
ρ

=
C

D
s

s
1

( )
d , (3.6.5)

0
c

C
x

0

0

since ∫ ρ= − =C C C x sd ( / )d
0

C
0

0
, (ρ(s) = R(s) = local radius of curvature), and

x = Dxδ, from equation (3.5.2) with βx = 0.
Furthermore, because of the change in R there are corresponding changes in

the revolution period π β=T R c2 / and angular frequency ω β= c R/ . Taking loga-
rithmic derivatives in the equation for ω we get ω ω β β= − R Rd / d / d /0 0 0. The
second term is α=R R p pd / d / ,c0 0 from equation (3.6.3), while the first term is

β β γ= − p pd / d / ,0 0
2

0 which follows from the definition of the relativistic mass factor γ,

and γ γ β γ β=d / d0 0 0
2 [8]. Finally, the fractional change in period is
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ω
ω

η η α
γ

= − = = −T
T

p
p

d d d
, with

1
. (3.6.6)c

0 0
tr

0
tr

0
2

The momentum compaction also defines a transition gamma, γt:

γ
α

= 1
. (3.6.7)t

c

In a straight machine, αc = 0, γ → ∞t , η γ= −1/tr 0
2: at all energies particles with

higher momentum take less time to traverse a given distance. In circular machines,
the same would apply for energies such that γ γ< t0 . However, there are situations
where, counterintuitively, particles with higher momentum take more time to
complete a revolution, i.e. ηtr > 0, or γ γ> .t0 This is the regime of ‘negative mass’
of weak focusing machines such as cyclotrons, or strong focusing circular machines
above transition energy. For cyclotrons we have 0 < n < 1, νr < 1 (equation (2.4.7)),
while νr > 1 for strong focusing machines.

In circular machines, another effect of a momentum error δ is to change the tunes
in both the radial and vertical planes. Horizontal and vertical chromaticities, ξX, ξY,
are defined to characterize the effect:

ν ξ δ ν ξ δΔ = Δ =, . (3.6.8)X X Y Y

The focusing of particles with higher momentum is less efficient, leading to reduced
tunes. Therefore, we expect the chromaticity from linear elements such as dipoles
and quadrupoles to be negative.

In a weak focusing machine where ∂ ∂B R/y is constant, the field index satisfies
= +n R n n Rd /d (1 )/ (see Reiser) and we find:

ξ ξ= − +
−

= − +
−

n n
n

n n
n

( 1)
2(1 )

,
( 1)

2(1 )
. (3.6.9)X Y3 2

Note that in Reiser’s book [9] the chromaticity is defined in terms of fractional
quantities ν ν ν νΔ Δ/ , /X X Y Y instead of just ν νΔ Δ, .X Y

Amore general definition of chromaticity, referred to as the natural chromaticity is

∮ ∮ξ
π

β κ ξ
π

β κ= − =s s s s s s
1

4
( ) ( )d ,

1
4

( ) ( )d , (3.6.10)X x x Y y x

where only linear focusing elements are involved. We will encounter a related
expression in chapter 4 when we discuss the effects of linear space charge on betatron
tune.

Computer resources

Two Mathcad files, Sol_Lattice.xmcd, and Quad_Lattice.xmcd provide the tools
for obtaining the ray and trace-space plots in this chapter. In addition, input files
for the popular code MAD8 and ELEGANT are included for calculating lattice
functions in an example. Additional examples are given in chapter 6 for linacs and
rings.
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Chapter 4

Emittance and space charge

The description of the evolution of beams in accelerators and other devices must be
extended beyond the single-particle dynamics concepts of the previous three chapters.
The first concept we encounter is the particle distribution in phase or trace space. For
particle ensembles satisfying Hamilton’s equations of motion, i.e. systems without
dissipation (from radiation or collisions) or particle losses, the evolution of any
representative region in phase space is similar to themotion of an incompressible fluid.
This is in essence a statement ofLiouville’s theorem, introduced in section 3.1. Then, we
discuss beam emittance, which is related to area in phase space and thus invariant if the
conditions for Liouville’s theoremare satisfied. In practice, however, root-mean-square
(rms) emittance is used, a beamquality factor that can be shown to be conserved under
linear transformations and without acceleration. In section 3.2 we give a simple
treatment of the Kapchinskij–Vladimirskij (K–V) and thermal distributions, which
aremathematical constructswidely used in beamphysics tomodel real distributions. In
section 3.3 we derive the K–V envelope equations, which embody the simplest macro-
scopic beam dynamics of direct (‘incoherent’) space charge in a uniform-focusing
lattice.FromtheK–Venvelopeequations,wederive in section3.4 the expression for the
tune shift causedbydirect space charge (incoherent tune shift) for beams of circular and
elliptical cross sections. Lastly, in section 3.5 we discuss the change in tune caused by
image forces (coherent tune shift). In presenting the expressions for space-charge tune
shifts we use the language of the standard literature as well as the notation of more
specialized books such as Reiser’s [1]. Most illustrations and examples are covered in
computer exercises described briefly at the end of the chapter.

4.1 Liouville’s theorem and emittance
We mentioned in chapter 3 that the ellipse represented in equation (3.3.3) and shown
in figure 3.6 is a particle’s orbit in (x, x′) space, i.e. ‘trace’ space. More generally,
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non-interacting particles in a beam occupy a 6-dimensional phase space formed by
three space coordinates and three canonical momenta, or (x,y,z, px,py,pz). It can be
shown from Hamiltonian mechanics that the density of particles or the volume
occupied by a number of particles in phase space is invariant. These are statements
of Liouville’s Theorem; its derivation (see e.g. section 3.2 in [1]) corresponds
essentially to showing that the evolution of particles in phase space is similar to
the motion of an incompressible fluid. If the particles interact, the concept can be
extended to a 6N-dimensional space, where N is the number of particles, but we will
retain the use of the simpler 6-dimensional space.

Furthermore, if the motions along the 3 coordinate directions are uncoupled, we
can consider the projection of the 6-dimensional phase space onto any plane, such as
was done with the ellipse in figure 3.6 for the (x, x′) plane. Therefore, we can state
Liouville’s theorem for the (x, x′) plane in the form

∬ ∬′ = =x x
p

x pd d
1

d d const., (4.1.1)x

where γ β=p m c, and similarly for the vertical (y, y′) plane (β, γ now stand for the
relativistic parameters). Now, an ellipse of the general form ax2+ 2bxy+ cy2= d2

encloses an area equal to π −d ac b/2 2 ; therefore, the area enclosed by the ellipse in
figure 3.6 is equal to π=A C2 (not in m2 but in ‘m’ units, as x′ is dimensionless) after
using equation (3.3.5). If the ellipse represents the trajectory in trace space of the
particle with the maximum amplitude C in an ensemble of particles, the ratio πA is
identified as the beam emittance:

ε π
π

= =C
C . (4.1.2)x

2
2

We will adopt this definition which can be found in many other books (e.g. [1, 2]).
An alternative definition of emittance, adopted by e.g. [3], includes the factor of π,
in which case

ε π= =A C alternative definition, ( ). (4.1.3)x
2

Very often the units are quoted in the form ‘π-mm-mrad’, but there is no
fundamental reason for factoring π. Unfortunately, the lack of consensus in the
definition of emittance is a source of great confusion.

Since it is not possible in practice to establish the maximum amplitude of particle
trajectories, a definition of emittance very often relies on assuming a Gaussian
distribution for particle positions and momenta. In the (x, px) plane, we have:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟πσ σ σ σ

= − −f x p
x p

( , )
1

2
exp

2 2
, (4.1.4)2x

x p x

x

p

2

2

2

x x

where σ σ,x px
represent standard deviations, and we have assumed that the average

values of x and px are zero, which is the case for distributions around design values.
The constant in front of the exponential function in equation (4.1.4) assures us that
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∬ =f x p x p( , ) d d 1x x . Furthermore, from figure 3.6, the maximum value of x is

βC x . Therefore, if we identify this value with σx, we can also write for the
emittance, following the definition in equation (4.1.2),

ε
σ
β

= . (4.1.5)x
x

x

2

From Liouvilles’s theorem as stated in equation (4.1.1), emittance decreases as
1/p, or as 1/βγ. Therefore, emittance in Hamiltonian beam transport is conserved
only without acceleration or emission of radiation (see also chapter 5). However, we
can define a conserved quantity, normalized emittance, by multiplying by βγ (β, γ are
the relativistic parameters):

ε βγε= . (4.1.6)xn x

Without a sharp elliptical boundary, we would like to express the emittance as the
product of spreads in both x and x′ as if we had an elliptical upright boundary:
ε σ σ˜ = ′2 2x x x . In general, however, we expect that a statistical definition of emittance
will involve a correlation term of the form x x′, because the hypothetical boundary
will not be upright but rotated. As shown in detail in [4], the effective or 4 × root-
mean-square, or 4-rms emittance is

ε ε˜ ≡ = ′ − ′x x xx4 4 , (4.1.7)x xrms
2 2

where the angular brackets 〈〉 stand for average in phase space. For example,

∑ ∑∑σ= = − ′ = − − ′
= ≠ =

′( )x
N

x x xx
N

x x x x
1

( ) ,
1

( ) , (4.1.8)
i

N

i j

N

j

N

1 1
x i i j

2 2 2

for N particles. Note that if the correlation term 〈 ′〉 =xx 0, we regain the expression
ε σ σ˜ = ′2 2x x x

To conclude this section, we present an example of a simple trace-space distribution
and its evolution in linear and non-linear focusing channels. The particles originate
from a point source located at s = 0. Thus, the initial trace space is a vertical line in
(x, x′) space, i.e. with no spread in x values but some range in initial trajectory slopes.
The particles are emitted with initial divergence values x′ assigned randomly between
−1 and 1 rad. In addition, the particles are focused by a linear uniform-focusing
channel with focusing constant κ0 = 100 m−2 = k0

2. The trace space line rotates
clockwise and completes half a revolution after a distance s = λ0/2 = π/k0 = 0.314 m.
Figure 4.1(a) depicts the rotation of the trace space line formed by 100 particles. Note
that the rotation spans an oval, but that the area occupied by the particles aswell as the
emittance is zero. If focusing is non-linear, with third order terms of the form k0

4x3 and
k0

2x′2x added to the linear focusing k0
2x, the trace space lines twist as they rotate,

eventually spiraling in and occupying an apparent larger area. Figures 4.1(b) and
4.1(c) illustrate the trace-space evolution. The area occupied by the particles as well
as the standard emittance is still zero, but the rms emittance now has a non-zero value:
the effective emittance, as defined in equation (4.1.7) is 0.020 m after a distance equal
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to λ0/2, and 0.027 m after a distance equal to 5λ0. These rather large emittance values
stem from the assumed large initial spread in trajectory slopes; for the linear channel,
on the other hand, the effective emittances are 2× 10−5 m and 3 × 10−4 m after s= λ0/2
and 5λ0, respectively. The calculations and figures can be reproduced using the
accompanying Mathcad programs. We will consider additional trace-space distribu-
tions in the following section.

In many applications of accelerators it is important to have beams with small
cross section and beam divergence. Thus, a great deal of accelerator technology is
devoted to controlling and minimizing rms emittance. From Liouville’s theorem
alone, emittance as an area in phase space (or in trace space, but without
acceleration) is conserved for Hamiltonian linear or non-linear processes. The rms
emittance, on the other hand, is conserved only under linear transformations, such
as the transformation of coordinates and slopes in equation (1.1.3) (see also [5]). The
non-linearities originate in most cases from the focusing magnets, but they may also
arise from space charge forces. A detailed account of these and other mechanisms of
rms emittance growth and theoretical models can be found in chapter 6 of [1].

Figure 4.1. Evolution of the trace space of 100 particles originating from a point source at s = 0 and moving in
(a) linear uniform-focusing channel; (b) non-linear (cubic) but otherwise uniform-focusing channel; and
(c) trace space in non-linear channel after 5 betatron wavelengths. See text and Mathcad programs in website.
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4.2 The Kapchinskij–Vladimirskij (K–V) and thermal distributions
Let us consider a continuous, axially-symmetric beam with constant particle volume
density n0 (in m−3) within a radius r = a. In addition, let us assume that all particles
have the same energy and longitudinal velocity υ β= c, with no energy or
longitudinal velocity ‘errors’ or spreads. The beam is kept together by an external
uniform-focusing lattice characterized by a focusing constant k0 (in m–1). As we will
discover, this arrangement is self-consistent if the beam is ‘matched’ to the lattice,
i.e. if a, n0, and k0 are properly chosen. The corresponding particle distribution is an
example of a 2D Kapchinskij–Vladimirskij distribution, or K–V for short. The K–V
distribution is a mathematical construct that can be employed to model transport of
real particle beam distributions with elliptical symmetry ([1, 6]). Mathematically we
have,

⎡⎣ ⎤⎦
πγ

δ= −– ⊥ ⊥ ⊥f p r
n

m
H p r H( , )

2
( , ) , (4.2.1)K V

0
0

where δ is a Dirac delta function,H0 is the constant transverse energy, and ⊥ ⊥H p r( , )
is the transverse Hamiltonian given by:

γ
γ υ ϕ= + +⊥ ⊥

⊥H p r
p

m
m k r q r( , )

1
2

1
2

( ). (4.2.2)
2

2
0
2 2

In equation (4.2.2), = +⊥p p px y
2 2 2, = +r x y2 2 2, and qϕ(r) the self-potential

energy from linear space charge for particles of charge ‘q’. We can imagine a
uniform background of opposite charge to provide a physical basis for the model;
magnetic (solenoid) focusing, on the other hand, can be accommodated if the
dynamics is described in the Larmor frame (see chapter 3).

From Gauss’ law, the self-potential inside the beam of radius ‘a’ can be easily
found to be

ϕ
ε

= − ⩽ ⩽r
qn

r r a( )
4

, 0 . (4.2.3)0

0

2

For later reference, we define the generalized beam perveance K by

⎛
⎝⎜

⎞
⎠⎟ε γ β

ω
β

= =K
n q

m
a

c
a

c2 2
, (4.2.4)

p0
2

0
3

2

2 2

2 2

2 2

where ωp is the plasma frequency, implicitly defined in equation (4.2.4). Thus, we
have

⎜ ⎟⎛
⎝

⎞
⎠ϕ γ υ= − ⩽ ⩽q r

m K r
a

r a( )
2

, 0 , (4.2.5)
3 2 2

The generalized perveance K can be expressed in terms of the (squared) wave-
number of plasma oscillations ω υ=k /p p

2 2 2, so =K k a /2p
2 2 . Finally, we can re-write

the transverse Hamiltonian in equation (4.2.2) in the convenient form
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⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟γ

γ υ
γ

= + = −⊥ ⊥
⊥H p r

p

m
H

r
a

H m a k
k

( , )
1
2

,
1
2 2

. (4.2.6)
p

2

0

2

0
2 2

0
2

2 2

An alternative form for the K–V particle distribution in equation (4.2.1) is then

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟
⎤
⎦
⎥⎥πγ

δ
γ

= − −– ⊥
⊥f p r

n
m

p

m
H

r
a

( , )
2

1
2

1 . (4.2.7)K V
0

2

0

2

2

Using cylindrical coordinates in ⊥p r( , ) space and the properties of the δ function,
we verify from equation (4.2.7) the normalization of the K–V distribution:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∫ ∫π πγ

γ
= = ⩽ ⩽– ⊥ ⊥ –

⊥f p p m f
p

m
n r a2 d 2 d

2
, 0 . (4.2.8)K V K V

2

0

Furthermore, the transverse kinetic temperature in energy units is

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟∫π

γ
= = − ⩽ ⩽⊥ –

⊥
⊥ ⊥T

n
f

p

m
p p H

r
a

r a
2

2
d 1 , 0 . (4.2.9)kin

0
K V

2

0

2

2

The transverse kinetic temperature has a parabolic profile, being maximum on
axis, r = 0, and zero at the beam edge r = a.

The K–V distribution is an example of a micro-canonical distribution in statistical
mechanics, i.e. a particle distribution constructed for an isolated system at constant
energy. However, other related concepts from statistical mechanics such as partition
function are rarely discussed in connection with charged-particle beams because of
problems to identify dynamical ‘states’ for interacting particles in a beam even in the
simple context of the K–V distribution. More generally, there are conceptual
difficulties for the use of statistical thermodynamics in beam physics (see [7]).

Another widely used concept in describing charged-particle beams is the
Boltzmann factor − ⊥ ⊥H k Texp( / )B . Here ⊥H is the transverse Hamiltonian of equation
(4.2.6) and ⊥T the transverse temperature, normally much larger than the longitudinal
temperature (see [1], chapter 6). The canonical ensemble is implicit in this picture, but
no discernible heat bath, which is a key component of the ensemble, is present.
Therefore ⊥T cannot be a thermodynamic temperature, but simply a kinetic
parameter characterizing the spread of energies in a model distribution. More
importantly, a beam may evolve towards an equilibrium described by an effective
Maxwell–Boltzmann (M–B) distribution, but such equilibrium cannot be rigorously
characterized as thermodynamic equilibrium.

As implied at the beginning of this section, the uniform-focusing approximation is
employed to simplify the study of transport of continuous (i.e. ‘unbunched’) round
beams in the presence of significant space charge. Under these circumstances,
equilibrium transverse distributions are derived that have non-analytic spatial
transverse profiles at given transverse temperatures (see [1], chapter 5). In the limit

→⊥T 0, i.e. the space charge or laminar limit, the equilibrium distribution is a K–V

A Practical Introduction to Beam Physics and Particle Accelerators

4-6



distribution, which, as we have seen, is uniform in both spatial and velocity
coordinates. This limit can also be considered as the ‘zero emittance’ limit.
However, as we will see below, an equivalent K–V distribution can be defined for
any combination of emittance and perveance. Furthermore, the limit →⊥T 0 refers
to the limit of an M–B distribution; the kinetic temperature, on the other hand, is
only zero at the beam edge (equation (4.2.9)).

In the limit of high temperature (or ‘zero current’) → ∞⊥T Gaussian (thermal)
distributions in both spatial and velocity coordinates are obtained. The spatial profile
will have the form of equation (4.1.4), except that = +r x y2 2 would be
substituted for ‘x’. The velocity profile, on the other hand, is Gaussian at all
temperatures.

The total, or 100%, and rms emittances in the K–V distribution can be easily
shown to be related by ([1], chapter 5):

ε ε ε= ≡ ˜ –4 , K V distribution. (4.2.10)x x xrms

For a Gaussian distribution, on the other hand, no 100% emittance can be defined
because the tails extend to infinity. If the distribution is truncated at n standard
deviations σx, however, the truncated and rms emittances are related by:

ε ε=n n( ) , Gaussian distribution. (4.2.11)x x
2

rms

Following this prescription the expression in equation (4.1.5) corresponds to n = 1,
or 39% of particles: σ≅a x

2 2. From [3] (chapter 3) we find that the fraction of particles
F within nσx is:

= − −F n1 exp ( /2). (4.2.12)2

For protons, for example, it is customary to use either the 87% (n= 2.0)
emittance, or the 95% (n = 2.45) emittance. We find:

ε
σ
β

ε
σ
β

= =(87%)
4

, (95%)
6

. (4.2.13)x
x

x
x

x

x

2 2

The beam radius squared corresponding to 95% of particles in the Gaussian
distribution is σ≅a 6 x

2 2.

4.3 The K–V envelope equations and space-charge (SC) intensity
parameters

With linear transverse space charge forces arising from a K–V distribution, we can
derive an equation governing the evolution of the rms beam radius in a linear
uniform-focusing channel. From ″ = −x s k x s( ) ( )2 , and σ≡ 〈 〉 =X s x( ) x

2 , where
the ‘spring constant’ k includes both external focusing and internal (‘direct’) space
charge, we find, after straightforward differentiation,

ε″ + − =X s k X s
X s

( ) ( )
( )

0. (4.3.1)x2 rms
2

3
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The unnormalized rms emittance εxrms is related to the effective emittance by
ε ε= ˜ /4x xrms (equation (4.1.7)). Equation (4.3.1) is related to equation (3.3.6) for the
amplitude function w(s) of the Courant–Snyder theory discussed in section 3.3. We
can write ε= =X s w s w s( ) ( ) ( )xrms max to obtain an equation for the maximum
amplitude function wmax(s) from equation (3.3.6). We also assume uniform focusing,
and do the substitution →k k0

2 2 to include space charge defocusing. Therefore,
using the effective beam radius R ≡ 2X and effective emittance ε̃x, equation (4.3.1)
can be cast in the alternative form

ε″ + − ˜ =R s k R s
R s

( ) ( )
( )

0, (4.3.2)x2
2

3

which is the basis for the beam envelope calculations discussed in section 6.1. Note
that the equations for either X(s) or R(s), unlike the ones for w(s) or wmax(s), involve
the statistical quantity εxrms characterizing a beam distribution.

As mentioned above, ‘k’ includes both (linear) external focusing and space charge
defocusing. Explicitly,

= − → −k k
K

R s
k

K
a( )

, (4.3.3)2
0
2

2 0
2

2

where K is the generalized beam perveance or ‘space-charge parameter’ defined
in equation (4.2.4), and k0 is the focusing constant. In the smooth approximation
R″(s) = 0 in equation (4.3.2), and we have ε= = ˜R a k/x for the ‘average’ beam
radius of the rms-envelope matched beam. The connection between the parameters of
a periodic focusing lattice and those of the smooth approximation is made, as in
equation (3.4.3), through k = σ/S, and k0 = σ0/S, where σ, σ0 are the phase advances
per period S, with and without space charge, respectively. Note that we have now a
new phase advance that includes the effect of linear space charge but that we are not
explicitly using a betatron function that includes space charge.

In figure 4.2 we present an example of calculations of beam envelope and single
particle trajectories in a periodic solenoid lattice and in the equivalent uniform-
focusing lattice. The beam perveance chosen is K = 0.0015 (equation (4.2.4)), while
the effective emittances are ε ε˜ = ˜ = μ60 mx y .

The lattice period is S = 0.32 m; the solenoid effective length is 0.065 m, and the
peak focusing constant is = −k 100 m0

2 2. We solve the K–V envelope equation
(4.3.2) with a lattice of hard-edge solenoids and also with uniform-focusing with an
average focusing constant = −k 20.31 mave

2 2. By construction, the smooth-focusing
model does not yield exactly the same phase advance and tune depression (see
equation (4.3.4) below) as the piecewise focusing model (see figure 4.2). Details can
be found in a Mathcad program briefly described at the end of the chapter.

From equations (4.3.2) and (4.3.3), a number of dimensionless space charge (SC)
intensity parameters can be defined. The first one is called the tune depression η:

η σ
σ

= =k
k

, (4.3.4)
0 0

applicable to periodic linear or circular machines, although the word ‘tune’ is directly
relevant to circular machines only. The tune depression, however, is equal to 1
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for ‘zero’ current (K = 0 in equation (4.3.3)) and to 0 for ‘zero’ emittance. In the latter
case we approach the space charge limit k → 0, whereby external focusing exactly
balances direct space charge (equation (4.3.3)), and which implies λ = 2π/k → ∞,
i.e. perfectly laminar flow. Therefore, it is perhaps better to change the definition of an
SC intensity parameter to

χ η= − = K
k a

1 , (4.3.5)2

0
2 2

as has been done by Reiser and independently by Davidson (see [1, 6]), so the range
of χ is from zero, in the limit of zero current, to 1 in the space charge limit. Note that
χ is, from equations (4.3.2) and (4.3.3), equal to the ratio of space charge force K/a to
external focusing force k0a at the effective beam edge R = a. Another SC intensity
parameter, related to χ and also used by Reiser, and Davidson and Qin, can be used
to express more transparently the role of external focusing and the beam quantities:

ε
=

˜
u

K
k2

. (4.3.6)
x0

In contrast to χ, u ranges from zero at zero current, to infinity at zero emittance. It
is straightforward to show the connection between u and χ:

χ =
+ + −u

2

1 1
. (4.3.7)

2

To complement the equations above, it is interesting to note that the ratio of
effective beam radii in the limits of zero emittance (aB) and zero current (a0) is given by

ε
=

˜
=a

a

K k

k
u

/

/
(2 ) , (4.3.8)

x

B

0

0
2

0

1/2

as can be easily shown from the envelope equation (4.3.2). For any combination of
space charge and emittance, however, the effective ‘average’ beam radius a is better
approximated by just adding aB and a0 in quadrature:

Figure 4.2. (a) Matched beam envelope and single particle trajectories in a periodic solenoid lattice.
(b) Matched beam envelope and single particle trajectories in the equivalent uniform-focusing lattice. The
tune depressions (equation (4.3.4)) are (a) 0.193, and (b) 0.175.
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≅ + = +a a a a u1 2 , (4.3.9)B
2

0
2

0

with the provision that ⩽u 5 ( χ = 0.99 for u = 5), approximately. The expression in
equation (4.3.9) overestimates the beam radius a by a few percent relative to exact
envelope calculations (see section 6.1). The exact smooth-approximation results for
a in terms of χ or u, are:

χ χ= − < <

= + + <

−a a

a a u u u

(1 ) , 0 1,

1 , 0 ,
(4.3.10)

0
1/4

0
2

as can be easily derived from ε= ˜a k/ ,x ε= ˜a k/ ,x0 0 and the definitions of χ and u
in equations (4.3.5) and (4.3.6). In general, equations (4.3.10) underestimate a
relative to exact envelope calculations.

We emphasize that the SC intensity parameters u, and χ are applicable only to
rms-envelope matched beams in periodic lattices. Both parameters are needed to
understand the role of space charge and how to reduce its effect: for constant current
and emittance, we need stronger focusing to make the beam smaller (equation
(4.3.6)), which increases the space charge force but also reduces the ratio of space
charge force to external focusing force (equation (4.3.5)); see also [16]. In the ideal
space charge limit, this latter ratio is maximum and equal to χ = 1 (or η = 0), but we
consider χ > 0.5 (or η < 0.71) to be the regime of space-charge dominated beam
transport because in this regime plasma oscillations dominate over zero-current
betatron motion ([1], chapter 7). The term ‘space-charge dominated beam’ abounds
in the literature, but it is more proper to speak of ‘space-charge dominated beam
transport’ as a beam with given current and emittance can be either emittance or
space-charge dominated depending on external focusing.

4.4 Incoherent space-charge (SC) betatron tune shift
The tune, i.e. the number of betatron oscillations in one revolution in a circular
lattice, will change under the action of direct space charge and also from image
forces that act when the beam is off center in the vacuum pipe. The first effect defines
the incoherent tune shift, which can be easily calculated using the K–V envelope
equation. If ν0x is the bare tune (horizontal plane), defined in equation (3.4.4), and νx
the shifted tune from direct space charge, we can write

ν ν ν χ− = − −( )1 1 , (4.4.1)x x x0 0

from equations (4.3.4), (4.3.5), and ν ν σ σ=/ /0 0. Further, if we assume weak space
charge, i.e. small χ, we have ε≅ = ˜a a k/x0 0 , and with ν=k R/0 0 m (see equation
(3.4.4)) we can write

ν ν ν χ
ε

− ≅ =
˜

KR
2 2

. (4.4.2)x x
x

x
0

0 m
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Rm above is the machine radius, not to be confused with the beam radius in the K–V
envelope equation. Two more commonly quoted equations for the incoherent SC
tune shift ν ν νΔ ≡ −x x x0 for weak space charge are

ν
β γ ε πβ γ ε

Δ ≅
˜

=
˜

–IR
I

Nr
2

, (K V Distribution), (4.4.3)x
x x

m

0
3 3

e
2 3

where we have used the expression for the beam perveance K in equation (4.2.4). For
the second equality we employ the definition of the classical electron radius

=r ec I/e 0, πε=I mc4 /e,0 0
3 and β π=I Ne c R/2 m in terms of the total number of

particles N of a continuous beam. Other authors use πN R/2 m for the number of
particles per unit length. Note that for a given energy and small direct space charge
the incoherent tune shift is proportional to the beam-current/emittance ratio, and is
independent of the bare tune ν0x. The scaling of Δνx as 1/γ3 is, however, the most
dramatic, explaining why direct SC effects are negligible in electron machines
such as light sources, and not significant in most proton synchrotrons above some
10 GeV [8].

In general, the incoherent tune shift will depend on ν0x, becoming comparable to
it for very strong space charge. Therefore, another sensible measure of SC strength is
the ratio of tune shift to bare tune:

ν
ν

χ χΔ = − − ≅1 1
2

, (4.4.4)x

x0

from equations (4.4.1) and (4.4.2). Note that the incoherent tune shift alone would
not be a good measure of incoherent SC effects for overall beam transport; by
contrast, the relative change in tune can be related to χ or u. For example, an
incoherent betatron tune shift of 0.4 at an operating horizontal tune of 6.7, as in the
Fermilab booster, yields a relative tune shift of about 6%. While significant for
resonance crossing (see chapter 6), it does not correspond to very strong transverse
SC effects, i.e. beam transport is still dominated by emittance.

Another—more common—approach used to derive the incoherent SC tune shift
starts with the Courant–Snyder matrix treatment of a circular lattice and considers
the SC effect as a distributed defocusing ‘error’. The following tune-shift formula is
obtained in a linear approximation in the strength of the defocusing errorΔk0

2 (see [3]
or [9] for details):

∮ν
π

βΔ = − Δs k s s
1

4
( ) ( ) d , (4.4.5)x x 0

2

where the zero-current beta function is evaluated at the location of the error. From
equation (4.3.3) we have Δ = −k s K R s( ) / ( )0

2 2 (note the sign); we can also define

∫β
π

β
=

πs

R s R

s

R s
s

( )

( )
1

2

( )

( )
d . (4.4.6)

0

x
R

x
2

m

2

2

m

Now, we can identify the average on the right as just ε̃1/ xrmswith βx(s) the zero-
current beta function, and 〈 〉 ≅R s a( )2

0
2. Therefore, we recover the result in
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equation (4.4.2) for the incoherent tune shift (for weak SC and a uniform particle
distribution) by combining equations (4.4.5) and (4.4.6).

If the particle distribution is Gaussian as in equation (4.1.4), we can consider its
projection in configuration space by integrating over px, and py (after defining also
f (y, py) for the vertical plane). Then we obtain a charge density of the form

πβ σ
σ= −n r

I
c

r( )
2

exp ( /2 ), (4.4.7)q 2
2 2

with = +r x y2 2 . The defocusing caused by such distribution is non-linear, but
linearizing the SC force for small r, i.e. assuming r ≪ σ, leads to a small-amplitude
tune spread [8, 10] equal to twice the size of the tune shift for a uniform distribution
having the same current and rms emittance:

ν
β γ ε πβ γ ε

Δ ≅ =IR
I

Nr2 2
2 (4 )

, (Gaussian Distribution). (4.4.8)x
m

0
3 3

rms

e
2 3

rms

Note that we now have a tune spread instead of a tune shift because particles
moving at different amplitudes have different tunes.

So far we have assumed that the beam has a circular cross section, but in actual
AG focusing the bare tunes in the two transverse directions may have different
values, and the beam may have correspondingly different average horizontal and
vertical dimensions. Therefore, if the beam has a uniform density but average
dimensions a and b in the horizontal and vertical directions, respectively, the
horizontal incoherent SC tune shift will depend on parameters for both the
horizontal and vertical planes. The small amplitude incoherent tune shift in
the vertical direction can be derived along the lines of equations (4.4.5) and
(4.4.6) (see [8] or [11]):

ν
πβ γ ε

β ε β εΔ ≅
˜

+ ¯ ˜ ¯ ˜
−( )Nr

1 / . (4.4.9)y
y

x x y y
e

2 3

1

The result for Δνx (horizontal direction) is obtained by exchanging the x and y
subscripts above.

We can calculate incoherent SC tune shifts for elliptical beams and arbitrary SC
from the K–V envelope equations. In equations (4.3.2), (4.3.3) we presented the K–V
envelope equation for an axisymmetric beam in a uniform solenoidal focusing
channel. We generalize the equation to piecewise AG focusing (section 3.2) and
write

ε

ε

″ + −
+

− ˜ =

″ + −
+

−
˜

=

X s k s X s
K

X s Y s X s

Y s k s Y s
K

X s Y s Y s

( ) ( ) ( )
2

[ ( ) ( )] ( )
0,

( ) ( ) ( )
2

[ ( ) ( )] ( )
0, (4.4.10)

x
x

y
y

0
2

2

3

0
2

2

3

where we have allowed for the possibility of different focusing functions as well as
different effective emittances in the two transverse Cartesian planes. (The equations
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are often called ‘K–V equations’ although the K–V distribution is not a self-
consistent distribution in an AG focusing lattice). The corresponding smooth-
approximation, coupled algebraic equations are

ε

ε

−
+

− ˜ =

−
+

−
˜

=

k a
K

a b a

k b
K

a b b

2
0,

2
0, (4.4.11)

x
x

y
y

0
2

2

3

0
2

2

3

with the understanding that all quantities are constants. Thus, following a procedure
similar to the one used for beams with circular cross section, we define tune
depressions ηx,y in the two transverse planes by the equations

η ν
ν

η
ν
ν

≡ = ≡ =k
k

k

k
; , (4.4.12)x

x

x

x

x
y

y

y

y

y0 0 0 0

and write for the tune shifts,

ν ν ν χ

ν ν ν χ

− = − −

− = − −( )
( )1 1 ,

1 1 , (4.4.13)

x x x x

y y y y

0 0

0 0

(see equation (4.4.1)) where the intensity parameters χx y, are given by:

χ χ=
+

=
+

K
k a b a

K
k a b b

2
( )

,
2

( )
. (4.4.14)x

x
y

y0
2

0
2

For weak SC, we have from equation (4.4.13) and the first equality in the last
equation,

ν
ν χ

ν
Δ ≅ =

+
KR

b a a2 [1 ( / )]
, (4.4.15)x

x x

x

0 m
2

0
2

which is similar to equation (4.4.2). Further, from ε β ε β≅ = ˜ ¯ ˜ ¯b a b a/ / /y x x y0 0 , we find

ν
ε

β ε β εΔ ≅
˜

+ ¯ ˜ ¯ ˜
−( )KR

1 / , (4.4.16)x
x

y y x x
m 1

in agreement with the x version of equation (4.4.9). Note that for arbitrary SC,
equations (4.4.11) must be numerically solved first for a and b, then the intensity
parameters are calculated from equation (4.4.14), and finally the incoherent tune
shifts result from equation (4.4.13). Alternatively, we can solve the K–V envelope
equations (4.4.10) for the piecewise focusing functions and then obtain the phase
advances (per period) with and without space charge. One of the numerical examples
described at the end of the chapter deals with incoherent SC tune shift calculations
employing both the algebraic (smooth approximation) and envelope approaches.
See also [12].
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4.5 Coherent tune shift and Laslett coefficients
Beams require a good vacuum to be transported over long distances without losses or
deleterious effects. In addition, bending magnets that use ferromagnetic materials are
common in circular machines. Thus, the betatron tune can be affected significantly
because particles that are off axis in the pipe are subject to image forces. These forces
depend not only on the particle’s energy but also on the geometry and magnetic
properties of the boundaries. The problem of finding these forces for different beam
and pipe geometries was solved by L J Laslett in the 1960s. For a round beam, for
example, the formula for the incoherent SC tune shift, equation (4.4.3), must be
supplemented with two terms involving the pipe height h, the half-gap g of bending
magnets and the Laslett coefficients ε1 and ε2 for incoherent tune shift:

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥ν ν ν

πβ γε
ε

γ
ε βΔ ≡ − ≅

˜
+ +Nr a

h
a
g

1
, (4.5.1)x x x

x
,inc 0 ,inc

e
2 1 2

0
2

2 2
2 0

2

2

where ε1 = 1/2 = ε2 for a circular pipe. Note that we recover equation (4.4.3) if
≪a h a g/ , / 10

2 2
0
2 2 (a0 is the zero-current beam radius). Note also that equation

(4.5.1) is valid for weak space charge, i.e. for tune shifts that are small when
compared to the operating (bare) tune; this is the case for almost all accelerators in
existence. When beam transport is dominated by transverse SC effects, on the other
hand, equation (4.4.1) must be used to calculate the incoherent tune shift; we give
examples in chapter 6.

The effect on the beam centroid, i.e. on the coherent motion leads to a coherent
SC tune shift given, for penetrating fields, by the so-called ‘integer formula’ (see [8],
[13], or [14]):

⎡
⎣⎢

⎤
⎦⎥ν ν ν

πβ γε
ξ ξ βΔ ≡ − ≅

˜
+Nr a

h
a
g

, for penetrating fields, (4.5.2)x x x
x

,coh 0 ,coh
e

2 1
0
2

2 2
2 0

2

2

where ζ1 and ζ2 are Laslett coefficients for coherent tune shift. For a round pipe, ζ1 =
1/2, ζ2 = π2/16 = 0.617. For non-penetrating fields, the ‘half-integer formula’ applies:

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟
⎤
⎦
⎥⎥ν

πβ γε
ξ

γ
β ε εΔ ≅

˜
+ +Nr a

h
a
h

a
g

1
, for non-penetrating fields

(4.5.3)

x
x

,coh
e

2 1 2
0
2

2
2

1
0
2

2 2
0
2

2

Note that the effect of images is always to defocus the beam, thus reducing the
tune. For comparison, we quote the results presented by Reiser [1] for the effect of
image forces in a cylindrical pipe in terms of phase advances and the beamperveanceK:

⎧

⎨
⎪⎪

⎩
⎪⎪

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

σ
σ γ

σ

σ
σ

=
−

−

K
h

S

K
h

S

1 , penetrating fields,

1 , non-penetrating field.

(4.5.4)eff

0

2

2
0
2

2
1/2

0 2
0
2

2
1/2
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In these equations, σeff is the resulting effective phase advance per lattice period S,
σ = k S0 0 is the zero-current phase advance, and ε= ˜k a/x0 0

2. Recalling that tune and
phase advance are connected through ν σ= R S( / )m , we can rewrite the second
equation (4.5.4) in the form:

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ν ν

ν ε
− ≅ − −

˜
K R

h
KR a

h2
, or

2
, (4.5.5)

x
eff 0

0

m
2

m 0
2

which agrees with equation (4.5.3) and is always a good approximation for small
beams and small off-center displacements relative to the pipe radius. The result has
been verified experimentally by Sutter et al [15]. Further, by comparing equation
(4.5.5) with equation (4.4.2) we can see that the coherent tune shift is always much
smaller than the incoherent tune shift.

From the results for incoherent and coherent SC tune shifts above we see that at
high energies the tune shift is dominated by image effects (1/γ2 → 0 in equation
(4.5.1)), but at low energies, or with complete neutralization of SC at high energies
(see [13]), the direct SC dominates.

All the results discussed so far apply to coasting, i.e. unbunched, beams. See [8],
for example, for a treatment of tune shifts in bunched beams; [8] also incorporates all
cases in a single ‘practical’ formula and presents interesting examples of ways to
overcome the ‘space-charge limit’ by increasing the injection energy into circular
machines. The ‘space-charge limit’ is often called the ‘Laslett tune shift limit (or)
criterion’ and put at Δν ⩽ 0.5. As mentioned before, this criterion is related to
resonance crossing and not to reducing the SC intensity parameter χ. Direct SC and
image forces, naturally, are parts of the physics of instabilities, a host of phenomena of
increasing importance for accelerators. Instabilities put additional limits to the
operation of accelerators, but discussing them is beyond the scope of this book.

Computer resources

The trace-space plots in figure 4.1 are generated with the Mathcad programs
PhSp-Dist-Emitt4.xmcd and PhSp-Dist-Emitt-II3.xmcd. The first program solves
the equations of motion for a number of particles (typically 100 or less) in a linear
uniform-focusing system 5 m in length and allows plotting the trace space at a
number of locations. In addition, the program is used to calculate effective
emittances at the same locations. The second program includes terms of third order
(spherical aberration) to display the complex evolution of trace space. For both
programs, all particles start with x(0) = 0, and with initial slopes following either
uniform (rand := 0) or random (rand := 1) distributions. Note that the programs are
started so that the same seed is used every time for the generation of the random
slopes; this assures reproducibility. One interesting issue to explore is numerical
convergence: for the random distribution of initial slopes, the effective emittance far
from the source increases as the number of particles increases (why?).

Another Mathcad program, EnvEqn-SmApprox.xmcd, is used to solve the K–V
envelope equation in a periodic solenoid system with an arbitrary number of hard-
edge solenoids. The program also includes uniform-focusing approximation
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calculations with and without space charge, as shown in figure 4.2(b). The envelope
for the matched beam in the periodic solenoid system (figure 4.1(a)) relies on output
from the Matlab program Menv used for matching calculations (see appendix).
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Chapter 5

Longitudinal beam dynamics and radiation

The charged particle beams treated in chapter 4 were continuous, i.e. ‘unbunched’,
very often referred also as ‘coasting’ beams. This is a good approximation whenever
the longitudinal extent of the beam is long compared with its transverse dimensions.
However, in most accelerators and related devices the beam bunches have longi-
tudinal dimensions comparable to their transverse sizes. This is the case, for example,
in linear accelerators (linacs) where radio-frequency (RF) fields not only accelerate
the beam but also impart a longitudinal density structure to it. We give a very brief
introduction to RF linacs in section 5.1. In section 5.2, we describe synchrotron
oscillations, the longitudinal counterpart of transverse betatron oscillations, and
beam bunch stability. In section 5.3, we present the main ideas and basic equations
related to synchrotron radiation (SR). Although the topic of ‘light sources’ would fill
volumes, we focus in section 5.4 on just their main components, insertion devices,
and also describe the essence of free-electron lasers (FELs). Finally, in section 5.5 we
introduce a number of definitions of longitudinal beam emittance, continue our
discussion of small synchrotron oscillations and delineate the basic model of
longitudinal space charge: parabolic line-charge density profile and the Neuffer
distribution, longitudinal beam perveance, bunch envelope equations, and the
longitudinal SC intensity parameter. The computer resources of this chapter deal
with synchrotron radiation, beam bunch stability calculations, longitudinal SC,
and FELs.

5.1 Radio-frequency (RF) linacs [1]
The energy of particle accelerators based on dc accelerating voltages is limited to a few
tens of MeV; an example is the Van de Graaf accelerator. By contrast, RF linear
accelerators, or linacs, are based on the repeated application of electric fields to achieve
voltage gains that greatly exceed the maximum applied voltage. Electromagnetic
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waves in vacuum, however, cannot be tapped to accelerate particles because the
electric fields are perpendicular to the wave propagation and are also continually
changing polarity. To solve both problems, special metallic structures called
resonant cavities are used to produce longitudinal electric fields that not only have
the right polarity but also keep up with the motion of the accelerated particles.

Linacs require many RF cavities to achieve high energies because the field
strengths per cavity are limited to a few MV m−1. This fact explains why linacs
designed for the highest energies are very long machines. In a typical electron linac,
the electrons from a dc thermionic source or a photocathode gun are injected into
the RF accelerating structure. The first few RF cavities capture the low-velocity
electrons and accelerate them to velocities close to the speed of light; at the same
time, the electrons tend to be grouped in bunches. The geometry of the main
accelerating cavities that follow is designed for acceleration of relativistic electrons.
In the traveling-wave linac, for example, the electrons ride a traveling EM wave
(whose phase velocity is essentially equal to c) as a surfer rides a sea wave. The cavity
structure is periodic and is equivalent to a series of coupled oscillators that can
sustain special field patterns called modes if the frequency of the RF is above a cutoff
frequency that depends on the cell geometry. In the stationary-wave type of linac, the
wavelength of a longitudinal E-field mode is equal to an integer multiple of the iris
separation; this is shown in figure 5.1 for the 2π/3 mode. The wavelength in this case
is equal to three times the iris separation. In the traveling-wave linac, on the other
hand, the phase advance per cell of the RF wave is specified (e.g. 2π/3 for the linac at
Stanford Linear Accelerator Center (SLAC); see chapter 6).

Ideally, all the RF power applied to a cavity would be transmitted to the beam,
but this is not possible as significant losses occur at the cavity walls. The power loss
per unit length, Pw, is related to the peak accelerating field Ep through a quantity
called the shunt impedance per unit length, rs:

=P
E

r
. (5.1.1)w

s

p
2

Since the shunt impedance increases with frequency for normal-conducting
cavities, higher operating RF frequencies are desired. But other important

Figure 5.1. Cross section of RF cavities showing field variation of the 2π/3 mode. See also section 6.3. Adapted
from [1].
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considerations that depend on the type of particle bunch desired may favor lower
frequencies. Thus, the main design parameter in a linac is the frequency and is
normally chosen as a compromise between power budget considerations and desired
beam characteristics.

If W is the stored energy per unit length of cavity, the transmitted energy flux
Pt (in Joule s−1), is given by υ=P Wt g , where υg is the group velocity of the RF wave.
Furthermore, Pt decays along the axial direction with constant 2α (units of m−1), i.e.

α∝ −P sexp( 2 )t , where

α ω
υ

=
Q2

. (5.1.2)
g

RF

In this equation ωRF is the RF angular frequency, and Q defines the cavity’s quality
factor. In equilibrium W is constant, so the transmitted energy flux and power loss
per unit length are connected through the equation

α
=P

P
2

. (5.1.3)t
w

Therefore, from equation (5.1.1) we get

α=E r P2 . (5.1.4)s tp
2

The peak accelerating voltage Ep decays with a constant α if the shunt impedance rs
is the same throughout the accelerating structure. The attenuation parameter of the
constant impedance structure is then equal to

τ α ω
υ

= =L
L
Q2

. (5.1.5)
g

RF

Finally, after integration over a structure of length L, we get the maximum energy
gain per section (see e.g. [2] for details):

τ τΔ = − −−K e P Lr 2 [1 exp( )], (5.1.6)t sCI 0
1

where Pt0 is the peak RF power. The subscript CI stands for constant impedance.
The shunt impedance rs is constant if all the cells in the accelerating structure have

the same geometry and dimensions. Furthermore, rs is weakly dependent on the size
of the iris in the cavity cell (see figure 5.1), but the group velocity υg and thus the
transmitted energy flux Pt are very sensitive to the iris dimensions. Therefore, by
making the iris diameter progressively smaller for downstream cavity cells it is
possible to achieve a constant accelerating peak field Ep. The structure so
constructed is called a constant gradient structure. In this case, the transmitted
energy flux decreases linearly with axial distance, i.e. ∂ ∂ = <P s/ const. 0t , so the
group velocity also decreases gradually. With τ = αL, we have (see e.g. [2]):

υ ω τ
τ

= − − −
− −

s
Q

L s
( )

[1 exp( 2 )]
1 exp( 2 )

, (5.1.7)gCG
RF
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and a maximum energy gain per section equal to

τΔ = − −K e P Lr 1 exp( 2 ) , (5.1.8)t sCG 0

where the subscript CG stands for constant gradient. Other factors that affect the
operation of linacs are beam loading, i.e. the effect of the beam on the cavity fields,
and the presence of wakefields especially for ultra-relativistic short bunches.
Wakefields are scattered radiation that results from the interaction of the bunch
fields with structures in the beamline. Wakefields can interact back with parts of the
bunch and lead to deleterious effects and instabilities. Chapters 10 and 11 of [3]
discuss these topics in detail.

5.2 Beam bunch stability and RF bucket
A crucial issue for linac operation is the beam bunch stability. Typically, the electron
bunch is injected slightly ahead of the peak RF field. Therefore, and as shown in
figure 5.2, the particles see a quasi-linear restoring force if the bunch length is small
compared to the RF wavelength: the particles that arrive early at the accelerating
cavity are given a smaller RF kick than those that arrive late, but those that arrive
with just the right phase ϕS, the so-called isochronous particles, are given the
same kick every time. Therefore, particles inside the bunch undergo longitudinal
oscillations not unlike a pendulum; these oscillations are called synchrotron
oscillations. The analogy with the pendulum can be carried out further if we picture
a biased pendulum, i.e. a pendulum whose equilibrium position is off from the
vertical by an angle ϕS (see [4]). The pendulum will be stable for oscillation angles
that do not depart too much from ϕS. In fact, the phase space of the biased
pendulum which is formed by the coordinates ϕ ϕ̇( , ) is mathematically equivalent to
the longitudinal phase space δ ϕU( , ) of the bunch particles, where δU is the energy

Figure 5.2. Principle of phase stability in a linac. From [1].
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error, i.e. the energy deviation from the energy of the synchronous particles. For the
pendulum we have (see [4], section 7.5),

⎛
⎝⎜

⎞
⎠⎟ϕ

ϕ
ϕ ϕ ϕ ϕ ϕ ϕ̇ + Ω − + − − ̇ =( ) ( )2

cos
cos cos 2 tan 0, (5.2.1)S

S
S

2 2
0 0 0

2

where ΩS is the angular frequency of small ‘synchrotron’ oscillations, and ϕ0 is
the initial phase angle. In figure 5.3 we have plotted equation (5.2.1) for ϕ ̇ = 00 ,
ΩS = 1 s−1, ϕS = 60° and six values of ϕ0. (Naturally, the assumed synchrotron
frequency is chosen only for illustration purposes; ΩS/2π in a real accelerator can be
of the order of KHz). The values of the initial phase (0°, 20°, 30°, 40°, 50°, and 120°)
correspond to six values of the particle’s energy; the closer the initial phase is to
ϕS = 60°, the closer the oscillations are to pure harmonic oscillations. If the energy
(initial phase) deviates too much, on the other hand, the particle motion will be
unbound, as illustrated by the open curves in figure 5.3. The stability of particles in
the bunch then depends on capturing particles with the right velocities inside a
region of the longitudinal RF field; the corresponding region in phase space is called
the RF bucket and is bounded by the separatrix curve (the curve labelled ϕ0 = 120°
in figure 5.3). The RF bucket contains a stable bunch of particles called amicropulse.
If the RF is pulsed, then the group of beam bunches per pulse is called a macropulse.
We will return to synchrotron oscillations in section 5.5.

5.3 Synchrotron radiation [1]
The force that accelerates a charged particle can be resolved into two components,
one along and the other one perpendicular to the instantaneous velocity direction.
The total power radiated by a charged particle is greater from transverse than from
longitudinal acceleration by the relativistic factor γ2:

γ=⊥P P . (5.3.1)2

Figure 5.3. Longitudinal phase space (δU, ϕ) and RF bucket (see equation (5.2.1) and text). Particles inside
closed curves are stable. From [1].
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For highly relativistic particles, γ≫ 1; electrons with a kinetic energy of 10 MeV, for
example, have γ2 = 423. Thus, to generate copious EM radiation, it is more efficient
to bend the trajectory of an energetic charged particle than to simply push it along a
straight line. The radiation generated from transverse acceleration is called synchro-
tron radiation (SR).

In the non-relativistic limit, i.e. when the speed is a small fraction of the speed of
light c, the total instantaneous power (in watts) radiated by an electron (electrical
charge −e) with acceleration a(t) is given by Larmor’s formula:

πε
=P t

e a t
c

( )
( )

6
. (5.3.2)NR

2 2

0
3

If relativistic effects are included, Larmor’s formula becomes

γ
πε

γ= =P t
e a t

c
P t( )

( )
6

( ) (5.3.3)R

2 2 4

0
3 NR

4

If an electron of total energy E moves on a circular orbit of radius ρ under the
action of a uniform magnetic field B, equation (5.3.3) can be written in other useful
forms:

πε
β γ
ρ πε

= =P t
e c e

m c
E B( )

6 6
. (5.3.4)

e
R

2

0

4 4

2

4

0
4 5

2 2

Equation (5.3.4) displays the scaling of SR power with bending radius ( ρ∝P 1/ 2),
rest mass ( ∝P m1/ 4), and magnetic field of bending dipole ( ∝P B2). Especially
noteworthy is the very strong dependence of SR power on the rest mass of the
charged particle. The energy lost to SR per turn for electrons of total energy E
(in GeV) in a field B (in Tesla) can be found from equation (5.3.4):

ρ
Δ = × = ×E E

E B
turn

[keV] 88.5 26.6 , (5.3.5)
4

3

where the bending radius ρ is given in meters. This energy has to be replenished by
RF accelerating cavities (see previous section) to keep the electrons circulating with
the same radius ρ. From equation (5.3.4), we can see that the right-hand side of the
first equality in equation (5.3.5) has to be multiplied by (me/mp)

4 = 0.88 × 10−13 to
apply it to protons of the same energy and orbit radius as the electrons. This shows
the limitations of electron circular machines for achieving high energies. However,
SR is in itself the reason for building electron machines as ‘light sources’.

The most common SR light source is the electron storage ring. The main lattice
components in a storage ring are dipole magnets for bending and steering, quadru-
pole magnets for focusing, and sextupole magnets for chromaticity corrections.
Thus, the storage ring lattice is characterized by the local radius of curvature ρ(s) of
the reference orbit, the quadrupole focusing function κ(s) (equation (2.3.10)), the
horizontal betatron function βx, and the dispersion function Dx(s). The momentum
compaction factor, introduced in chapter 3, the energy loss per turn, and other
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important storage ring parameters can be expressed in terms of integrals that were
introduced by Helm et al in 1973. The first three SR integrals are given by

∮ ∮ ∮ρ ρ ρ
= = =I

D s
s

s I
s
s

I
s
s

( )
( )

d ,
d
( )

,
d
( )

, (5.3.6)x
1 2 2 3 3

The momentum compaction factor as written in equation (3.6.5) is then

α = I
C

, (5.3.7)c
1

0

where C0 is the length of the reference orbit. The energy loss per turn is,

π
= γU

C
E I

2
, (5.3.8)0

4
2

where

π≡ ≅ ×γ
−C

r

m c

4

3( )
8.844 10

m
GeV

. (5.3.9)e

e
2 3

5
3

The nominal energy is E, and re is the classical electron radius. Equation (5.3.8)
generalizes the result in equation (5.3.4) or (5.3.5). The fourth SR integral is:

∮ ρ
ρ κ= +I

D s
s

s s s
( )
( )

[1 2 ( ) ( )]d , (5.3.10)x
x4 3

2

which is valid for a lattice made of sector magnets; for rectangular magnets, the
factor in square brackets is reduced to ρ κs s2 ( ) ( )x

2 . The fifth SR integral is

∮ ρ
β α γ= = ′ + ′ +I

H s
s

s H s D D D D
( )
( )

d , ( ) 2 . (5.3.11)x x x x x x x5 3
2 2

The fourth and fifth SR integrals are used in expressions for the damping constants
αi (i = x, y, z) and stationary (or ‘natural’) rms energy spread, ΔE( )rms, and equilibrium
transverse beam emittance, εx, discussed next.

The emission of SR photons has important effects on the beam dynamics in
storage rings and other SR sources. The first effect is the radiation damping of
betatron oscillations. Because SR photons are emitted in a direction that is essentially
identical to the direction of motion (i.e. tangential to the orbit) for highly relativistic
charged-particles, conservation of momentum of particle + radiation leads to an
overall decrease of momentum of the particle. However, because RF replenishes
only the momentum lost along the direction of the beam line, the vertical component
of momentum is reduced after acceleration. Simple considerations and algebra (see
e.g. USPAS notes by Henderson et al [5] or Emery [6]) yield the following equation
for the vertical component of the trajectory:

κ″ + ′ + =y y
E

E
s

y
1 d

d
0. (5.3.12)y

0
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The derivation depends on equating the fractional energy and fractional momentum
gains: =E E p pd / d / ,zphoton valid with β0 = 1 for highly relativistic particles. Equation
(5.3.12) has the form of a damped harmonic oscillator equation; after changing from
spatial to time derivatives, we find a damping time and damping constant for vertical
oscillations equal to:

τ α
τ

= =E
U

T
2

,
1

, (5.3.13)y y
y0

0

where U0 is given by equation (5.3.8), and T0 is the revolution period. The damping
of betatron oscillations occurs in all three dimensions and goes along with a
reduction in corresponding emittances. Thus, without considering other effects,
the vertical emittance evolves like ε ε α= − texp( )y y y0 . The damping times and
constants for the components of motion in the horizontal and longitudinal directions
can be similarly derived (see e.g. [7, 8]):

τ α
τ

= =E
J U

T
2

,
1

, (5.3.14)x
x

x
x0

0

τ α
τ

= =E
J U

T
2

,
1

. (5.3.15)z
z

z
z0

0

Equation (5.3.15) corresponds to the damping parameters of synchrotron or energy
oscillations. The parameters Ji are called the damping partition functions and are
equal to:

= − = +J
I
I

J
I
I

1 , 2 , (5.3.16)x z
4

2

4

2

where I2 and I4 are the SR integrals defined before.
The damping of betatron oscillations and emittance cannot go on without limit,

as it is accompanied by an ‘anti-damping’ effect caused by random quantum
excitation. Since the emission of SR photons also implies a reduction in energy,
the particle finds itself moving very rapidly along different closed orbits. This orbit
‘noise’ leads to emittance increase but, because of the opposite effect from damping,
a balance is eventually reached. The equilibrium (‘natural’) horizontal emittance and
the equilibrium (‘natural’) rms energy spread are found to be (see e.g. [7, 8]):

⎛
⎝⎜

⎞
⎠⎟ε γ γ=

−
Δ =

+
C

I
I I

E C
I

I I
, ( )

2
. (5.3.17)x q q

2 5

2 4
rms

1 2 3

2 4

1 2

The ‘quantum constant’ Cq in equations (5.3.17) is

π
= ≅ × −C

h
m c

55

32 3 2
3.83 10 m. (5.3.18)q

e

13

Note that the equilibrium emittance depends on the beam nominal energy through γ2,
the bending radii of the dipoles and the lattice functions (betatron and dispersion).
The rms energy spread depends, on the other hand, on the nominal energy and
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bending radii. In machines where no vertical bending occurs, except possibly from
quadrupole misalignment or other errors, the lack of vertical dispersion reduces the
antidamping effect of quantum excitation. In these machines, which comprise most
electron storage rings, the vertical emittance is much smaller (by a factor of the order
of 100) than the horizontal emittance. Machines called ‘damping rings’ are designed to
reduce the emittance of beams injected into linear colliders; a small vertical emittance
can lead to luminosities that are higher by orders of magnitude (see e.g. [7, 17].)

5.4 Insertion devices and free-electron lasers (FELs) [1]
The radiation pattern of SR from ultra-relativistic particles forms a narrow beam
cone with a vertical opening angle given by γ−1. As an example, for electrons at
511 MeV the angle is 1 milliradian, or 3.4 min of arc. Synchrotron radiation can be
obtained from bending by single magnets in circular machines, or by using a
combination of magnets of alternating polarities in insertion devices called wigglers
and undulators. The bend angles from individual magnets in wigglers are large
compared to γ−1. In contrast, bend angles in undulators, are of the same order as γ−1.
For bending magnet and wiggler sources the spectrum of SR is continuous. Half the
power is radiated above and half is radiated below a critical photon energy Ecr, which
for electrons, is given by:

π ρ
γ= = × ×E

hc
E B T E

3
4

, or [keV] 0.665 [ ] [GeV]. (5.4.1)cr
3

cr
2

By contrast, interference effects in undulators yield a discrete spectrum, i.e., a
spectrum formed by a series of sharp peaks at certain wavelengths:

⎛
⎝⎜

⎞
⎠⎟λ λ

γ
= +n

K
2

1
2

, (5.4.2)u
2

2

where n = 1, 2, 3, … gives the harmonic number, λu is the period of the undulator
structure, and K = γθ is the undulator parameter. Since the bend angle in an
undulator is θ ≈ γ−1, we get K ≈ 1.

The figure of merit in many applications of SR is the spectral brightness or
brightness for short (also called brilliance in Europe). Brightness is defined as the
number of photons emitted by the SR source per unit time, per unit solid angle, per
unit area at the source, and per unit bandwidth around a given frequency:

= ⋅ ⋅ ⋅Brightness Photons/(s mm mrad BW) (5.4.3)2 2

Another important property of SR radiation is the degree of coherence. The
electrons in a beam bunch emit SR from bending by a simple magnet or from the
oscillating trajectories in an insertion device (wiggler or undulator). The SR emitted
by individual electrons in single magnets and wigglers adds incoherently: if the bunch
contains N particles, the total intensity (per unit frequency or spectral bandwidth) is
simply N times the intensity from an individual particle. In contrast, if the electron
trajectories at a given pole are all in phase, the resulting intensity of SR will be
proportional to N2. This type of radiation is called coherent synchrotron radiation or
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CSR, which is seen from undulators. Although SR from wigglers is incoherent, they
yield more intense SR than single-bend magnets because they are longer and involve
multiple bends. Further, since the number of particles in a typical bunch can be very
large (1010 for a 1.6 nC bunch, for example), the intensity of a coherent source can be
many orders of magnitude larger than the intensity of an incoherent one. In reality,
the SR intensity always has incoherent and coherent components; their ratio is
intimately related to the structure of the beam bunch, i.e. its line density profile, and
the geometry and dimensions of the storage ring and/or the insertion device. In free-
electron lasers (FELs), to be described briefly below, additional effects occur from
the interaction of the emitted SR and the electrons themselves.

In FELs the electron trajectories are modulated by the magnetic field of a wiggler,
radiating photons that interact back with the electrons to produce coherent bunching
accompanied with coherent radiation. Figure 5.4 shows the schematics of a basic
FEL.

To understand the process in some detail, we can describe the wiggler field as a
traveling EM wave in the reference frame of the electron beam. This wiggler wave
adds up to the SR wave to produce a beat wave with the same frequency of the SR
wave but smaller phase velocity. Because the beat wave speed is less than c, it can get
in synchronization with the electron beam (of axial speed υ) and generate coherent
bunches: essentially, the beat wave is an interference pattern that traps and
synchronizes electron motion and radiation leading to a process akin to stimulated
emission in atomic systems. If k is the light wave number and kw the wiggler wave
number, the phase-matching or resonance condition is ω/(k+kw) ≈ υ. Combining this
expression with the basic formula for the light wave, ω = ck, we obtain the following
basic relation among FEL wavelength λ, wiggler spacing λw, and electron beam
energy (as given by the gamma factor γ) for highly relativistic electrons [19]:

λ λ
γ

≈
2

. (5.4.4)w
2

A more detailed derivation shows that a factor (1+K2/2), as in equation (5.4.2)
for undulator SR at discreet wavelengths, is needed in equation (5.4.4). K, called
the FEL parameter, is of order 1. From equation (5.4.4), it is clear that the FEL
wavelength is tunable through the electron energy. For example, at electron energies

Figure 5.4. Free-electron laser concept: an electron beam interacts with a planar wiggler to produce radiation
of wavelength λ. Source: O’Shea and Freund (2001). Reproduced with permission of IEEE. See [9].
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of 4.54 and 14.35 GeV, and undulator period λw = 3 cm, and K = 3.71 (parameters of
the Linac Coherent Light Source (LCLS) at SLAC) we get λ = 1.5 nm, 0.15 nm.

FELs can be implemented as either oscillators or amplifiers. In the first case, the
radiation is bounced back by mirrors like in a regular laser cavity until the coherent
radiation builds up and escapes through a semi-transparent mirror. These oscillator
FELs, which can be implemented in storage rings, are low-gain devices that use
high-energy, low-current electron beams. In the amplifier scheme, on the other hand,
laser radiation of the desired wavelength passes once through the wiggler and is
amplified by the generated coherent electron bunches; this is the type of FEL called
‘seeded’. Alternatively, coherent radiation can build up from noise alone in a process
called SASE (self-amplified spontaneous emission). In SASE FELs there is output
power saturation because of bunch degradation as the electrons recoil randomly
with every emitted photon. The SASE FELs (e.g. FLASH at DESY and LCLS at
SLAC) are high-gain devices that require electron beams with very high peak current
(kA) and low transverse emittance.

5.5 Longitudinal beam emittance and space charge
Since the longitudinal velocities of particles in a beam are typically orders of
magnitude larger than the transverse velocities, and the energy spreads relative to
the design energies are also small, the beams are considered ‘cold’ in the longitudinal
direction. Thus, the Hamiltonian is separated into transverse and longitudinal
components, with Boltzmann factors and corresponding temperatures defined for
the transverse and longitudinal directions. This separation is of course artificial as
there are many instances of longitudinal-transverse coupling that tend to equalize
over time the transverse and longitudinal kinetic temperatures (see [10], chapters 5
and 6). However, we will assume here that this coupling can be neglected over the
time and spatial scales of interest.

We augment the 4D vector (x, px, y, py) of the transverse case with two additional
components for the longitudinal direction: (z, Δpz/po). The longitudinal coordinate
and momentum difference are: z(t) = s(t) − so(t), Δpz(t) = p(t) − po(t), where the
quantities so(t) and po(t) represent the beam centroid position and design momentum,
respectively. The longitudinal rms emittance (unnormalized) can be defined in terms of
rms spread in longitudinal position and rms fractional momentum deviation:

ε =
Δ( )

z
p

p
. (5.5.1)z

z
rms rms

rms

0

The normalized rms longitudinal emittance is defined as in the transverse case
(chapter 4):

ε γ β ε= , (5.5.2)zn z0 0 rms

where γ0, β0 are the design values of the relativistic parameters. If we choose the total
energy E and time t as canonical conjugate variables instead of z, Δpz/p0, the
normalized emittance is defined as

ε = Δ Δ* E t( ) ( ) , (5.5.3)zn rms rms
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where the asterisk distinguishes this emittance from the one in equation (5.5.2). In
terms of the RF phase ϕ (sections 5.1, 5.2), we can use (Δϕ)rms=ωRF(Δt)rms instead
of (Δt)rms. The emittances in equations (5.5.2) and (5.5.3) are connected by the
relation

ε
ε=

*

mc
, (5.5.4)nz

nz

as can be seen from ΔE = mc2Δγ, Δpz = mcβ−1Δγ, and εzn = zrms(Δpz)rms/mc.
It is also convenient to use ′z z( , ) as variables, where the longitudinal angle ′z is

defined by

β
β γ

′ ≡ = Δ = Δ
z

z
s

p
p

d
d

. (5.5.5)
0 0

2
0

The axial distance was defined above: z(t) = s(t) − s0(t). Equation (5.5.5) follows
from dz/ds = (dz/dt)(dt/ds) = Δυz/υ0, and Δυz = γΔp m/( )z 0

3 —see [10], prob. 5-11a.
With this definition, the unnormalized rms emittance in ′z z( , ) space, ε ′ ,zz

rms is related
to εzrms (equation (5.5.1)) by

ε ε
γ

=′ . (5.5.6)zz
zrms rms

0
2

The factor γ−
0

2 reflects the Lorentz contraction of a straight bunch. From equations
(5.5.1), (5.5.6), (5.5.17), and ε ε= ′ =′ ′z z 5zz m m zz

rms (see below), we can write for the
total longitudinal emittance

ε ε
γ γ

= =
Δ

′
( )z p

p
5 5

5
, (5.5.7)zz

z m zrms

0
2

0
2

rms

0

which can be cast in terms of the rms energy spread as

ε
β γ

= Δ
′

z E
mc

5

5

( )
. (5.5.8)zz

m

0
2

0
3

rms
2

We have used βΔ = Δp p E mc( ) / ( ) / .z rms 0 rms 0
2 2 The CERN technical note by Bovet et al

(see [11]) presents a good summary of formulas that are useful for the derivations
above.

We now set up the stage for a simple treatment of longitudinal space charge. Let us
assume that we have a traveling-wave linac (see section 5.1) and a beam bunch that
is short compared to the RF wavelength. With this short-bunch approximation, the
applied longitudinal force is linear (figure 5.2). The use of a traveling-wave, on the
other hand, provides a physical basis for a smooth approximation of the actual
periodic RF longitudinal focusing system.
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The applied external force is defined relative to the synchronous particle (i.e. in the
beam frame of reference) with phase ϕS (section 5.2):

⎡⎣ ⎤⎦
⎛
⎝⎜

⎞
⎠⎟ϕ ϕ ω

β
ϕ= − ≅ −F qE

qE
c

zsin sin cos , (5.5.9)az m s
m

s
RF

0

where Em is the peak longitudinal electric field of the RF wave,ϕ ϕ ω β− = − c z( / )s RF 0 ,
and ϕ ϕ≈ s. Thus, the equation of motion for small synchrotron oscillations without
space charge and with a small rate of acceleration can be written as [3, 4, 10]:

κ κ π
λ β γ

ϕ″ + = =z z
qE

mc
0,

2
cos . (5.5.10)z z

m
s0 0

RF
2

0
3

0
3

In the time domain, we have

π
λ β γ

ϕ̈ + Ω = Ω =z z
qE

m
0,

2
cos , (5.5.11)s s

m
s

2 2

RF 0 0
3

since υ β κΩ = =k c .s z z
2

0
2

0
2

0
2 2

0 A more general version of equation (5.5.11) valid for
large or small oscillations leads to equation (5.2.1); this equation was used to plot
the curves of figure 5.3 in δ ϕΔ ≡E U( , ) space. We note that the treatment of
synchrotron oscillations in [4], the source of equation (5.2.1), is done for circulating
beams, but the translation to straight machines is simple. For a circulating beam in a
ring synchrotron, equation (5.5.11) is replaced by

ω η
π β γ

ϕ̈ + Ω = Ω =z z
h qV

mc
0,

2
cos , circular machine. (5.5.12)s s s

2 2
2

tr
2

0
2

0

The angular RF frequency is an integer multiple h (normally very large), called the
harmonic number, of the bunch circulating frequency: ω ω= hRF . Here ω β= c R/0 m,
with Rm the machine radius. The peak field Em and the peak voltage gain per turn V
are connected by π=E V R/2m m. Finally, the parameter ηtr (equation (3.6.6)) is

γ−1/ 0
2 for a straight accelerator because the momentum compaction factor is zero

in that case (equation (3.6.1)).
In addition to a linear external force, we would like the force from longitudinal

space charge to be linear also. An attempt to extend the 4D K–V distribution
(chapter 4) to 6D, however, yields a nonlinear space charge field in the longitudinal
direction ([10], prob. 5-12). This extension would involve a uniformly charged 6D
hyperellipsoid in phase space. If we consider instead an ellipsoid in 3D with uniform
volume charge density ρ0 (in C m−3), as illustrated in figure 5.5, the electrical
potential can be found analytically.

If the ellipsoid shape satisfies the equation + =r a z z( / ) ( / ) 1m
2 2 , where a, zm are

half-dimensions along r and z (figure 5.5), the free-space potential (i.e. with no pipe
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present) will be quadratic in r and z, and the line charge density (in C m−1) takes a
parabolic profile:

⎛
⎝⎜

⎞
⎠⎟ ρ πΛ = Λ − Λ =z

z
z

a( ) 1 , . (5.5.13)
m

0

2

2 0 0
2

Then, the longitudinal component of the self-electric-field is linear in z:

πε γ πε γ
= − ∂Λ

∂
= Λ

E z
g z

z
g z

z
z( )

( )
4

2 ( )
4

. (5.5.14)sz
m0 0

2
0 0

2
0
2

The function g(z) defines the dimensionless ‘geometry g-factor’; it is of order unity
and depends on the distance z from the bunch centroid, and the aspect ratio zm/a of
the bunch. Reiser quotes results for the g-factor g0 in free space, the g-factor at the
center of the bunch g(0), and the average (over the beam distribution) g-factor g that
includes image effects. We only quote the asymptotic result for a long bunch:

⎛
⎝⎜

⎞
⎠⎟=g

b
a

(0) 2 ln , (5.5.15)asymp.

where b is the radius of the cylindrical pipe (figure 5.5). (A detailed derivation of
equation (5.5.15) can be found in USPAS notes by Barnard and Lund [12]). In
reality, because of image charges the longitudinal self-electric field will be affected by
the presence of the conducting pipe. Thus, deviations from linearity will be
significant near the ends of long bunches. Additional considerations related to the
g-factor of line-charge density perturbations are discussed in chapter 6 of [10].

Referring again to figure 5.5, we find that the rms bunch’s length zrms is

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
∫
∫

= =
Λ

Λ

−

−

z z
z z z

z z

( ) d

( ) d
, (5.5.16)z

z

z

zrms
2 1/2

2
1 2

m

m

m

m

which can be easily calculated from equation (5.5.13):

=z
z

5
. (5.5.17)m

rms

Figure 5.5. Ellipsoidal uniformly-charged bunch in a cylindrical pipe.
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It turns out that the line density profile of equation (5.5.13) corresponds to the limit
of zero longitudinal temperature of the general line-charge density derived from the
longitudinal Boltzmann factor for a matched (to the RF system) bunch. In this limit,
the longitudinal space charge force is exactly balanced by the applied linear external
RF force (equation (5.5.9)). Furthermore, and as in the transverse case, the high-
temperature limit or zero-longitudinal-space-charge limit yields a Gaussian density
profile for Λ(z), which is by far the most commonly used model in computer
simulations of longitudinal beam dynamics.

Neuffer has derived in his seminal 1979 paper [13] the form of the particle
distribution in ′z z( , ) space that is the equivalent longitudinal version of the K–V
distribution (equation (4.2.7)):

⎛
⎝⎜

⎞
⎠⎟πε ε

′ = − − ′ − ′
′

f z z s
N z

z

z
z

z
z

z( , , )
3
2

1 , (5.5.18)
m

m

zz

m

m0

2

2

2

2

2

where N is the total number of particles in the bunch, ′z is defined by equation
(5.5.5), and the total emittance ε = ′′ z zzz m m satisfies the Courant–Snyder formula for
the ellipse in longitudinal phase space ′z z( , ):

γ α β ε+ ′ + ′ = ′z zz z2 . (5.5.19)z z z zz
2 2

From equation (5.5.14) we can obtain the focusing constant of longitudinal linear
space charge. Following the pattern of equation (5.5.10) we find

κ
πε β γ

= Λ– q g
mc z2

. (5.5.20)z
m

sp ch.
2

0
2

0
3

0
5

0
2

Further, since the total charge in the bunch is = = ΛQ qN z(4/3) m0 , and we normally
have electrons, i.e. q = −e, we obtain κ =– K z/ .z m

sp ch.
L

3 KL defines the longitudinal
beam perveance (in m):

β γ
=K

gNr3
2

. (5.5.21)L
e

0
2

0
5

The constant re is the classical electron radius. With this notation, we combine
equations (5.5.10) and (5.5.14) to write a single-particle equation of longitudinal
motion that includes external and internal linear forces:

κ″ + − =z z
K
z

z 0. (5.5.22)z
m

0
L
3

The longitudinal envelope equation, i.e. the equation for the bunch’s half-width zm
can be derived from the Neuffer distribution, equation (5.5.18), and Vlasov equation
(see [13]), or more simply by just doing the substitution →z zm and adding and
emittance term to equation (5.5.22):

κ
ε+ − − =″ ′z z

K
z z

0. (5.5.23)m z m
m

zz

m
0

L
2

2

3
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In terms of rms quantities, the envelope equation is rewritten as

κ
ε+ − − =″ ′z z

K

z z5 5
( )

0, (5.5.24)z
zz

rms 0 rms
L

rms
2

rms 2

rms
3

from equation (5.5.17), and ε ε= ′ =′ ′z z 5zz m m zz
rms. Note that the effective bunch half-

length is ≅z z5 2.24m m, compared to the factor of =4 2 for the transverse case
(chapter 4); the corresponding effective longitudinal angle is ′z5 .m Another major
difference between the envelope equations for the transverse and longitudinal cases
is the dependence of the space-charge term on the effective beam envelope half-
width. We have the space charge term K/2X(s) for the transverse case (equations
(4.3.2) and (4.3.3) with R= 2X), but K z/5 5L rms

2 above.
Just as in the transverse case, a tune depression and a corresponding space-charge

intensity parameter (Harris, [16]) can be defined for the longitudinal beam dynamics.
Furthermore, an equivalent Neuffer distribution can be defined for non-parabolic
line density profiles, just as an equivalent K–V is defined for arbitrary transverse
particle distributions with elliptical symmetry. From the smooth approximation

″ =z 0rms of equation (5.5.24), we can easily obtain a longitudinal SC intensity
parameter in parallel with the transverse case (equation (4.3.5)):

χ
κ ε

= =
+ ′

K z
z

K

K
z

5 5

5 5 ( )
. (5.5.25)

z
L

zz
L

L rms
2

0 rms

L
rms 2

rms

An equivalent expression ([16) is χ ε= + ′K K z/[ ( / )].zz mL L L
2 Beam bunches are

considered to be emittance dominated if 0 ⩽ χL < 0.5 and space-charge dominated
if 0.5 < χL ⩽ 1.

Because of the small energy spreads of most beams of practical interest, which
implies small longitudinal emittances, longitudinal SC effects can be significant even
at high energies. In particular, in the absence of longitudinal focusing, beams
‘debunch’, i.e. elongate until the bunch ends meet after relatively few turns in
circular machines. To illustrate this expansion we estimate the debunching length for
the 6 mA (flat-top current), 100 ns (initial duration) bunch at the University of
Maryland Electron Ring – UMER (see chapter 6). The results of solving equation
(5.5.23) are shown in figure 5.6. First of all, it is straightforward to show that the rms
half-length of a (initially) rectangular line-charge density profile is z / 3m0 , where zm0

is the initial half-length. Thus, to construct the equivalent parabolic profile we need to
set the equivalent maximum half-length to =z z5/3 mpar0 0; in this way the two
profiles (figure 5.6(a)) yield the same rms half-lengths. Furthermore, the peak line-
charge density of the parabolic profile must be Λ = Q z(3/4)( / )p p0 0 , so that both the
rectangular and parabolic bunches have the same total charge Q = 0.6 nC. Finally,
we assume that the two bunches have the same rms energy spread of 100 eV, i.e. 1%
of the nominal 10 keV in UMER, and use equation (5.5.8) to calculate the total
longitudinal emittance. We find that the bunch doubles its length filling the ring in a
little more than 20 turns.
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The calculation can be approached differently, taking advantage of a simple 1D
fluid model (see e.g. [14]). In this model the ‘sound’ (line-charge density rarefaction)
speed inside the beam is

πε γ
= Λ

C
eg

m4
, (5.5.26)S

e

0

0 0
5

where g, Λ0 were defined before. We find CS = 7.7 × 105 ms−1, which implies a
debunching time of 1.83 μs, or about 10 turns. This latter result is closer to
experimental observations [15], indicating that the fluid model may be better in this
instance. Further, the main reason for the discrepancy may be that the longitudinal
space charge forces at the bunch ends are much stronger for an initially ‘square’
current profile (see first equality in equation (5.5.14)), as in the UMER beam, than
for the parabolic profile assumed in the Neuffer model.

To conclude this section, we point out that the K–V and Neuffer models of linear
space charge can be combined in an ad hoc fashion. Thus, a set of coupled envelope
equations can be written ([10], section 5.4.11) which include a redefined beam
perveance containing both the beam radius and bunch length. The smooth

Figure 5.6. Debunching calculation of 6 mA, 10 keV, 100 ns, 100 eV (rms energy spread) electron bunch:
(a) line-charge density profiles of rectangular and (equivalent) parabolic bunches; (b) space-charge longitudinal
electric field of parabolic bunch; (c) bunch expansion versus number of turns in UMER (see chapter 6).
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approximation form of the equations leads to algebraic equations which can be
solved in cases of practical interest such as when the aspect ratio of the bunch is
small (‘short’ bunch) and the radius of the vacuum pipe is much larger than the beam
radius.

Computer resources

A free program called Radiation2D, written by Tsumoru Shintake of RIKEN in
Japan, provides a great educational tool for illustrating the radiation pattern of a
moving charged particle following different geometries. For example, the reader can
study: 1) the change in electric field lines for different speeds (as fractions of the light
speed) of a particle moving uniformly on a straight path; 2) the radiation pattern
(again for different speeds) of a particle moving in a circle; 3) the radiation pattern in
a bending magnet; 4) the radiation pattern in an undulator. Other similar programs
are freely available, such as the Java applet radiating-charge_en.jar, which can be
downloaded or run directly at http://phet.colorado.edu/en/simulation/radiating-
charge.

A Java applet written by Wolfgang Christian from Davidson College illustrates
very nicely a 1D pendulum model of a FEL. It can be run online or as a standalone;
it requires Java. In Ubuntu Linux, the simple terminal instruction ‘java-cp . FelOde’
will work. The webpage http://webphysics.davidson.edu/Applets/FELPart/FelOde.
html includes the applet and instructions and ideas for exploration. Especially
interesting is the illustration of electron bunching in an energy-phase diagram,
similar to the workings of RF in accelerators.

We also include in the book’s website a number of Mathcad programs:
DipoleRadiation.xmcd is used to calculate the basic pattern of dipole radiation.
BiasPend_RFBucket.xmcd can be employed to reproduce the results of figure 5.3.
LongEmitt-SpCharge.xmcd reproduces the calculations of bunch elongation illus-
trated in figure 5.6 and based on the longitudinal envelope equation (5.5.23).

There is also the Android app TAPAS (see appendix) which is useful for quick
calculations of e.g. energy gain and RF power in linacs, synchrotron radiation
parameters for electron storage rings and insertion devices, and others.
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Chapter 6

Applications and examples

We discuss in the first two sections of this chapter two applications or extensions of
the basic theory discussed so far: RMS periodic envelope matching, and betatron
resonances. The first topic is in practice a computer exercise that many accelerator
designers and operators have to address. Charged-particle beams are born with
parameters that are normally not suited for transport in the periodic lattice of a linac
or ring accelerator or storage ring. Thus a transfer/injection section is required to
modify the beam before it can be transported in the periodic lattice. However,
instead of discussing the ‘matching-to-target’ problem we study examples of
matching in the periodic lattice, including full incoherent space charge. We present
useful relations for calculating ‘average’ RMS beam dimensions; these numbers can
be used as initial guesses in any algorithm that finds periodic envelope solutions. In
section 6.2, we present a simple treatment of betatron resonances, starting with
integer resonances and then moving on to a more general theory. In the last two
sections we show how to employ theory developed in the previous chapters to verify
typical parameter tables found in the home websites of accelerators. Thus, we give in
section 6.3 examples of two linacs and their characterization, and in the last section
we illustrate calculations for three rings, two light sources and a high intensity storage
ring. Space charge does not play a significant role for the operation of standard
electron circular machines, but it is the main feature of the low-energy machine of the
third example. The computer resources include MAD-8 and Winagile files for the
machines discussed, a Matlab program for envelope matching, Mathcad worksheets,
and simulation movies for resonances.

6.1 Periodic-envelope FODO matching
Beams typically traverse a transport section for matching and injection into a
periodic lattice which can be linear or closed. In the latter case the lattice is often
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referred to as ‘circular’ although the actual shape of the beam line is much closer to a
regular polygon. We discuss in this section the problem of finding periodic solutions
of the K–V envelope equations (chapter 4) in a periodic lattice. We do not cover the
problem of matching or injection into the periodic lattice by means of a transfer
beam-line; this problem, when space charge is not a factor, is covered in books such
as Bryant and Johnsen [1]. When space charge is important, the paper by Bernal et al
[2] is relevant.

We consider an unbunched beam, centered on the vacuum pipe, and having a
transverse distribution with elliptical symmetry. Therefore, an equivalent K–V
distribution and the K–V envelope equations can be applied. We are interested in
calculating the periodic beam envelopes in an asymmetric FODO lattice with
specified zero-current phase advance per period, σ X0 , σ .Y0 We start by obtaining the
quadrupole strengths that are required. The simplest calculation employs thin
quadrupoles with focal lengths κ= ±f l(1/ )q q and equal zero-current phase advances
per period, σ σ σ= =X Y0 0 0. We obtain, after straightforward matrix multiplication,

κ σ∣ ∣ =
Sl

4
sin( /2)

(6.1.1)q
0

q

The latter equation yields a peak quadrupole strength that is correct within a few
percent. However, more accurate and general results can be derived using matrices
that include trajectory changes inside the quadrupoles, as well as σ σ≠X Y0 0 . The
relevant equations were presented in chapter 3, equations (3.2.4) through (3.2.7),
and examples given for specified zero-current phase advances. Let us start with a
symmetric FODO lattice as in figure 3.2. We assume again a lattice period S =
0.32 m, quadrupoles with effective length lq = 0.0516 m, and a zero-current phase
advance σ0 = 30°. We found by solving equation (3.2.4) for θ that κ = −70.78 mq

2.
The beam envelope in the FODO cell will depend not only on the quadrupole
strength just found, but also on the beam perveance K (determined by the energy,
beam current and type of particle) and emittance. Before proceeding to numerically
solve the K–V envelope equations, we can obtain a good estimate of the ‘average’
beam envelope transverse dimension by using the smooth approximation. For an
emittance-dominated beam we can employ the zero-current result ε= ˜a k/ ,0 rms 0

with κ=k0 q . As an example, let us consider a beam with perveance K = 1.5 × 10−6

(e.g., 0.1 mA, 10 keV electron beam) and effective emittance ε̃rms = 6.0 μm in both
transverse planes. Thus we find a0 = 1.9 mm. We can use this estimate as the first
guess for solving the K–V envelope equation (4.4.10) in the FODO cell. The solution
for the periodic envelope is found using the periodic-matcher routine of the Matlab
code Menv described in the appendix. The result is shown in figure 6.1. Note from
the figure that the ‘average’ beam semi-axis dimension is 2.0 mm, very close to a0.

The same result of figure 6.1 can be obtained with essentially any of the codes
described in the appendix, but the popular matrix code Trace 2D would perhaps be
the best alternative.

The beam envelope is dramatically different if the beam is strongly space-charge
dominated. Let us repeat the calculation for a K = 1.5 × 10−3 beam (e.g., 100 mA,
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10 keV electron beam) with effective emittance ε̃rms = 60 μm. To estimate the beam
transverse dimension we can use =a K k/B 0 (see equation (4.3.8)). We get aB =
24 mm. The beam envelopes calculated with Menv are shown in figure 6.2.

For intermediate space charge intensities, a surprisingly good approximation for
the average beam radius is provided by the relation

ε≅ ˜ +a a k a k K( , ) ( , ) , (6.1.2)0
2

0 rms B
2

0

where we have explicitly indicated the dependence on the smooth-approximation
constant k0, and the emittance and generalized beam perveance.

If the FODO lattice is asymmetric (as in figure 3.4) and σ X0 = 30°, σ Y0 = 45°, the
solution for the quadrupole strengths is obtained from equations (3.2.6) and (3.2.7):
κ1 = 84.67 m−2, and κ2 = 94.40 m−2. We assume the same beam perveances and
emittances of the examples with the symmetric FODO lattice. This time, we expect
different ‘average’ beam dimensions in the two transverse planes. If a and b represent
these dimensions, the smooth-approximation equations to be solved to estimate
these values are given by:

ε

ε

−
+

− ˜ =

−
+

−
˜

=

k a
K

a b a

k b
K

a b b

2
0,

2
0,

(6.1.3)
x

x

y
y

0
2

2

3

0
2

2

3

which are the same as equations (4.4.11). We find (a, b) = (2.0, 1.6) mm for the
emittance-dominated beam used before, and (a, b) = (27.8, 12.6) mm for the strongly
space-charge dominated beam. The envelopes for both cases are shown in figure 6.3.

No bending dipole magnets were present in the previous examples. If dipoles are
present, they change the FODO matching solution because of edge focusing. Trace
2D and 3D are more suitable for matching in these cases.

Figure 6.1. Beam envelope in a symmetric FODO lattice. The beam perveance is K = 1.5 × 10−6, and the
effective emittance is 6.0 μm (emittance-dominated beam). The quadrupole strengths yield a zero-current phase
advance σ0 = 30°.
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To conclude this section, we present a brief discussion of the beam envelope
oscillations that ensue when the beam is not perfectly matched. Starting with
the K–V envelope equations, equations (4.4.10), we define the average rms envelope
semi-axis dimensions in the two transverse planes, X̄and Ȳ , as the solutions of the
equations in the smooth approximation. Next we assume that the X(s) and Y(s)
envelopes deviate by a small amount from their average values. The analysis of the
linearized ‘small oscillations’ problem is standard (see e.g. [3]); it leads to two
fundamental envelope modes with phase advances per period given by:

σ σ σ

σ σ σ

= +

= +

2 2 , symmetric mode,

3 , antisymmetric mode.
(6.1.4)

sym. 0
2 2

asym. 0
2 2

In the equations, σ0, σ are the zero-current and full-current betatron phase advances
per period. Thefirst normalmode is the in-phase or ‘breathing’mode; the secondmode

Figure 6.2. Beam envelope in a symmetric FODO lattice. The beam perveance is K = 1.5 × 10−3, and the
effective emittance is 6.0 μm (strongly space-charge dominated beam). The quadrupole strengths yield a zero-
current phase advance σ0 = 30°.

Figure 6.3. Beam envelopes in an asymmetric FODO lattice. (a) K = 1.5 × 10−6, 6.0 μm effective emittance;
(b) K = 1.5 × 10−3, 60 μm effective emittance. The quadrupole strengths yield zero-current phase advances
σ0X = 30°, σ0Y = 45°.

A Practical Introduction to Beam Physics and Particle Accelerators

6-4



is the ‘antiparallel’ or quadrupolar mode. The modes are analogous to the ones
occurring in two coupled harmonic oscillators such as pendula. In the first mode, the
pendula swing in phase, while in the second mode the phases are 180° apart. The
general motion of the oscillators is a linear superposition of the two modes.With zero
current the two modes become one with a phase advance σ σ= 2env 0, i.e. the envelope
of the mismatched beam oscillates at twice the betatron frequency.

6.2 Betatron resonances
The betatron resonance condition in a circular machine such as a synchrotron or
storage ring is expressed by

ν ν± =n m Np, (6.2.1)X Y0 0

where n,m. p andN are integers, and νX0 and νY0 are the horizontal and vertical bare
tunes (the notation QX0, QY0 is used in Europe). N is the super-periodicity of
the machine, and ∣n∣ + ∣m∣ is the order of the resonance. When N > 1, integer, we
have ‘structure’ or ‘systematic’ resonances, whereas when N = 1, the resonances are
associated with random errors in magnet strengths or locations. These latter
resonances are called ‘non-structure’ resonances. A working or operating point
(νX0, νY0) is chosen so as to avoid the condition equation (6.2.1).

The most destructive resonances are the linear resonances, i.e. the first- and
second-order resonances. First-order resonances are associated with dipole strength
and rotational errors and also from quadrupole displacement errors. Second-order
resonances, on the other hand, are caused by quadrupole (i.e. gradient) errors. The
names integer and half-integer resonances are also employed to describe first- and
second-order resonances, respectively. Further, linear resonances are independent of
particle amplitude, while non-linear resonances, i.e., resonances of third or higher
order, are not. We will give a motivation for equation (6.2.1) after discussing a
simple treatment of integer resonances.

Dipole errors arise from bending magnet errors and also from quadrupole trans-
verse displacement errors. We show now that integer resonances grow linearly by the
turn. A dipole error will lead to an angle error (or ‘kick’) given by (see chapter 3)

δ
ρ

′ = Δx
B

B
s, (6.2.2)

where Δs is the dipole’s effective length and ρ is the bend radius. Therefore, if ′x0 is
the initial slope at a given point in the reference orbit, the kick will lead to new slopes

δ
ρ

δ
ρ

′ = ′ + Δ ′ = ′ + Δ …x x
B

B
s x x

B
B

s, , , (6.2.3)1 0 2 1

after the first, second, and so on, revolutions. In general we’ll have

δ
ρ

′ = ′ + Δx x n
B

B
s, (6.2.4)n 0
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for the nth turn. Now, we also know that β γ= ′ =x C x C, ,n n n nmax max where β, γ
are the Courant–Snyder parameters for the horizontal motion, and C is the
Courant–Snyder invariant (chapter 3). Therefore,

γ
β

α
β

′ = =
+

x x x
1

. (6.2.5)n n
n

n
n

n

n
max max max

2

Finally, by setting ′ = ′ ′ =x x x, 0,n n max 0 we get

δ
ρ
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δ
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β= Δ
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→ Δx n
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B
s n

B
B

s
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In the last step, we have used the fact that for α = 0n we have β β=n n max, i.e., we
have assumed that the kick error occurs at the location of maximum β. This would
be the case exactly for kicks from quadrupole displacement errors, since the quads
are placed at the maxima (or minima) of the betatron function, but it is only an
approximation for arbitrary location of a bending dipole with an error. If there are
Nd dipoles in the ring, on the other hand, with a field error distribution having an
rms integrated error δ ΔB B s( / ) , equation (6.2.6) would have to be multiplied by Nd
to obtain the total orbit excursion. Figure 6.4 illustrates the change in orbit from an
integer resonance. Additional considerations are given in [13].

As an example, we consider the compact University of Maryland Electron
Ring [11]: Nd = 36, Δs = 0.0376 m, β = 0.54 mx max (at ν0X = 6.0), ρ = 0.275 m.
Therefore, for a 1% rms dipole field error ( δ =B B( / ) 0.01), we get an orbit change of
4.4 mm per turn; the beam centroid would reach the vacuum pipe in less than six
turns. Integer resonances are very destructive! We have implemented a simulation of
the resonance in the code Winagile (see appendix); we include further details and
hyperlinks to movies at the end of the chapter.

We can base a simple general treatment of resonances on the first equation of
motion in equation (3.3.1), which we copy for reference:

κ″ + =x s s x( ) ( ) 0. (6.2.7)x

We now apply to equation (6.2.7) Floquet’s transformation of variables,

ϕ ψ
ν

η
β

= =s
s

s
x s

s
( )

( )
, ( )

( )

( )
, (6.2.8)

X 0

to obtain

η ϕ
ϕ

ν η ϕ+ =d ( )
d

( ) 0. (6.2.9)X

2

2 0
2

Equation (6.2.9) is a simple harmonic oscillator equation for the normalized variable η,
and νX0 can be recognized as the bare tune (no space charge included), introduced
in chapter 3.
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With field errors η ϕΔB( , ) representing all fields not defining the reference orbit,
i.e., all random field errors from magnet construction, we have now the inhomoge-
neous equation [5, 6]:

η ϕ
ϕ

ν η ϕ ν β η ϕ
ρ

+ = − ΔB
B

d ( )
d

( )
( , )

( )
, (6.2.10)X X

2

2 0
2

0
2 3 2

where (Bρ) is the magnetic rigidity, and ϕ ϕΔ = + + + …B B b b x b x[ ( ) ( ) ]0 0 1 2
2 is a

1D (not the most general) expansion of the field errors. Therefore, equation (6.2.10)
can be written as

∑
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where we have written the inhomogeneous part of the equation as a sum of driving
terms. An integer resonance would be excited if the dipole error represented by β b3/2

0

is equal to ϕ±C ek
ki , with k = νX0 = integer; a half-integer resonance would occur if

β = ϕ±b C ek
k2

0
i such that k − νX0 = νX0, i.e., k = 2νX0. The difference k − νX0 arises

from the beat frequency between the kth harmonic of the quadrupole gradient error
β b2

0 and the oscillation at frequency νX0 contained in the factor η in equation
(6.2.11). By similar reasoning, the first nonlinear resonance, or third-integer
resonance, occurs if k − 2νX0 = νX0, or k = 3νX0.

We assumed a super-periodicity N = 1 in the Fourier expansion of equation
(6.2.11), second equality; in other words, the period of expansion was one entire turn
on the circular accelerator. If the lattice has higher periodicity, however, the period
of expansion would be equal to the length of the shorter repeating structure. Thus, in

Figure 6.4. Schematic representation of an integer resonance—bird’s view of how a particle is deflected by a
dipole error kick into an orbit that grows linearly.
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an ideal ‘ring’ with six sections or super-periods we would have N = 6, with a
correspondingly shorter period in the Fourier expansion. In an actual ring, the super-
periodicity may be broken by the injection line which may contain special magnets
and other elements. We can represent graphically the resonance condition equation
(6.2.1) by plotting νy0 versus νX0 for a range of values of m, n and p. The resonance
diagram with lines up to third order, and with N = 1, is shown in figure 6.5.

If the super-periodicity is N > 1, i.e., higher symmetry, the resonance condition
equation (6.2.1) leads to more widely spaced resonances, which is desirable.
However, these resonances are generally strong. Sum resonances occur when
νX0 + νY0 = integer, while difference resonances are characterized by νX0 − νY0 =
integer. These resonances are examples of coupling resonances arising from coupled
motion in the transverse (betatron) degrees of freedom. The coupling may arise from
rotated quadrupoles from misalignment, from skew quadrupole components present
in even leveled magnets, or from solenoid fields. It turns out that the difference
resonances are stable, while the sum resonances are unstable (see e.g. [6], chapter 5).

The actual resonance lines havewidth, unlike the chart infigure 6.5. Thiswidth, called
the resonance stop band, is narrower the higher the order of the resonance. Furthermore,
radiation damping (chapter 5) reduces the growing betatron amplitude near a resonance.

For the interested reader, adetailed treatmentof resonance theoryusingHamiltonian
perturbation theory can be found in a 1978 classic monograph by G Guignard [7].

6.3 Examples of linacs
We present in this section two examples of linear accelerators: the SLAC electron
linac, a facility near Stanford University in California, and the LEDA (Low-Energy
Demonstration Accelerator) proton linac at Los Alamos National Laboratory.

Figure 6.5. Resonance diagram for first-, second- and third-order resonances and super-periodicity N = 1.
The numbers k and l are integers. The diagram is based on an original Winagile chart. See also [14].
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The original SLAC linac accelerated electrons to 50 GeV over a distance of about
3 km. The basic 3 m accelerating unit of the SLAC linac has become an industry
standard and is in use in many normal-conducting linacs around the world. The unit,
briefly mentioned in chapter 5, is an S-band, disk-loaded, constant-gradient,
traveling wave structure. Table 6.1 summarizes its main parameters.

The first calculation from the data in the table is the RF wavelength and its
relationship to the iris separation d: λRF = 0.105 m, λRF/d = 3. This last result reflects
the 2π/3 operating mode of the cavity (see figure 5.1), or, equivalently, the 120° phase
advance between cells. The number of cavities is 86, which is close to L/d. Further,
and as discussed in chapter 5, the tapered construction of the cavity geometry
(gradual reduction in 2a and 2b—see figure 5.1) guarantees that the peak accelerat-
ing field is constant, i.e. that the structure has a constant gradient. The variation of
the group velocity along the 3 m structure can be calculated using equation (5.1.7):
υg(0) = 0.018c, and υg(L) = 0.006c. The filling time is τ ω= ≈ μt Q2 / 1 s.F RF

The energy gradient can be calculated using equation (5.1.8); we obtain 62.0 MeV
over 3.05 m, i.e. 20.3 MeV m−1. The RF peak power of the original design, 8 MW,
leads to a gradient equal to 9.73 MeV m−1. Finally, the energy at the end of a 3 km
linac comprising the 3 m sections would be equal to 61 GeV. The actual linac uses
960, 3 m structures.

The second example of a linac is a proton machine at Los Alamos. Table 6.2
contains parameters of the LEDA proton linac collected from publications related to
experiments on beam halo conducted around 2001 (see [8]). The proton beam is
initially accelerated and focused by an 8 m, 350MHz RF quadrupole (RFQ—see [15])
and matched with the first 4 quadrupoles into an 11 m strong focusing lattice. Several
beam diagnostics allow measurements of beam profiles and emittances under different
matching conditions.

Envelope mismatch is a major factor that contributes to halo formation. As seen
at the end of section 6.1, the envelope of a mismatched beam undergoes symmetric

Table 6.1. Main parameters of the SLAC 3 m linac unit.

RF Frequency, fRF 2856 MHz
Shunt Impedance, rs 53–60 MΩ/m
Length, L 3.048 m
Iris Separation, d 35.001 mm
Disk Diameter, 2b 8.4–8.2 cm
Iris Diameter, 2a 2.6–1.9 cm
Number of Cells 86
Quality Factor, Q 13 000–14 000
Phase between cells 120°
Accelerating Gradient, >17 MV m−1

Attenuation Constant, τ 0.57
RF Filling Time, tF 0.95 μs
Peak RF Power, Pt0 35 MW
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(‘breathing’) and antisymmetric (‘quadrupole’) envelope modes. These modes can
resonate with particles in the core of the beam expelling the particles to a maximum
radius that depends on the degree of mismatch and the size of the core. We use data
in the table to verify the quoted ‘tune’ depression η, effective beam radius with and
without space charge (a, a0), and the number of envelope mode oscillations over the
length of the beamline. We find η = σ/σ0 = 0.97, and (a0, a) = (1.90, 1.93) mm, from
equations in section 4.3. Thus, beam transport in the halo experiments at LEDA was
emittance dominated, but space charge effects were appreciable, much more than in
electron linacs after acceleration. The values for ‘tune’ depression in the table are
smaller but not too different from our result. Further, the effective matched beam
radii (see K–V distribution in chapter 4) must be divided by 2 to obtain the rms
value; thus we have (arms, a0rms) = (0.95, 0.97) mm, only about 10% smaller than the
value in the last row of table 6.2.

To compute the number of envelope oscillations over 11 m, we first find the phase
advances per period for the symmetric and anti-symmetric modes. From equations
(6.1.4) and a 0.97 ‘tune’ depression, we obtain (σsym, σasym) = (157°, 156°); from the
wavenumbers ksym = σsym/S, and kasym = σasym/S we get L/λsym = 11.4 oscillations,
and L/λasym = 11.3 oscillations. The original paper (see [8]) reports ‘about ten
mismatch oscillations’.

In conclusion, the K–V distribution and smooth-approximation models yield
good results even when applied to emittance-dominated beam transport problems as
in the LEDA experiments.

6.4 Examples of rings
We present here three examples of ‘circular’ accelerators or rings, two of which are
synchrotron radiation (SR) sources (chapter 5): 1) the first generation (ca 1970),
weak-focusing machine, SURF II (Synchrotron Ultraviolet Radiation Facility) at
NIST in Gaithersburg, MD in the US, which is not exactly a ‘ring’; 2) one of the first
second generation light sources (1982), the double-bend achromat (DBA) storage
ring NSLS VUV (National Synchrotron Light Source) at Brookhaven National
Laboratory (BNL) in Upton, NY; and 3) the room-size University of Maryland
Electron Ring (UMER), which is a very-low energy, high current machine built

Table 6.2. Main parameters of LEDA halo experiment at Los Alamos.

Energy, E 6.7 MeV
Particle Proton
Total Length, L 11 m
Lattice Period, S 0.42 m
Beam Current, Ib <75 mA, CW
Emittance (rms, unnorm.), ε̃un. >3.0 μm
Undep. Phase Advance, σ0 80°
Phase Adv. Depression, σ/σ0 = η 0.82–0.95
RMS-Matched Beam Radius, a >1.1 mm
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around 2000 and located at the Institute for Research in Electronics and Applied
Physics (IREAP), University of Maryland, College Park, MD.

Table 6.3 summarizes the parameters of SURF II. The SURF II lattice is one of
the examples in the code Winagile (see appendix), and a MAD input file and
additional information can be found in Jim Murphy’s Data Book [9]. Further, a
working MAD-8 input file for SURF II (SURFII.MAD) can be found in the book’s
website. In these files, the single bending magnet of SURF II is modeled with eight
45° sector magnets. The numbers for the tunes and chromaticity in table 6.3 can be
extracted from the Winagile or MAD-8 files, but it is instructive to derive some of
them from available relations. First, the field index n (chapter 2) can be deduced to
be n = 0.595; this follows from equation (2.4.5) and the fact that the focusing
constant (‘K1’ in MAD-8) κ = 0.8496 m−2 applies to the vertical plane. The betatron
tunes are then obtained from equations (2.4.7) and (2.4.8); naturally for a weak
focusing machine, the betatron tunes are less than 1.0. The momentum compaction
factor and transition gamma are found from equations (3.6.4) and (3.6.6). The
betatron function and dispersion values (not shown in the table) as well as the
chromaticity can also be found from equations in chapter 3. Finally, the natural
emittance in μm can be found from equation (5.3.17) after adapting the result to a
weak focusing machine (see [9], p 41):

ε
γ

μ =
−

= × −C

n n
C[ m]

1
, 3.83 10 m. (6.4.1)q

q

2
13

Important additional calculations pertain to the SR that can be produced with
SURF II. First of all, note from table 6.3 and equation (5.3.4) the scaling of the
radiated power per electron; SURF II has a very small radius but also low energy
relative to other SR sources. Furthermore, the synchrotron radiation from SURF II
has a continuous spectrum with a critical energy (chapter 5) given by equation
(5.4.1). We obtain Ecr = 0.072 keV, or a critical wavelength (h = Planck’s const.)
λcr = hc./Ecr = 17 nm, which is outside the ‘water window’ between 2.34 and 4.4 nm.
The total radiated power per electron is, from equation (5.3.4), PR = 7.9 nW.

Table 6.3. SURF II parameters.

Energy, E 0.30 GeV
Super-Period, N 1
Bending Radius, ρ 0.837 m
Betatron Horizontal Tune, ν0X 0.640
Vertical Betatron Tune, ν0Y 0.768
Momentum Compaction, α 2.44
Emittance (natural), ε 0.350 μm
Natural Hor. Chromaticity, ξX −1.79
Natural Vert. Chromaticity, ξY 1.49
Transition Gamma, γtr 0.640
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Assuming a current of IB = 100 mA, we can calculate the number of electrons as
Ne = 2πρIB/eβc = 1.1 × 1010. Therefore, the total irradiated power is PT = NePR =
86W. A good exercise for the reader is to repeat the calculations for SURF III, which
has a higher energy (0.38 GeV) and adjustable field index n. The SURF III website
http://physics.nist.gov/MajResFac/SURF/SURF/accjavan.html is a good guide.
We now turn our attention to a strong-focusing ring.

Table 6.4 summarizes the parameters of NSLS VUV. The basic cell of LNLS is a
double-bend achromat (DBA) or Chasman–Green lattice. It consists of two bending
dipoles with a quadrupole doublet between them; sextupoles are also present for
correcting the chromatic aberration of the quadrupoles. See [16] for more details
about the DBA. Figure 6.6 illustrates the basic lattice of NSLS-VUV. The betatron
tunes are greater than 1 as expected for a strong-focusing machine. The numbers in
table 6.4 are taken from calculations with Winagile and MAD-8 and from the BNL
website. We obtain the same tunes in Winagile and MAD-8, but the website quotes
(3.14, 1.26); the chromaticities are from MAD-8. Figure 6.7 shows the graphical
output from MAD-8.

Additional calculations on SR and damping are based on the SR integrals whose
equations are presented in chapter 5. The results for these integrals are summarized
in table 6.5; the values were extracted from the ‘Synchrotron Radiation Data’
feature in Winagile.

The default total particle energy in MAD-8 is 1.0 GeV, while Winagile uses
1.0 GeV as default for the kinetic energy. Naturally, total energy and kinetic energy
are very close to each other for highly relativistic particles, but not identical.
Furthermore, the strengths of magnets (e.g. ‘K1’ for quadrupoles in MAD-8,
MADX, Elegant and other accelerator codes) are independent of energy as they
are given as focusing constants. The radiation integrals, partition numbers and
momentum compaction are likewise independent of energy, but other derived
quantities such as energy loss per turn, energy spread, equilibrium emittance and
damping times will depend very critically on energy and type of particle.

We use equation (5.3.8) to calculate the energy loss per turn; the total radiated
power for a 1.0 A beam current at NSLS-VUV is then: 19.7 kW. Further, the natural

Table 6.4. Main parameters of the second-generation light source NSLS VUV.

Energy, E 0.808 GeV
Super-Period, N 4
Circumference 51.02 m
Horizontal Betatron Tune, ν0X 3.123
Vertical Betatron Tune, ν0Y 1.178
Synchrotron Tune, ν0S 0.0018
Momentum Compaction, α 0.0235
Equilibrium Hor. Emittance, εx 0.154 μm
Natural Hor. Chromaticity, ξX −3.44
Natural Vert. Chromaticity, ξY −5.77
Transition Gamma, γtr 6.52
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Figure 6.6. Lattice schematics of the second-generation light source NSLS VUV. The basic half-cell on the
upper right is labelled: Q is quadrupole, BD bending dipole, SD, SF sextupoles. The grid size is 2.00 m.
Adapted from Winagile code output.

Figure 6.7. MAD-8 graphical output of lattice functions for NSLS-VUV. The magnet layout on top
corresponds to a complete cell. The super-periodicity of the ring is N = 4.
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energy spread and the equilibrium horizontal emittance are 5 × 10−4, and 0.154 μm,
respectively (see equations (5.3.17)). To find the damping times we need the bending
radius ρ from the dipoles. We get ρ from the parameter sheet found at the NSLS-
VUV website http://www0.bnl.gov/ps/nsls/facility/accelerator/vuv/; the magnetic
rigidity is quoted there as Bρ = 1.41 Tesla × 1.91 m. Therefore, the damping times
are (see equations in chapter 5) τx = τy = 13 ms, and τε = 7.2 ms.

Table 6.6 summarizes the parameters of the University of Maryland Electron
Ring (UMER) relevant to our discussion; the UMER lattice schematics are shown
in figure 6.8. The betatron tunes are determined experimentally (see [10]) For
comparison, a simple-minded matrix calculation without bending dipoles yields
equal bare tunes ν0X = ν0Y = 6.83 (equations (3.2.6), (3.2.7)). If the bending dipoles
are included with edge effects, we obtain (Elegant—see files in appendix) ν0X = 6.82,
ν0Y = 6.88. These edge effects include not only the standard vertical edge focusing
from the rectangular bending magnets (see chapter 3) but also the field variation at
the fringes. An additional effect from the Earth’s magnetic field in the low-energy
UMER can be modeled in Elegant but becomes problematic in other codes such as
Winagile. Essentially, the reference orbit is determined in all rings by the bending
and steering elements, but in UMER the bending dipoles are powered down because
the Earth’s magnetic field provides about 1/3 of the bending (!). Thus, the correct
model must somehow keep the reference orbit for 36, 10° bending dipoles, while

Table 6.5. Synchrotron radiation integrals
for NSLS-VUV (from Winagile).

I1 1.199775 m
I2 3.289868 m−1

I3 1.722571 m−2

I4 −0.246102 m−1

I5 0.567642 m−1

Table 6.6. Main parameters of the University Of Maryland Electron Ring (UMER).

Energy, E 10 keV
Super-Period, N 1
Circumference 11.52 m
Beam Current, IB 0.6 to 100 mA
Horizontal Betatron Tune, ν0X 6.68
Vertical Betatron Tune, ν0Y 6.85
Momentum Compaction, α 0.0214*
Tune Depression, ν/ν0X 0.15 to 0.86
Coherent Tune Shift, Δνcoh 0.0036 to 0.61
Emittance (rms, norm.), ε̃n <3.2 μm
Natural Hor. Chromaticity, ξX −7.31*
Natural Vert. Chromaticity, ξY −7.39*
*
Elegant, with no space charge
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using actual 7°, approximately, dipoles. This is accomplished in Elegant through the
FSE (field strength error) parameter.

The most interesting calculations in UMER relate to the effects of incoherent and
coherent space charge (SC). We limit our brief discussion here to transverse
dynamics effects, although longitudinal space-charge phenomena also play a
significant role in UMER. At the lowest beam current, 0.6 mA, beam transport in
UMER is emittance-dominated, although the fractional incoherent SC tune shift,
equation (4.4.4), is sizable, about 14%. The corresponding SC tune depression is
ν/ν0X = 0.86. At the other end of the beam current range, 100 mA, we obtain a
fractional incoherent SC tune shift of 85% (!) or a SC tune depression of ν/ν0X= 0.15.
UMER operates most of the time, however, with 6.0 mA beam current; the tune
depression in this case is ν/ν0X = 0.64, strongly SC dominated transport.

The coherent tune shift caused by image forces is also appreciable in UMER,
despite the low-energy. We use equation (4.5.3) for the case of non-penetrating fields
(see [4]). We obtain Δνcoh = 0.0036 for 0.6 mA, and 0.61 for 100 mA; at the typical
6.0 mA operating current, Δνcoh = 0.035. The contributions from the term

Figure 6.8. Schematics of University of Maryland Electron Ring (UMER). This low-energy, high-current
machine has a high density of short printed-circuit quadrupoles. A typical bunch is 5 m long. Reproduced with
permission from [11]. Copyright 2016, AIP Publishing LLC.
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proportional to β2 in equation (4.5.3) are small, of the order of 1% for 0.6 mA and
negligible for higher beam currents.

The effect of the coherent tune shift for the 6.0 mA can be seen in resonance
experiments in UMER (see [10]). In figure 6.9, we see the bands for linear resonances
as well as the sum resonance ν0X + ν0Y = 13.

Calculations with SC in the context of the K–V envelope equations (chapter 4),
i.e. with the assumption of linear SC can be done with K–V envelope or matrix codes
(see appendix). We have already presented results of RMS envelope matching with
strong SC in section 6.1; the parameters correspond to UMER’s 10 keV, 100 mA
beam. It is also possible to use a simple SC model in the code Elegant which yields
good results up to about 6 mA in UMER for envelope, dispersion, emittance and
other calculations (see [12]).

Computer resources

The computer codes MENV and SPOT for RMS envelope matching including SC,
as well as the specification files of the examples presented in section 6.1, are available
in the book’s website. The appendix contains a brief description of these codes.
In addition, TRACE2D and TRACE3D, freely available from Los Alamos (see
appendix for hyperlink) are also very useful. Calculations related to integer resonances
(section 6.2) are presented in the Mathcad worksheet IntegerResonance.xmcd. Two

Figure 6.9. Beam lifetime chart at 10th turn as a function of estimated bare tunes (x: horizontal, y: vertical) for
6 mA, 10 keV beam in UMER. Red indicates complete beam transmission while purple indicates zero
transmission. The green and red areas on opposite corners are artifacts of the graphics. From [10]. Used under
CC-BY 3.0, http://creativecommons.org/licenses/by/3.0/deed.en_US
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movies, IntRes_Movie-I.avi, and IntRes_Movie-II.avi, demonstrate the destructive
effects of dipole and quadrupole errors in UMER.

The basic numerical calculations for the linacs and rings discussed are summar-
ized in Mathcad worksheets, SLAC-3m.xmcd, LEDA.xmcd, SURF II.xmcd,
NSLS-VUV.xmcd, UMER-TuneShift.xmcd. These files can be downloaded from
the book’s website. Also available in the website are the MAD8 and Winagile input
files for SURF II and UMER.

Finally, the Android application TAPAS (see appendix) provides an instructive
tool for synchrotron radiation calculations from bending magnets, storage rings and
insertion devices.
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Appendix

Computer resources and their use

Instead of having end-of-chapter problems and exercises, this book includes a
section on ‘Computer Resources’ for each chapter. Therefore, the exploration and
pace of learning does not depend on completing a minimum number of problems.
Instead, the reader is free to explore the available resources, and only he or she can
decide when the math, the physics and the software all come together to the point of
‘understanding’, before moving on to the next chapter.

Computer software has been an integral part of learning any technical or scientific
field, particularly since the popularization of personal computers almost forty years
ago. We can use software of three general types: low-level and high-level program-
ming codes, and specific application software. We do not cover here (except for a
very brief description of Python) the use of popular languages like C++, Python or
Java. Python, in particular, is very popular for writing input files and scripts in
several particle-accelerator codes. The names of some codes (e.g. JMAD and
PyOrbit) reveal their dependence on Java or Python. Furthermore, Java is the basis
for many ‘applets’ available online as educational tools in many areas.

We advocate in this book the use of Mathcad and Matlab or their freeware
counterparts Smath Studio and Octave for general calculations and programming,
with no prejudice towards the powerful Mathematica which we think is superior to
the rest for symbolic calculations. (Besides Mathematica, Wolfram has created a
stand-alone educational tool called ‘CDF Player’ that is essentially a read-only
Mathematica. A large collection of CDF demonstration projects fromWolfram and
third parties is freely available. CDF projects work in most cases better than Java
applets of similar content). As for specific application software, we concentrate here
on a number of popular codes for particle accelerator design and also on a few
general optics programs (mostly for chapters 1 and 2). One area which we do not
cover in the present edition of this book is magnet design; it is a highly specialized
field for which many computer resources are also available.
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All particle accelerator codes described below, except for PBO Lab and some
auxiliary software such as VMware Fusion, are freely available and can be installed
in the most popular operating systems without any special difficulty. In particular,
no compilation or any other gymnastics is necessary, other than running scripts to
build packages or implementing the code in a virtual machine or emulation software
(e.g. Wine under Ubuntu Linux) to get around compatibility issues. Furthermore, a
few ‘Apps’ for Google’s Android and Apple’s IOS will be mentioned because of their
instructional and ‘fun’ values.

In our opinion, the best approach to learning any of the codes is by example, and
not by reading manuals. Manuals should be used only as references, and initially to
check for general information such as sign conventions and important approxima-
tions (e.g. relativistic versus non-relativistic, symplectic versus non-symplectic, zero-
current versus space-charge effects, etc).

The following steps may be a good guide towards learning not only the codes but
also the physics: 1) open one of the example files provided and run the code to
familiarize yourself with the basic GUI (or command-line) mechanics and capa-
bilities; 2) edit the file to explore the scaling of different parameters; 3) do ‘sanity’
checks, i.e. back-of-the-envelope or Mathcad calculations to make sure the code is
yielding expected results; 4) do your own concept design and either modify an
existing file or start from scratch to implement your model in the code; 5) go back
to 3); and 6) try a different code for cross-checking, or simply to compare programs
and decide on which one to use. Regarding the last point, it is advisable to learn to
be reasonably proficient in one code before switching to a different one. Naturally,
there is no single code that can do everything that you will eventually need, so
learning a (small!) number of codes may be a good idea. Exactly following the latter
idea led to this book!

The tables below summarize the computer codes that are described in the
following sections. Not all compatibility issues have been explored in depth, so it
is possible that some of the codes can actually run in a particular OS despite the
annotation ‘×’. The book’s website provides example files for most codes.

A.0 Symplecticity
As discussed in the first section of chapter 4, Hamilton’s equations of motion in
classical mechanics lead to Liouville’s theorem. This theorem asserts that the flow of
representative points in phase space for systems without dissipation is similar to the
flow of an incompressible fluid. In addition, the evolution of Hamiltonian systems
can be described in terms of canonical transformations or, equivalently, symplectic
matrices. The standard classical mechanics textbook by Goldstein [1] discusses these
topics with clarity and detail in the chapter on canonical transformations. We only
quote here the condition that a matrix M must satisfy in order to be symplectic, i.e.
to represent a canonical transformation:

= =MJM J M JM J, or (A.1)T T

A Practical Introduction to Beam Physics and Particle Accelerators

A-2



Table A.2. Code compatibility for optics software and other packages used in the book.

COMPUTER
CODE or

App
↓

OPERATING SYSTEMS

Microsoft Linux Apple

Win
7-8

Win
XP

Win XP,
7+

Cygwin

Ubuntu
14.04
LTS

Ubuntu
14.04 LTS+

Wine
MAC
OSX

MAC OSX +
VMware
Fusion

Optgeo ✓ ✓ × ✓ × ✓ ✓
2D Ray

Tracer1
✓ ✓ × × × × ✓

Ray Optics Android App
RayLab IOS App
TAPAS Android App
Radiation2D ✓ ✓ × × ✓ × ✓
CDF Player ✓ ✓ × ✓ × ✓ ✓

1
Mathcad program.

Table A.1. Code compatibility for particle accelerator programs used in the book.

COMPUTER
CODE

↓

OPERATING SYSTEMS

Microsoft Linux Apple

Win
7-8

Win
XP

Win
XP, 7 +
Cygwin

Ubuntu
14.04
LTS

Ubuntu
14.04 LTS
+ Wine

MAC
OSX

MAC OSX +
VMware

Fusion3, or
Wine4

Elegant × × ✓ ✓ × ✓ ✓
SPOT1 × ✓ × × ✓ × ✓
MENV2 ✓ ✓ × ✓ × ✓ ✓
MAD-8 ✓ ✓ ✓
MAD-X ✓ ✓ ✓
PART.

BEAM
2007

✓ ✓ × × ✓ × ✓

PBO Lab ✓ ✓ × × × ✓
TRACE2D ✓ ✓ × × ✓ × ✓
TRACE3D ✓ ✓ × × ✓ × ✓
Winagile × ✓ × × ✓ × ✓

1
Originally written for Win 3.1

2
MatLab program

3
VMware Fusion + Ubuntu Linux or + WinXP

4
Wine under Ubuntu Linux, or MacOS Wine.
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where J is the antisymmetric matrix defined by

⎡
⎣⎢

⎤
⎦⎥=

−
J 0 1

1 0
. (A.2)

For a system with n degrees of freedom, the symbol 0 stands for a n × n matrix
composed of zeros as elements, an 1 is a n × n unit matrix. In Hamiltonian
mechanics M represents the 2n × 2n Jacobian matrix of a canonical transformation.
Using this language, Hamilton’s equations of motion for a system of n degrees of
freedom are written as

η
η

= ∂
∂

J
H

, (A.3)

with η representing a column vector with 2n elements: η η= =+q pi i i n i, for ⩽i n. H is
the Hamiltonian, and the dot indicates time derivative. Equation (A.3) is shorthand
notation for 2n, first-order differential equations with a sign asymmetry between
p and q equations.

Table A.3. Computer code homepage or relevant website.

COMPUTER
CODE↓ HOMEPAGE / WEBSITES

Elegant http://www.aps.anl.gov/Accelerator_Systems_Division/
Accelerator_Operations_Physics/software.shtml

SPOT http://www.ipr.umd.edu/faculty/bernal
MENV http://www.ipr.umd.edu/faculty/bernal
MAD-8 http://MAD-8.web.cern.ch/MAD-8/
MAD-X http://mad.web.cern.ch/mad/

http://madx.web.cern.ch/madx/madx.old/
PART. BEAM

2007
http://uspas.fnal.gov/materials/materials-downloads.shtml

PBO Lab http://www.ghga.com/accelsoft/
TRACE2D http://laacg.lanl.gov/laacg/services/download_trace.phtml
TRACE3D http://laacg.lanl.gov/laacg/services/download_trace.phtml
Winagile http://www.isa.au.dk/accfys/E08/default.htm.

http://espace.cern.ch/test-juas/documentation.aspx
Optgeo http://jeanmarie.biansan.free.fr/optgeo.html
Ray Optics https://play.google.com/store/apps/details?id=com.shakti.rayoptics&hl=en
2D Ray Tracer http://www.physic.ut.ee/~kiisk/mcadapps/ Look for “RAYTRACE.ZIP”
RayLab https://itunes.apple.com/us/app/raylab/id710190065?mt=8
TAPAS https://play.google.com/store/apps/details?id=borland.TAPAs&hl=en
Radiation2D http://www.shintakelab.com/en/enEducationalSoft.htm
CDF Player http://www.wolfram.com/cdf-player/
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Numerical methods involve transforming the initial state of the system over many
successive time intervals. In general, however, these transformations are not
symplectic and thus do not represent the evolution of a Hamiltonian system.
For example, the simple first-order implicit or explicit numerical Euler methods
(see any textbook on numerical methods) are not symplectic; even the standard
fourth-order Runge–Kutta method, the workhorse of numerical work, is not
symplectic. As a consequence, the use of these non-symplectic ‘integrators’ often
yields unphysical results particularly for simulations over extended integration
intervals (e.g. instabilities not seen in real accelerator experiments). Naturally, this
is not acceptable for studies involving, for example, hundreds of thousands or
millions of turns in circular accelerators, or simulations of the evolution of galactic
systems over millions of years.

It is possible, however, to construct symplectic integrators. Numerical symplecticity
not only yields the correct Liouvillian flow, but also prevents the numerical total energy
from deviating monotonically from the correct conserved value. For example, a
combination of implicit and explicit first-order Euler methods yields a first-order
symplectic integrator. This case and other higher order methods are discussed in the
context of the simple harmonic oscillator in an American Journal of Physics article by
Dennis Donnelly and Edwin Rogers [2]. More general discussions of symplectic
integrators can be found in an article by H Yoshida in the Handbook of Accelerator
Physics and Engineering [3], and the books by Étienne Forest [4], or AndrzejWolski [5].

Tracking through thin elements is symplectic; we can use the matrix for a thin
lens, equation (1.1.5), and equation (A.1) above to prove it. Although symplectic
tracking using thick elements is also possible, the computational speed of using thin
elements is greater. We have included a simple Mathcad document, Simplecticity.
xmcd, in the book’s website, to display matrix calculations of thin and thick lenses to
test symplecticity.

The MAD8 and MADX codes (see section A.5 below) have the command
‘MAKETHIN’ to turn thick elements into symplectic thin ones. In the code Elegant
(see section A.3 below), non-symplectic sector magnets (SBEN) or quadrupoles
(QUAD), or their symplectic counterparts CSBEND and KQUAD can be used. The
canonical bend CSBEND, for example, is described in the Elegant manual as using
the exact Hamiltonian, i.e. all orders of the momentum offset and curvature. This is
particularly important for tracking in rings.

Non-Liouvillian processes such as the generation of synchrotron radiation are
non-symplectic. Even in this case, tracking is best performed with symplectic
integrators ignoring radiation. However, the use of all approximations, especially
the paraxial approximation, must be checked, because it may yield larger errors than
the ones originating from non-symplectic elements. This is particularly important for
tracking in small rings.

A.1 Software and hardware
With usage of Microsoft Windows (all versions) versus Apple’s Mac OSX (all
versions) versus Linux (all flavors) running about 90% versus 8% versus 2% (early
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2015), it is no wonder that software developers and vendors focus heavily on the
Windows platform. Two obvious advantages of Windows domination come to
mind: first, the most popular application’s software is optimized for the most
popular platform, and second, backwards compatibility is made more important for
Windows. Thus, it is easy to run most Windows software that was developed
20 years ago or before; this backwards compatibility is facilitated by the existence of
emulation programs and software for running virtual machines.

This book and the programs developed for it were written using software for MS
Windows 7. Some programs were also tested in Mac OSX 10.10.1 (Yosemite) and
Ubuntu Linux 14.04 LTS; the latter with and without the Windows emulation
application Wine (also available for OSX). Wine was particularly useful for running
old software written for MS Windows XP or 3.1 (see tables above). In addition, the
VMware Player (freeware for Windows and Linux) and VMware Fusion (commer-
cial software for Mac OSX) were also employed to implement virtual machines (e.g.,
Win 7 and Ubuntu on a Mac host, and Ubuntu, and Win XP on a PC host running
Win 7). Although machines using the old Core 2 Duo Pentium processors or
equivalent AMD processors, with at least 2 GB RAM, are good enough to run most
software described here, very significant speed and compatibility are gained with
machines employing Pentium i5 and i7, or equivalent AMD processors, and 4–8 GB
RAM. We also tested some applications on iOS and Android mobile devices. The
book’s website contains additional information.

A.2 General tools: Mathcad, Matlab and Python
Mathcad is a self-documenting code for general calculations in math, science and
engineering. The code is particularly appealing for those not willing to learn a
programming language and interested in applications where speed is not a main
factor. Mathcad, introduced in 1986 for DOS by MathSoft, is now owned by PTC.
Mathcad is currently available for Microsoft Windows only, but can be run in MAC
OSX or Linux through a Windows virtual machine. The current version of Mathcad
is 15, but few users would see significant differences between that version and
Mathcad 11 which was released over 10 years ago. PTC is currently supporting
versions 14 and 15 and the related products Prime 2.0 and 3.0. Students can
get Mathcad 15 for around $100; others can obtain a free trial version that will revert
to Mathcad Express if the full license is not purchased by the end of the trial period.
Mathcad Express will retain only the basic features of Mathcad. There is also a
freeware alternative to Mathcad called SMath Studio, available for Windows and
Linux. SMath Studio does not have all the functionality of Mathcad but it is a
respectable ‘clone’.

Almost all numerical examples quoted in the ‘Computer Resources’ sections of
the book were written in Mathcad 14 and 15, but Mathcad 11 versions (and a few
SMath Studio as well) are also available in the book’s website. In figure A.1 we show
a Mathcad document for the solution of the damped harmonic oscillator. We
present equivalent examples in Matlab and Python below.
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Matlab is possibly the most popular general computing tool for engineers,
scientists and educators worldwide. It was initially developed in the 1970s and
1980s by Cleve Moler and others from the University of New Mexico and Stanford
University. Matlab’s name derives from ‘Matrix Laboratory’, as its original
signature strength was, and still is, matrix calculations. Matlab is owned by
MathWorks and is available for all major platforms. Several freeware Matlab
‘clones’ have appeared over the years, most notably Octave and Scilab, for various
operating systems. Although not as transparent as Mathcad, Matlab’s learning
curve is well within the abilities of freshmen, and, as with many programming
languages, can be learned faster through the use of existing sample programs or
templates. In fact, many free as well as commercial packages or ‘Toolboxes’ for
various applications (e.g., signal processing, image processing, data acquisition and
control, etc) are available, including one for particle accelerators. The latter is called
the ‘Accelerator Toolbox’ or just ‘AT’, and was introduced by Andrei Terebilo from
SLAC in 2001.

Figure A.1. Simple example of Mathcad document.
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Only to illustrate the use of Matlab, we present below a simple example and
instructions for solving the damped harmonic oscillator. (Obviously, there is an
analytical solution to this problem, and also multiple ways within Matlab of finding
numerical solutions).

1) Write and save the ‘M-file’ named oscillator.m (use the built-in script
editor):

2) In command window run

to generate x versus t. Compare with Mathcad document in figure A.1
above.

We are in the process of translating some of the book Mathcad documents into
Matlab (see book’s website).

Python is an extremely popular general-purpose programming language.
Python’s syntax is very similar to Matlab’s, and their speeds are also comparable,
as both are interpreted languages. Python’s trademarks are clarity and simplicity; it
is highly readable and extensible, with a large body of numerical and scientific
libraries or packages. Python is freely available for all major platforms. Some
implementations, such as Anaconda, come with an excellent editor (Spyder) and
all major scientific packages (e.g., numpy, matplotlib, simpy). Guido van
Rossum from the Netherlands started Python in 1989. Python 2.0 was released in
2000, and Python 3.0 in 2008. Python 2.7 is run by default in Ubuntu Linux 14.04,
but Python 3.4 is also installed; when running the latter, the command ‘python3’ is
used instead of just ‘python’. With these versions, it is possible to run any of
thousands of programs available mostly in websites associated with computer and
physics courses at universities worldwide. Using these programs is also a good way
to learn Python by example. In addition, a visual Python is available to facilitate the
graphical simulation of simple and some complex physical systems.

To conclude this section, we show a simple Python program to solve the damped
simple harmonic oscillator. A key difference between Python and other languages
is that indenting in Python is crucial. Compare the Python script below with
Matlab’s version. Note that in Python, unlike Matlab, there is no need to do two
operations to run the code (the M-file plus the command instruction). Another
important difference is that indexing of arrays starts at 0 in Python and 1 in
Matlab. In Mathcad, the start index is 0 by default, but can be changed to 1 by
typing ORIGIN:=1.
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Other general software can be employed to model and do design calculations for
accelerators. For example, Microsoft Excel has been used by Dr David Douglas et al
at Jefferson Lab in Virginia [6] to do basic linear optics modeling of the free electron
laser driver.

A.3 Elegant
Elegant is a powerful third-order matrix code widely used to model light sources and
other accelerators, from the Advanced Photon Source (APS at Argonne National
Lab) to x-ray FELs such as the Linac Coherent Light Source, LCLS, at Stanford
National Lab. Elegant was started by Michael Borland from APS in 1988, and is
maintained by him and others at APS and elsewhere [7, 8]. There is also the ‘Elegant
forum’ where users can almost always find solutions to code or model-related
problems. The code is freely available from the APS website for all major platforms,
but you will need to register with your e-mail to get a key to download the files and
documents (Elegant, SDDS, examples, and manuals).

DOWNLOAD:You can download all the files from the APS website. See table A.3.
INSTALLATION: For the Windows installation, you will need to first install

CYGWIN and MS Visual C++. Follow the steps in the APS website. Installation in
Ubuntu Linux is relatively straightforward; we recommend building the ‘rpm’

packages using the script in Step 1 instead of trying the pre-built RPMs. Details
and corrections not covered in the APS instructions can be found in the book’s
website. The instructions for the Mac latest OSX (10.10.1—Yosemite—at the time
of writing, February 2015) are not current in the forum. The best route is to
download the binary OSX executables for both SDDS and Elegant (darwing-x86
compressed folders). Additional instructions can be found in the book’s website.

RUN/EXAMPLE: the main files in Elegant are the Elegant input file with
extension ‘.ele’ and the lattice file with extension ‘.lte’. These files can be edited
with any text editor such as WordPad in Windows, ‘gedit’ in Linux, or TextEdit in
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the Mac. Below is an example of a lattice file, ‘umer1.lte’, corresponding to the
University of Maryland Electron Ring (UMER):

The notation and structure of this file is similar to those of files used in the MAD
codes (A.5 below). UMER consists of 18 sections, each having two FODO periods.
There are two bend dipoles and 4 quadrupoles per section (see figure 6.8 and
section 6.4 for additional details). K1 represents the quadrupole focusing constant κ0
in m−2; the bend dipoles are rectangular 100 bend magnets (two 50 edge angles E1
and E2), and FINT is a constant (‘field integral’) that is introduced to implement
edge effects (see TRANSPORT manual [12] for definition). Note that ‘!’ must
precede comments. The Elegant manual describes in detail a large number of
accelerator lattice elements and their parameters.

The Elegant input file is ‘umer1.ele’:
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Notice that the ‘umer1.ele’ file above is divided into blocks that begin with
‘&name of block’ and end in ‘&end’. For example, we have ‘&run_setup’,
‘&twiss_output’, ‘&run_control’, ‘&bunched_beam’, ‘&track’, and others. The
elements of all available blocks are explained in detail in the Elegant manual.
Notice how the lattice file and the beamline are called in the ‘&run_setup’ block.
Also, an entire block can be commented out by using ‘!’, as is the case with the
‘&bunched_beam’ block above.

The code is run by typing
elegant umer1.ele

In the example above, the code finds the matched lattice functions Betax, Betay,
Etax and Etay, i.e., the transverse betatron and dispersion functions. To plot
Betax, for example, type

sddsplot umer1.twi -col=s,betax
Notice the command ‘sddsplot’; it is part of the SDDS tools, an important
component of Elegant. To print the betatron tunes one would type

sddsprintout umer1.twi -par={nux,nuy}
In order to track and plot beam functions, as opposed to lattice functions, we need
the ‘&bunched_beam’ block in the ‘.ele’ file. Thus, we specify the initial beam
parameters, distribution types in x,y,z and number of particles (10000 in the
example). As an example, we type

sddsplot umer1.sig -col=s,Sy
to plot the rms envelope in the vertical plane as a function of the reference-orbit
coordinate ‘s’. Figure A.2 below shows the output plots of Betax with use_beamline =
“ring”, and use_beamline = “section” in the ‘&run_setup’ block.

Running Elegant and plotting lattice and beam functions and also doing complex
operations can be made very convenient by writing SDDS scripts. For example, we
can have a simple script, ‘simple_script.txt’ that will run ‘umer1.ele’, and display the

Figure A.2. Horizontal betatron functions calculated in Elegant: (left) one turn or 18 sections, and (right) one
section of the University of Maryland Electron Ring (UMER).
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betatron tunes, horizontal and vertical chromaticities, momentum compaction, and
plot Betax, Betay:

The script can be run by typing ‘./simple_script’ (no quotation marks) in MS
Windows (under Cygwin), but the text file must be first converted to a Unix text file
using the command ‘d2u simple_script.txt’; ‘d2u’ stands for ‘dos-to-unix’. Such
conversion is not required in Linux or OSX. Finally, a very useful command in
Elegant is ‘sddsquery filename’; for example, ‘sddsquery umer1.twi’, ‘sddsquery
umer1.sig’ will list all parameters that are part of the lattice and beam sets,
respectively.

A.4 Envelope codes (SPOT and MENV)
The code SPOT solves the envelope equations, equations (4.4.10), for either a unit
FODO cell or a general matching section. In the first case, the periodic envelope
solution is found for given beam parameters (generalized perveance and edge
emittances) and fixed quadrupole strengths corresponding to desired zero-current
phase advances (section 6.1). These quadrupole strengths can be found from
equations (3.2.6) and (3.2.7) for hard-edge gradient models. The other, more
interesting, case of matching is the optimization of a nonperiodic envelope leading
from the input plane at s = si to the periodic envelope starting at s = sf. A major
feature of SPOT is the use of a reference trajectory. If the average values of the beam
excursions X and Y are known, the reference trajectory or trajectories can be set to
be equal to those constant values, except at the beginning of the matching section.
With a specified reference trajectory and an initial guess for the strengths of
the matching lenses, SPOT minimizes a functional, essentially the squared distance
between the envelope solution and the reference trajectory. This functional can
be extended to include the weighted beam target parameters, e.g., the beam
transverse semi-axes and slopes at the terminal state. The optimizing techniques in
SPOT utilize tools from nonlinear programming developed for control problems in
engineering and mathematics. Additional details can be found in [14].

SPOT runs under MS Win 3.1 or Win XP, or through emulation software such as
Wine (Linux and Mac OSX). Dr Hui Li, a former graduate student at University of
Maryland, wrote a Matlab version of SPOT with a GUI and added functionality.
The Matlab version is called MENV for ‘Matlab Envelope’. The optimization in
MENV uses tools from Matlab directly, which in some cases lead to solutions that
converge more rapidly than in SPOT.
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Typical working spaces for SPOT and MENV are shown in figure A.3.
Both SPOT and MENV can be obtained through the book’s website.

A.5 MAD-8 and MAD-X
The Methodical Accelerator Design (MAD) program has been used at CERN for
over 20 years to simulate, design and optimize large linear and circular particle
accelerators. A few major examples are the Proton Synchrotron (PS), the Super
Proton Synchrotron (SPS), the Large Electron-Positron collider (LEP), and the Large
Hadron Collider (LHC). The old version MAD-8 was ‘retired’ in 2002, but at least
two versions are still available for download (see table A.3): 8.23.06 and 8.51/15 from
SLAC and CERN.

MAD does not have a GUI, as it is more a language than a code. The User’s
manual [10] is a massive book, as for the old code TRANSPORT [12], with a
plethora of physics and detailed explanation of all commands, syntax, etc but very
little on how to actually run the code. On the other hand, there are a few very useful
tutorial presentations available online. We have adapted an example from one of
them [15] to use it with the latest (March, 2015) MAD-X release, version 5.02.04.
We emphasize that we are only scratching the surface of a very powerful and
complex program for single-particle simulations of accelerators. Space-charge
effects can be simulated also, but in conjunction with another code called PTC.
The CERN website has more details.

DOWNLOAD: To download MAD-8 or MAD-X use the hyperlinks on
table A.3. For MAD-X click ‘Releases’ on the left list and then ‘production releases
repository’. For the Mac, click on ‘development releases repository’.

INSTALLATION: for Windows, move the madx-win64.exe (64-bit Win) or
madx-win32.exe (32-bit Win) file to a folder ‘MAD-X’. Rename the file to simply
‘madx.exe’.

RUN/EXAMPLE: the MAD-X language is not case sensitive. The file below,
FODOUMER.MADX, is self-explanatory for the most part. A FODO unit cell for
the UMER machine is defined, and the beta functions plotted for arbitrary initial
values BETX=0.9,BETY=0.7,ALFX=0,ALFY=0, and then for periodic matched

Figure A.3. Working windows in envelope codes SPOT and MENV. The reference trajectory is shown in
yellow for the non-periodic matching problem in SPOT (middle plot). The MENV window (right) displays an
example of periodic envelope matching. The examples are from UMER. See [9, 14].
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conditions (‘cell matching’ in the terminology of the MAD User’s Reference
Manual). Comments are preceded by //, /*, or !.

Notice that the energy ‘PC’ is in units GeV c–1 (very small for the 10 keV
UMER!) Also notice that in our example the drift spaces and quadrupoles are
subdivided into 10 slices to obtain smooth plots.

The program is run by typing

madx < FODOUMER.MADX
The output is in the form of the postscript file ‘madx.ps’ which can be opened with
GhostView inWindows. In the example above, two plots (one per page) are generated.
The plots are shown in figure A.4. Additional examples can be found in [13].

Figure A.4. Output plots from MAD-X: unmatched FODO cell (left), and matched FODO cell (right). Notice
the diagram for the FODO cell on top.
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A.6 Particle Beam 2007
This is a programwritten by Professor HelmutWiedemann from Stanford University
and employed at the US Particle Accelerator School (USPAS). The USPAS website
(see link in table A.3) describes the program: ‘(it) lets the user design a beam transport
line or a storage ring. The program calculates single particle trajectories, betatron
functions, periodic betatron/dispersion functions (if there is a solution). After
insertion of sextupole magnets it is possible to track particle trajectories, RF-
parameters are calculated as well as beam lifetimes … Many graphs are available
for particle trajectories, betatron functions, RF-phase space and tracking.’

Many examples of lattices are included (files with extension .LAT). When opened,
the lattice functions are displayed. One very useful feature of the program is that the
individual accelerator elements displayed at the bottom of the plots can be accessed
by just clicking (as with PBO Lab—see below). In this way the user can examine the
lattice in detail and introduce changes to find new solutions. The main functions of
the program appear under the ‘Optics’ menu where matrix elements for one period
can be selected for display, or trajectories and beam sizes calculated. In figure A.5
below we show an example using the SESAME.LAT file. The lattice functions and
the parameters for a magnet are displayed.

A.7 PBO Lab
The Particle Beam Optics Laboratory is a product of AccelSoft Inc. of Del Mar,
CA [16]. The trademarks of PBO Lab are its modular nature and a drag-and-drop
GUI based on icons representing accelerator components. There are modules
available for TRANSPORT, TRACE-3D, MARYLIE and others. The software
is available for MS Windows only, although some of the old versions were available
for the Mac. The learning curve is very fast, and there is a good built-in tutorial on
basic accelerator physics. We have found that the TRACE module is particularly
useful, as well as the included tools for trajectory tracking. Other modules are being
developed, such as one for MAD-8.

Figure A.5. Particle Beam 2007 – Lattice functions for the SESAME light source (left), and parameters for
rectangular magnet located at z = 6 m, approximately (right).
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A.8 TRACE-2D and TRACE-3D
The best description of the TRACE programs comes from the abstract to the
Trace 3D documentation [17]: ‘TRACE 3D is an interactive beam-dynamics program
that calculates the envelopes of a bunched beam, including linear space-charge
forces, through a user-defined transport system. TRACE 3D provides an immediate
graphics display of the beam envelopes and phase-space ellipses, and accommodates
fourteen different types of fitting or beam matching options’. The documentation
includes several appendices with excellent concise discussion of basic topics such
as the σ-matrix, Twiss parameters, mismatch factor and others. Furthermore, a
summary of TRACE 2D commands is given in appendix K. TRACE 2D is used for
unbunched, i.e., continuous or coasting beams.

DOWNLOAD: the codes are freely available from Los Alamos National
Laboratory after a simple registration process. See table A.3.

INSTALLATION: the .zip file is decompressed to reveal the executable file
‘trace2d.exe’ or ‘trace3d.exe’ which can be moved to the desktop in Windows. The
examples and input files can remain in any folder, but the Windows system folder
‘Program Files (x86)’ is not recommended.

RUN/EXAMPLE: clicking on the TRACE icon will produce a file-opening page.
In our example, the input file is ‘fodotest.t2d’ (TRACE-2D). A blank page is
produced after opening the file, but simply typing ‘g’ (for ‘graph’) will render the
beam horizontal and vertical phase- space ellipses at the input (left pane) and output
(right pane) planes, together with the beam line and the transverse beam envelopes
at the bottom. Figure A.6 is an illustration of the output screen obtained after
performing envelope matching in a FODO cell of UMER.
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The second line of ‘fodotest.t2d’ defines the beam: ‘ER’ is rest mass in MeV, ‘W’

the kinetic energy in MeV, and ‘XI’ the beam current in mA (continuous beam). The
next line contains the initial transverse edge emittances (EMIT) in mm-mrad.
BEAMI (BEAMF) contains the initial (final) Courant–Snyder parameters α and β in
the horizontal and vertical planes. XMI, XPMI, XMF, XPMF define the scales
(in mm) for the initial and final phase-space ellipses. XM, YM define the scales
for the envelopes. There are five elements in the beam line, 3 drift spaces and 2
quadrupoles; the drifts are in mm, and the quadrupole parameters are the gradient in
T/m, and hard edge effective length (51.64 mm in our case).

The matching type is MT = 1, for ellipse parameters αx, βx, αy, βy. Envelope
matching is carried out by typing ‘m’ and then ‘g’. The phase advance and Courant–
Snyder parameters are displayed by typing ‘f’. A list of commands is provided in a
dropdown menu. The input file can be modified and run again without saving or
exiting the program. As an example, the current can be set to zero by typing ‘I’, and
then ‘xi = 0’ in the new window; notice how the beam is mismatched. After
re-matching, the new phase advances can be obtained; comparing these values with
those obtained previously with full beam current illustrates the effect of linear
transverse space charge (see chapter 4).

A.9 Winagile
Winagile is a free, Windows-based, computer code for beam transport calculations
in transfer lines and rings. It is very good for doing things like tracking, envelopes,

Figure A.6. TRACE 2D window after matching the beam envelopes in one cell of UMER for a 10 keV, 7 mA,
16 μm (x and y edge emittances) electron beam.
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closed-orbit, closed-orbit corrections, resonances, etc. Both incoherent and coherent
space-charge effects can be included as well, but the models are not very accurate.
The code was written by P J Bryant from CERN, who is also the author, with Kjell
Johnsen, of The Principles of Circular Accelerators and Storage Rings [11]. With
some guidance, running the basic Winagile can be learned in a matter of minutes.
The GUI is not the best in the world, plus more than a few bugs remain in the
current version (ver. 3.5), but it is nonetheless a working code which can be easily
applied to model many accelerators.

DOWNLOAD: You can download the code from Aarhus University (Denmark)
website or from the Joint Universities Accelerator School website (see table 3). The
file ‘package(ver3.5_D054).zip’ includes the windows-executable file, lattice exam-
ples (extension ‘LAT’) and help file ‘winagile.hlp’.

INSTALLATION/RUN: the code will run under MS Windows XP, or under
Wine in Ubuntu Linux. It is possible to run Winagile in Win 7-8 but only inside a
virtual Win XP machine through VMware Player or Oracle’s Virtual Box.

EXAMPLE: thinl1l2.lat – this lattice has two thin quadrupoles of opposite strengths
and separated by a distance shorter than their individual focal lengths f = 0.1 m, in
magnitude (see chapter 2). The total length of the beam line is 1.0 m.

1) Run Winagile and open the example file thinl1l2.lat (this you will find in the
book’s website). This lattice contains two types of elements: DRIFT and
THINQ.

2) Note that you are in the MAIN WINDOW. Explore the different column
values. Only the ‘Length’ and ‘Thin quad kL’ columns have values. In
particular, the length of THINQ is zero, by definition. The integrated
strengths (in m−1) of the quadrupoles have opposite signs.

3) In the ‘Calculations’ menu choose ‘Transfer Line’. A window ‘Twiss Input’
opens up; click OK. The input here is irrelevant to our present calculations.
You end up with a new window called BEAM PARAMETERS.

4) In the ‘Calculations’ menu choose ‘Tracking’. Enter 0.005 for ‘Horizontal
position, x’ and also for ‘Vertical position, z’. The window now changes to
TRACKING.

5) In the ‘Graphs’ menu choose ‘Trajectories’. A window with a blue back-
ground opens up showing the horizontal and vertical trajectories. The default
particles are 1 GeV protons, but this is irrelevant, as all the information for
the optics is contained in the ‘kL’ values (MAIN WINDOW). Click ‘Save’
and then ‘Back’ to return to the ‘Tracking’ window.

6) Repeat 4) with −0.005 values for x and z. Select the entire field to be able to
change the signs from the original values (this is but the first example of a
bug in the GUI!—but be patient).

7) Choose ‘Trajectories’ again in the ‘Graphs’menu and then ‘All’. You will see
the wonders of ‘alternating gradient’ focusing: net focusing on both planes!
You can now try increasing the separation of the quads to be more than their
individual focal lengths. To do this you need to go back to the MAIN
WINDOW, then ‘File’, ‘Edit’. Double-click on the field that you want to
change and press OK. Then go to ‘Check Data’ and select either option. You
are ready to repeat the tracking calculations.
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A.10 Mobile applications
Android: from the Google Play website—‘TAPAs stands for Toolkit for Accelerator
Physics on Androids. It allows ‘back-of-the-envelope’ accelerator physics calcula-
tions, with more than 20 inter-linked types of calculations. These include storage ring
scaling with energy and circumference, longitudinal dynamics in rings, free-electron
lasers, electron linear accelerators, electron guns, bunch compression, iron-dominated
multipole magnets, short pulse x-rays, undulator effects on orbit and optics, undulator
radiation properties, undulator models, top-up parameters, electromagnetism, syn-
chrotron radiation, particle passage through matter, and engineering calculations’.
See also [18]. Figure A.7 shows a typical screen from TAPAS.

Figure A.7. Screen from Android App TAPAS.
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