Feature Projection

Key points:

* |ntuition for PCA and feature projection and difference to
feature selection

e |ssues with PCA and alternatives



Feature Projection: Projecting High-Dimensional Data

Eigenfaces: Principal Component

One image
is one column

Analysis on face images to get “basis
vectors” of face image space
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Feature Projection: Intuition for PCA




Caveats With PCA

Non-linearity Higher variance feature is not more
discriminative

Feature 2

Feature 2

* Data is linearly uncorrelated
e But there is still a non-linear dependence Feature 1




Other Members of the Dimensionality Reduction Zoo

Linear Discriminant Analysis
(LDA, Supervised Technique)
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good projection: separates classes well

Original

 math like for PCA

t-distributed stochastic neighbor
embedding (#-SNE)

Non-linear

Conditional probabilities that
represent similarities

Sensitive to perplexity (number of
close neighbors)
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Feature Projection

Key points:

* |ntuition for PCA and feature projection
® Uncorrelate data using eigendecomposition of covariance matrix
® Can combine PCs to reconstruct data

* Issues with PCA and alternatives
® Nonlinearity and if variance is not discriminative

® [ DA, nonlinear techniques like tSNE



