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Key points: 

• Intuition for PCA and feature projection and difference to 
feature selection


• Issues with PCA and alternatives



Feature Projection: Projecting High-Dimensional Data
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Eigenfaces: Principal Component 
Analysis on face images to get “basis 

vectors” of face image space
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Navarrete, P.; Ruiz-Del-Solar, J. Int. J. Patt. Recogn. Artif. Intell. 
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Feature Projection: Intuition for PCA
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orientation spread

• largest eigenvalue points in direction of highest variance
• eigenvectors are orthogonal

eigenvalues

⌃V = V L
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eigenvectors
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Caveats With PCA
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Non-linearity Higher variance feature is not more 
discriminative

PCA

• Data is linearly uncorrelated
• But there is still a non-linear dependence
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Other Members of the Dimensionality Reduction Zoo
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Linear Discriminant Analysis 
(LDA, Supervised Technique)

t-distributed stochastic neighbor 
embedding (t-SNE)

• math like for PCA
• maximizing component axes 

for class separation

• Non-linear
• Conditional probabilities that 

represent similarities
• Sensitive to perplexity (number of 

close neighbors) 

High Dimensional Low Dimensional

Gaussian similarity student-t similarity

minimize 
mismatch
between 

conditional 
distributions

Wattenberg, et al., "How to Use t-SNE Effectively", Distill, 
2016.
Talk by Laurens van der Maaten: https://bit.ly/2RaFJIw



Feature Projection
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Key points: 

• Intuition for PCA and feature projection


• Uncorrelate data using eigendecomposition of covariance matrix 

• Can combine PCs to reconstruct data 

• Issues with PCA and alternatives


• Nonlinearity and if variance is not discriminative  

• LDA, nonlinear techniques like tSNE


