Structural Analysis
Part Ill - X-ray tools

Session 3

X-ray scattering and diffraction



Intermezzo: Fourier Transform



Alternative approach: Fourier Transform (Infrared) Spectrometer)

Not a dispersive measurement but based on interferometry

Use all wavelength at the same time

Manipulation in x - cm (real space) to get information in wave numbers x* — cm™ (frequencies)

Measure interferogram, Fourier transform into spectrum




Measuring an interferogram
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Prof. Emsley part of this class, 5 weeks ago!

Pulsed FTNMR Spectroscopy
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Principle idea




Mathematical description

* The principle idea of the Fourier analysis / transformation is that any function can be represented
by an (infinite) series of harmonic functions.

* The Fourier transform decomposes a function into its constituent frequencies.

Thus we can write

provided that
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Examples

Square functions

Gauss function




Fourier transform of round aperture and airy pattern

Experiment: Diffraction pattern of circular Theory: Fourier transform of cylinder
aperture, Airy pattern or “top-hat” function
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Diffraction as Fourier transform:
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The double slit

d > x=x/d = tan(@) = sin() = sin(a')

As=a-sin(d)=a-x/d
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Image source: wikipedia
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Fourier relationships — some examples
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From Session 1
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Thomson scattering from a single electron

E-field
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Atomic scattering factors and refractive index
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Definition of the scattering vector Q
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k| = [K'| = 2n/A
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Scattering from an electron cloud
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Now full cross section / atomic scattering factors

(a)

15

10 g

1 1 I

l 1 1 l 1 1 1

o 1 1
0

0.4

sin 0/x [A™"]

(b)

— 5keV

10
20

— 40

0.6 0.8 1

hv

18



Atomic scattering factors again
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From Session 2
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The Nobel Prize in Physics 1915
Bragg scattering

Bragg
A=2dsin0

archive srchive
Sir William Henry William Lawrence

Bragg Bragg
Prize share: 1/2 Prize share: 1/2
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Characteristic signals from different — chemically identical — samples

Si02 Glass

4000 Quartz

Cristobalite
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Lattice planes

Bragg
A=2dsin6

(10) planes
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(21) planes

Find the intercepts of the plane with the respective crystal axis
Take the reciprocal of these numbers, reduce to smallest integer



Miller indices

(110) (111) o Ik

W

(200)

y
§
g

L=/
i
y

- Find the intercepts of the plane with the respective crystal axis
- Take the reciprocal of these numbers, reduce to smallest integer

a/l

24



Exercise: Identify lattice planes




More on diffraction of single crystals
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For each lattice a reciprocal lattice can be defined
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The Nobel Prize in Physics 1914

Bargg and Laue conditions

(a) Equivalence of Bragg and Laue
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The Ewald Sphere
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A Laue diffraction experiment
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A diffraction experiment
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A diffraction experiment
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A diffraction experiment
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A diffraction experiment

(@) R4

beamstop
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Laue method

‘pink’ beam

area detector

Detector




More on Bragg peaks
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A crystal is defined by ist lattice and basis

(a) primitive (b) non-primitive
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The structure factor
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The structure factor
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Allowed and forbidden reflections
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Friedels law
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The phase problem
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@ crystal

Solving a crystal structure ‘
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A few examples and case studies
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Remember last week example for diffaction of lysozyme crystal

Lysozym (Protein, Immunsystem) Experiment at the Swiss Light Source

Stochiometric formula
C125H196N4003652 FASTCAM Mini AX100 type 540K-C-16.. , .1;1;:‘)(: fps

Date : 201714i4

Structure
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Each X-ray source allows characteristic experiments. ,,Output” varies by >20 orders
of magnitude
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X-ray diffraction patterns from micro (nano) crystals Science 337, page 363 (2012)

High-Resolution Protein Structure Liquid Jet

Determination by Serial
Femtosecond Crystallography ~-

Sébastien Boutet,™* Lukas Lomb,?* Garth ). Williams,* Thomas R. M. Barends,>* Andrew Aquila,*
R. Bruce Doak,” Uwe Weierstall,” Daniel P. DePonte,* Jan Steinbrener,>> Robert L. Shoeman,??
Marc Messerschmidt,® Anton Barty,* Thomas A. White,* Stephan Kassemeyer,> Richard A. Kirian,’
M. Marvin Seibert,” Paul A. Montanez, Chris Kenney,® Ryan Herbst,® Philip Hart, Jack Pines,®
Gunther Haller,® Sol M. Gruner,”® Hugh T. Philipp,” Mark W. Tate,” Marianne Hromalik,’

Lucas ]. Koerner,*° Niels van Bakel,** John Morse,*? Wilfred Ghonsalves,* David Arnlund,*3
Michael J. Bogan,14 Carl Caleman,* Raimund Fromme,** Christina Y. Hampton,14 Mark S. Hunter,®

Interaction Point
Linda C. Johansson,*® Gergely Katona,*® Christopher Kupitz,15 Mengning Liang,4 Andrew V. Martin,*

(10 ur focus) §
Karol Nass,® Lars Redecke,*’*® Francesco Stellato,* Nicusor Timneanu,*’ Dingjie Wang,5 Be lenses

Nadia A. Zatsepin,5 Donald Schafer, James Defever," Richard Neutze,™> Petra Fromme,**
John C. H. Spence,® Henry N. Chapman,**¢ Ilme Schlichting®> CSPAD detector Undulator
(z=93 mm) (420 m upstream)
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Time-resolved x-ray diffraction

nature

Letter | Published: 09 July 2014
Serial time-resolved crystallography of
photosystem Il using a femtosecond X-

ray laser

Christopher Kupitz, Shibom Basuy, [...] Petra Fro

Nature 513, 261-265(2014) | Cite this article
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Recent results from SwissFEL

Millisecond

Microseconds

Article

Femtosecond-to-millisecond structural
changesinalight-drivensodium pump

https://doi.org/10.1038/s41586-020-2307-8
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™ Check for updates

Petr Skopintsev', David Ehrenberg®*, Tobias Weinert'”, Daniel James', Rajiv K. Kar®,

Philip J. M. Johnson*, Dmitry Ozerov®, Antonia Furrer’, Isabelle Martiel®, Florian Dworkowski®,
Karol Nass®’, Gregor Knopp’, Claudio Cirelli’, Christopher Arrell®, Dardan Gashi'’,

Sandra Mous®, Maximilian Wranik', Thomas Gruhl', Demet Kekilli", Steffen Briinle',

Xavier Deupi'*®, Gebhard F. X. Schertler'", Roger M. Benoit'*?, Valerie Panneels',

Przemyslaw Nogly®, Igor Schapiro®, Christopher Milne’, Joachim Heberle® &

Jérg Standfuss'™

Light-driven sodium pumps actively transport small cations across cellular
membranes’. These pumps are used by microorganisms to convert lightinto
membrane potential and have become useful optogenetic tools with applicationsin
neuroscience. Although the resting state structures of the prototypical sodium pump
Krokinobacter eikastus rhodopsin 2 (KR2) have been solved®?, itis unclear how
structural alterations over time allow sodium to be translocated against a
concentration gradient. Here, using the Swiss X-ray Free Electron Laser*, we have
collected serial crystallographic data at ten pump-probe delays from femtoseconds
to milliseconds. High-resolution structural snapshots throughout the KR2 photocycle
show how retinal isomerization is completed on the femtosecond timescale and
changes the local structure of the binding pocketin the early nanoseconds.
Subsequent rearrangements and deprotonation of the retinal Schiff base open an
electrostatic gate in microseconds. Structural and spectroscopic data, in combination
with quantum chemical calculations, indicate that asodiumion binds transiently
close to the retinal within one millisecond. In the last structural intermediate, at 20
milliseconds after activation, we identified a potential second sodium-binding site
closeto the extracellular exit. These results provide direct molecular insightinto the
dynamics of active cation transport across biological membranes.

KR2 resting state




The end
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