

CH-310 – Dynamics and Kinetics: Final Exam

January 17th, 2025

Name:

65 points in total, 3 hours to complete the exam.

Please note that this is not an open-book exam. You are allowed to use a non-programmable calculator as well as a formula sheet, A5, single-sided, and handwritten. The calculator and formula sheet will be checked during the exam. Computers or other electronic devices are not permitted. Do not write with a pencil or an erasable pen. Please have your Photo ID or Camipro Card ready.

$$\int_0^{\infty} e^{-ax^2} dx = \frac{\sqrt{\pi}}{2\sqrt{a}} \quad (a > 0)$$

$$\int_0^{\infty} x e^{-ax^2} dx = \frac{1}{2a} \quad (a > 0)$$

$$\int_0^{\infty} x^2 e^{-ax^2} dx = \frac{\sqrt{\pi}}{4a^{\frac{3}{2}}} \quad (a > 0)$$

$$\int_0^{\infty} x^{2n} e^{-ax^2} dx = \frac{(2n)! \sqrt{\pi}}{2^{2n+1} n! a^{n+\frac{1}{2}}} \quad (a > 0)$$

$$\int_0^{\infty} x^{2n+1} e^{-ax^2} dx = \frac{n!}{2a^{n+1}} \quad (a > 0)$$

$$\Gamma(z+1) = \int_0^{\infty} x^z e^{-x} dx$$

$$\Gamma(z+1) = z\Gamma(z), \text{ for any real } z$$

$$\Gamma(n+1) = n!, \text{ for integer } n = 0, 1, 2, \dots$$

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$

$$\cos(2\alpha) = \cos^2(\alpha) - \sin^2(\alpha)$$

$$\sin(2\alpha) = 2 \sin(\alpha) \cos(\alpha)$$

$$\cos^2\left(\frac{\alpha}{2}\right) = \frac{1+\cos(\alpha)}{2}, \quad \sin^2\left(\frac{\alpha}{2}\right) = \frac{1-\cos(\alpha)}{2}$$

$$\int \frac{1}{\sqrt{r^2 - x^2}} dx = \arcsin\left(\frac{x}{r}\right) + C$$

$$\arccos(-x) = \pi - \arccos(x)$$

$$\arcsin(x) = \pi/2 - \arccos(x)$$

$$\cos(\arcsin(x)) = \sin(\arccos(x)) = \sqrt{1 - x^2}$$

$$\text{Coulomb's law} \quad \mathbf{F}_1 = \frac{q_1 q_2}{4\pi\epsilon_0} \frac{\mathbf{r}_{12}}{|\mathbf{r}_{12}|^2}$$

$$k_B = 1.38 \cdot 10^{-23} \text{ J} \cdot \text{K}^{-1}$$

$$R = 8.31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$$

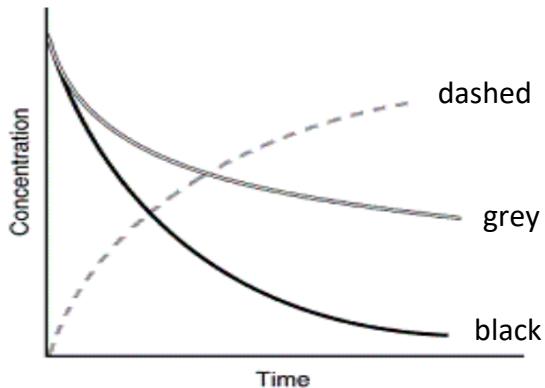
$$N_A = 6.02 \cdot 10^{23} \text{ mol}^{-1}$$

$$e = 1.60 \cdot 10^{-19} \text{ C}$$

$$h = 6.63 \cdot 10^{-34} \text{ J} \cdot \text{s}$$

$$\epsilon_0 = 8.85 \cdot 10^{-12} \text{ F} \cdot \text{m}^{-1}$$

$$c = 3.00 \cdot 10^8 \text{ m} \cdot \text{s}^{-1}$$


$$1 \text{ amu} = 1.66 \cdot 10^{-24} \text{ g}$$

Problem 1: Multiple choice and short answers (10 points in total)

(each question per 1 point)

1. The following graph shows the kinetics curves for the reaction of oxygen with hydrogen to form water: $O_2(g) + 2H_2(g) \rightarrow 2 H_2O(g)$ for all species. Which curve corresponds to hydrogen?

- a) the dashed curve
- b) the grey curve
- c) the black curve
- d) either the gray or the black curve

Shortly justify your answer.

2. For the reaction $A + 3B \rightarrow 2C$, how does the rate of consumption of B compare to the rate of production of C?

- a) the rate of consumption of B is 1/2 the rate of production of C
- b) the rate of consumption of B is 3/2 the rate of production of C
- c) the rate of consumption of B is 2/3 the rate of production of C
- d) the rate of consumption of B is 1/3 the rate of production of C

Shortly justify your answer.

3. The half-life of a first-order reaction is 0.1 s. What is the rate constant?

4. What is the steric factor? What does a steric factor smaller than 1 mean?

5. What does the Lindemann mechanism propose to be necessary for a successful reaction? Write down the simplest reaction scheme as well.

6. What is the characteristic shift in Doppler broadening? Shortly explain.

7. What is an autocatalytic reaction? Write down the reaction scheme of the simplest autocatalytic reaction.

8. Which plot can you use to determine the order of a reaction? Sketch on the same axes the graph for a first-, second- and third-order reaction and label the axes.

9. Derive an expression for the time evolution $[A]_t$ for an elementary reaction of second order: $2A \rightarrow B$.

10. Shortly explain the concept of Förster resonance energy transfer, including how the transfer efficiency changes with distance.

Problem 2: Kinetics of reactions (15 points in total)

1. We examine the elementary reactions:

Here, we assume that non-reactive collision partners are always present in excess.

For each of these reactions, provide the following information:

- (i) The molecularity,
- (ii) The differential rate equations for all species of the reaction and the concentration dependence of the reaction rate,
- (iii) The reaction order with respect to all substances in the reaction equation and the overall reaction order.

(4 points)

2. In an argon atmosphere, is reaction R1 or R4 more likely to occur? Why?

(1 point)


Consider the thermal decomposition of gaseous OCIO into atomic Cl and molecular O_2 , including the reverse reaction as described by the reaction scheme:

The mechanism of this reaction is described by two sequential elementary reactions (with reverse reactions):

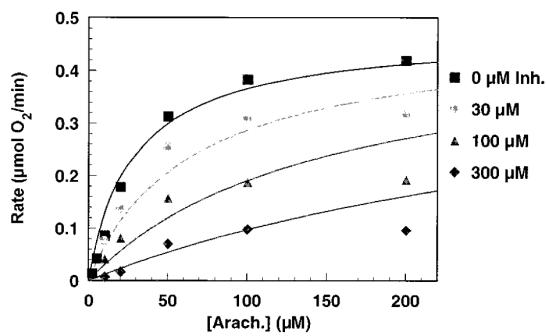
and

3. Write the differential rate equations for all substances involved in the reaction. Then simplify the rate equations using the assumption that $v_7 \gg v_{-7}$ and $v_8 \gg v_{-8}$.

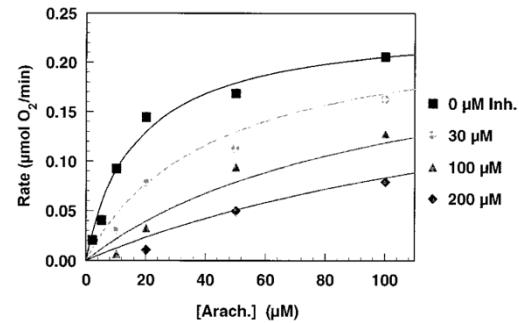
(3 points)

4. Using the assumptions made in Task 3, derive an expression for concentration $[Cl]$ as a function of time and initial concentration $[OCIO]_0$. Assume that at $t = 0$, only the reactant OCIO is present.

(7 points)

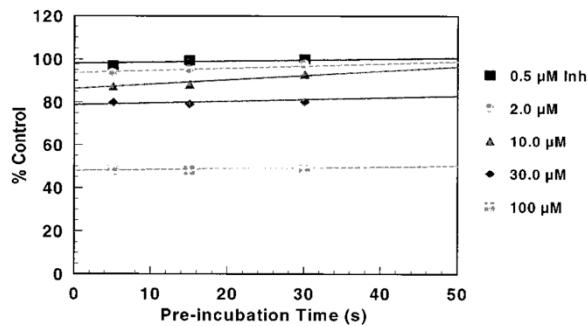

Problem 3: Enzyme kinetics (12 points in total)

Cyclo-oxygenase (COX) enzymes are expressed at sites of inflammation. COXs serve as targets for anti-inflammation drugs, such as ibuprofen or aspirin. Studies with a different inhibitor – valdecoxib – were carried out.


In Fig. 1, reaction rates v (expressed by consumption of oxygen) for two isoforms of the enzyme (COX-1 and COX-2) are shown as a function of substrate concentration.

In Fig. 2, enzymatic activity was measured as a function of pre-incubation time. It was found that the Michaelis constant K_M is 35 μM for COX-1 and 20 μM for COX-2.

(a) COX-1



(b) COX-2

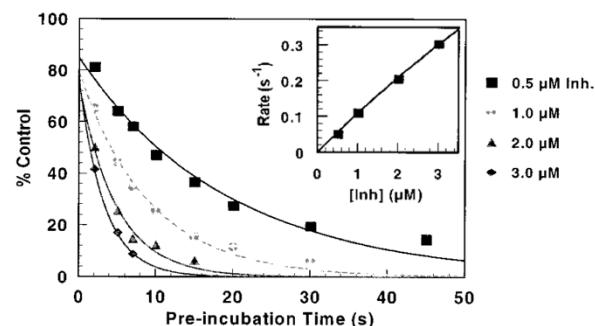


Figure 1: Direct plots of the reaction rate as a function of the substrate (arachidonate) concentration. Different curves correspond to different inhibitor concentrations.

(a) COX-1

(b) COX-2

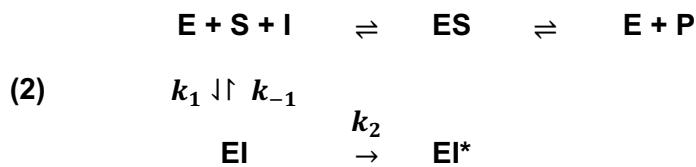
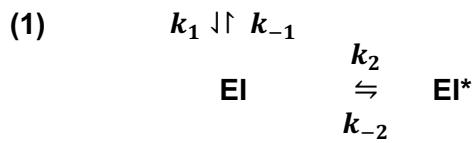
Figure 2: Time-dependent inhibition by valdecoxib. Enzyme and inhibitor (Inh) were mixed and incubated for the indicated time, before adding 100 μM of arachidonate (substrate). The activity is expressed relative to a control sample without inhibitor. The inset in (b) shows the dependence of the rate constant of the decay on the inhibitor concentration.

COX-1

COX-2

Steady-state K_I (μM)	24.0 ± 5.5	20.0 ± 3.1
Time-dependent K_I (μM)	-	35.0 ± 6.1

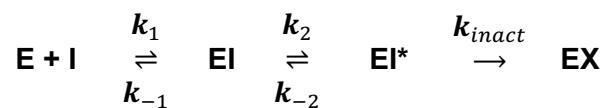
Table 1: Kinetic constants for inhibition of COX-1 and COX-2 by valdecoxib.

1. What type of inhibition is observed for both COX-1 and COX-2? Shortly explain your reasoning. What inhibitor concentration is needed to inactivate 95% of COX-2 after 10 seconds of incubation time? The initial substrate concentration is 100 μM .

Hint: Activity decays exponentially with respect to the incubation time, as seen in Fig. 2b, following the law $A(t) = A_0 e^{-kt}$.

(3 points)

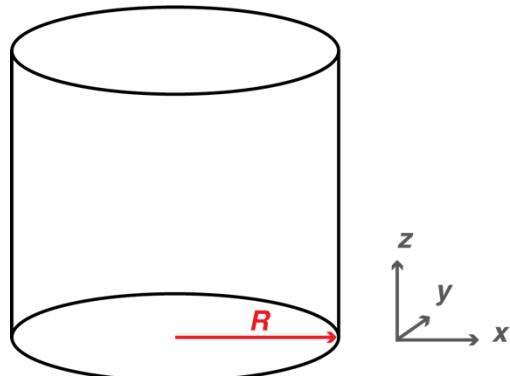

2. Two possible mechanisms for inhibition were suggested. Here, EI^* marks the stable enzyme-inhibitor complex. Assign the two mechanisms below to COX-1 and COX-2 based on the results shown in Fig. 2. Explain your reasoning.

(3 points)

3. The mechanism of enzyme inhibition is in fact best explained by a three-step scheme with an unstable EI enzyme-inhibitor complex, a stable modification EI*, and a fully inactivated enzyme EX. Based on this, calculate the rate of enzyme inactivation expressed as a function of available enzyme concentration [E] and inhibitor concentration [I]. Explain the approximations you are using and why it is legitimate to do so.

What will be the concentration of inactivated enzyme [EX] at the start of the reaction and after reaching equilibrium?

(5 points)


4. Simplify the formula for the rate of inactivation from Task 3 for the case of an irreversible step between stable and unstable enzyme-inhibitor complex.

(1 point)

Problem 4: Kinetic theory of gases. (11 points in total)

1. Consider an ideal gas confined in a cylindrical container, as shown in the sketch below. Derive the speed distribution $F(u_z)du_z$ along the z axis of the container.

Hint: Derive the three-dimensional distribution of the velocities from its one-dimensional form. Then perform a suitable coordinate transformation, considering the vessel. Write the transformation down (no need to write the Jacobi matrix).

(7 points)

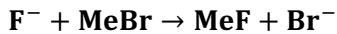
**2. How will the distribution $F(u_z)du_z$ from Task 1 change for $R \rightarrow 0$ and $R \rightarrow +\infty$?
What conclusions can you draw from this?**

(4 points)

Problem 5: Electron harpooning (8 points in total)

1. Explain the harpoon mechanism and how it relates to the steric factor.

(2 points)


2. Octamethylcalix[4]pyrrole (omC4P) behaves like an alkali metal and is able to initiate electron harpooning to bind halogens, such as chlorine. The electron affinity of Cl is 3.7 eV. From theory, the harpooning should occur at a distance of 523 pm. What is the ionization energy of omC4P? Simulations of the potential energy surface suggest an energy balance ΔE that is shifted by -0.75 eV. Calculate the harpooning distance under these conditions. Sketch the dependence of the potential energy of neutral and charged reactants (omC4P + Cl and omC4P⁺ + Cl⁻) on the distance between them. Indicate, where you can find the harpooning distance and activation potential in the plot.

(6 points)

Problem 6: Transition state theory (9 points total)

1. We use transition-state theory (TST) for the nucleophilic substitution reaction:

For the following question, you can assume the methyl moiety to be one large quasi-particle. The most relevant bond for the reactants is the bond between the methyl and bromide. Its length is 178 pm, with a vibrational wave number of $\tilde{\nu} = 1250 \text{ cm}^{-1}$. Assume the transition state to be linear across the Me-F bond, with the Me-F bond length in the transition state being 140 pm and the Me-Br bond length in the transition state being 180 pm, with vibrational wave numbers $\tilde{\nu}_{ss} = 500 \text{ cm}^{-1}$ and bending vibrations: $\tilde{\nu}_{bend} = 400 \text{ cm}^{-1}$ with a twofold degeneracy.

The molecular weight of MeBr is 94.94 g/mol, with the methyl moiety being 15.04 g/mol. The atomic mass of fluorine is 19.00 g/mol. The barrier height is $E_{QM} = 30 \text{ kJ/mol}$ (difference between zero-point energies of the transition state and reactants).

Determine the rate constant at 300 K.

(7 points)

Which assumptions do we make in transition state theory?

(2 points)

