Analyse quantitative

CHRISTOPHE ROUSSEL
[Année 2024-2025]



Approche statistique

I Introduction

L'analyse quantitative requiert le traitement des données analytiques par une approche
statistique. La statistique est la science qui a pour objet de recueillir un ensemble de données
numériques relatives a tel ou tel phénomene aléatoire et d'exploiter cette information pour

établir toutes les relations de causalité par l'analyse pour son interprétation.

Un phénoméne aléatoire est un phénomeéne comportant des variables aléatoires, c'est a dire
des variables liées au hasard et dont les valeurs ne peuvent, en conséquence, étre connues
d'avance comme par exemple le nombre de points marqués par un dé lorsqu’on le lance.

Dans le concept de la statistique, on distingue :

La statistique descriptive, ou statistique de constatation, qui concerne les tableaux de

données, tableaux relatifs a des inventaires, les graphiques, des recensements...

La méthode statistique qui concerne l'ensemble des procédés et méthodes utilisées pour

l'analyse et l'interprétation des données.

1.1 Domaine d’application

Le domaine d'utilisation de la statistique est tellement étendu qu'il ne nous est impossible de
citer toutes ses applications. Nous ne donnerons ici seulement que quelques exemples tels
que : les domaines de recherche biologique, médicale, spatiale ; le controle de fabrication
dans l'industrie ; les sondages d'opinion, enquétes de marché, assurances; la recherche
opérationnelle ; les études de conjoncture, économiques...

Dans tous les cas de figure, on doit définir un ensemble, ou référentiel statistique, composé

d'é¢léments ou unités statistiques est appelé "population" ou "univers".



1.2 Caractéres qualitatifs et quantitatifs, continus et discrets

1.2.1 Les caracteres qualitatifs et quantitatifs

Les caractéres quantitatifs sont ceux auxquels on peut attribuer une valeur numérique. En
revanche, les caractéres qualitatifs sont ceux auxquels on ne peut seulement associer qu’une
valeur arbitraire, une indexation. Par exemple une taille est un caractére quantitatif alors
qu’une couleur est un caractere qualitatif.

Un ensemble ordonné de valeurs de caractere quantitatif constitue une suite ou série
statistique. Un ensemble ordonné conventionnellement (indexation) de caractére qualitatif
constitue une nomenclature.

Dans le cadre de la convention fixée pour l'indexation (régle normalisée ou prescription
légale), la nomenclature est parfois désignée sous le nom de code comme par exemple le code

des départements applicables a I'immatriculation des automobiles francaises.

1.2.2 Les caractéres continus et discrets

Un caractére continu est un caractére qui peut prendre n'importe quelle valeur numérique
comme par exemple une masse, une surface, un prix...

Un caractere discret (ou discontinu) est un caractére qui ne peut prendre que certaines valeurs
(en général, des nombres entiers) comme par exemple le nombre de personnes constituant une
famille.

Dans le cas d'un caractére discret, I'interpolation est dénuée de sens. Trés souvent on se sert de
la représentation graphique pour illustrer les résultats. Les histogrammes et les distributions
s'averent €tre des outils performants, clairs dans 1'énonciation et compréhensifs vis-a-vis du
lecteur. Les perfectionnements considérables des outils informatiques ont contribués a étendre
les possibilités de la statistique. De nos jours, avec les nombreux logiciels a disposition, la
représentation graphique des résultats ne pose plus guére de problémes et l'avantage est
évident; l'appréciation instantanée de la qualité du travail en tirant les conclusions qui
s'imposent. Par exemple, une courbe symétrique provoque aupres de l'expérimentateur une
satisfaction personnelle non cachée; qu'elle soit justifiée, reste encore a prouver. Les
distributions a plusieurs sommets sont a considérer avec tout le respect que cela demande, il

faut méditer sur le résultat et s'intéresser a d'éventuelles anomalies qui font surface.



I1 Les sources d’erreur et leurs quantifications

1.1 Introduction

Les sources d’erreur qui entachent la précision d’un résultat analytique sont de trois sortes :

justesse (erreurs systématiques)
Qualité d'analyse oc { précision (erreurs aléatoire)
sensibilité de la méthode analytique

Nous allons a présent, a travers des exemples, s’intéresser a ces différentes sources d’erreur
ainsi qu’a leur quantification afin d’analyser aux mieux un résultat analytique. Chaque fois
que I'on fait une mesure, on exprime par une valeur numérique x; I'estimation d'une grandeur,
dont la valeur réelle, souvent inconnue, est xy. La détermination est d'autant plus juste que la
différence x; - xp est petite. Dans la plupart des cas, on effectue plusieurs mesures et 1’on
définit une moyenne. Si la moyenne la grandeur X est calculée a partir de N valeurs de x tel
que N < 20 alors elle sera notée : Xx. Si par contre cette moyenne est calculée a partir de N

valeurs de x tel que N > 20, alors elle sera notée : u_. Quel que soit la valeur de N, on

associe a la moyenne un écart-type qui se notera sy pour NV < 20 et o, pour /N > 20. Les calculs
des moyennes et écart-types seront présentés au paragraphe III "les grandeurs statistiques”.

Dés lors, la valeur vraie est donc encadrée de la maniére suivante :

X—=8, <X <X+S, (N<20) ou u —o, <X <u —o, (N>20)

La qualit¢ d’analyse est d’autant meilleure que l’intervalle autour de Xo est petit. Les

différentes erreurs qui entachent la qualité d’analyse sont décrites ci-apres.

I1.2 Justesse : erreur systématique

La justesse ou encore erreur systématique en francais est décrite par les termes "accuracy" en
anglais et "systematische fehler" en allemand. Les erreurs systématiques sont caractérisées par
un écart a la valeur vraie Xo soit positif, soit négatif, elles e agissent toujours dans le méme
sens et affectent 'exactitude de la méthode. Cet écart a la valeur vrai peut étre qualifié par

rapport a une valeur précise d’un groupe de données ou par rapport a la moyenne du groupe



de données. On peut donner comme exemple le mauvais calibrage d'une burette, un décalage
de longueurs d'ondes d’un spectrophotomeétre, un mauvais tarage de balance etc... Elles
peuvent étre corrigées lors de la détermination du facteur de décalibrage. Si on peut quantifier
cette erreur, par exemple au moyen d'une détermination a partir d'un étalon, le résultat doit

étre corrigé. Parfois, un facteur correctif est indiqué dans les méthodes d'analyse.

11.2.1 Ecart d’une valeur précise d’un groupe de donnée par rapport a la valeur vraie

Si on mesure une valeur x; pour 1I’échantillon i dont la valeur réelle est xy on peut alors donner
I’erreur systématique absolue Ax; ou relative E,x; (%) sur la mesure de 1’échantillon i :
AX
(%)= % % et Ex(x)=2500) 100
X

11.2.2 Ecart d’une moyenne d’un groupe de données par rapport a la valeur vraie

Dans le cas ou la valeur trouvée pour la mesure de 1’échantillon i est une moyenne déterminée

a partir de NV analyses : x (N <20) ou g, (N> 20) on pourra la comparer avec la valeur vraie

X0:
AX(X% ) =X =% ou Au, (%)= p, =%

|AX(%,)|

E X (% )ITXNO ou E u,(%)=

| A, (%)) 100
X

11.2.3 Ecart d’une valeur précise d’un groupe de donnée par rapport @ moyenne du groupe de

données

Dans bien des cas en chimie analytique, on ne connait pas la valeur vraie x9 d’'une mesure.
Dans ce cas il faut approximer la valeur vraie xy par la moyenne des valeurs obtenues sur

Iéchantillon i mesuré V fois (X (N <20) ou g, (N> 20)). Dés lors, on ne peut que comparer

une mesure x; par rapport a la moyenne X :

Ax; (7): X =X ou Ax (4 ) =% — 4



_ ‘Axi_(i)‘

X

AX;
x100 ou Erxi(ﬂx)zﬂxloo

X

E.x (X)

On peut calculer une erreur expérimentale moyenne d sur /N analyses comme :

i=N
§|Xi _lux|

i=N
_ Z|Xi‘7|
d ==— ou d =
N N

Ici, on mesure en fait la dispersion de toutes les mesures par rapport a la moyenne des

mesures. On visualise alors une erreur autour de la moyenne X ou g qui caractérise la

précision de la mesure. Cette approche simpliste doit étre traitée d’un point de vue statistique,

par le calcul de I’écart-type.

I1.3 Précision : erreur aléatoire

La précision ou encore erreur aléatoire en frangais est décrite par les termes "precision ou
standard deviation" en anglais et "zufallsfehler" en allemand. La non reproductibilité des
résultats est souvent due a un grand nombre de petites sources d'erreur qui peuvent jouer dans
les deux sens, positif et négatif (erreurs aléatoires). Elles trouvent leur nature a la fois dans la
méthode analytique et dans l'appareil de mesure lui-méme. Elles affectent la précision de la
mesure. On peut alors utiliser les résultats des mesures pour fixer la limite de confiance au

moyen des méthodes statistiques.

11.3.1 Définitions

L'erreur aléatoire ou fortuite se produit tantdt du coté positif, tantét du coté négatif par
rapport a la valeur moyenne. Pour un grand nombre de mesures, la somme algébrique de ses
valeurs successives est nulle. Les erreurs aléatoires obéissent a la loi de Laplace-Gauss (loi
normale). Toute erreur est de par nature fonction de la méthode d'analyse choisie, des
conditions de travail, de l'habilet¢ de I'expérimentateur, de I'homogénéit¢ du produit a
analyser. La densité de probabilité f(X) de la loi normale est :

,1[@]2
g 2 o

ou A est une constante de pondération

A
f(x)_—axﬂ



Dont la représentation graphique est la suivante :
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Figure 1. densité de probabilité de la loi normale

11.3.2 Exemple 1 :

On a distribué un échantillon a analyser dans 12 laboratoires. Voici les valeurs fournies par les

12 laboratoires concernant le pourcentage d’aluminium déterminé :

HOR =" H T AR

: 0,016 5 0,015 ; 0,017 ; 0,016 5 0,019
: 0,017 ;0,016 ; 0,016 ; 0,015 ; 0,018
: 0,015 0,014 ; 0,014 ; 0,014 ; 0,015
: 0,011 5 0,007 5 0,008 ; 0,010 ; 0,009
: 0,011 5 0,011 5 0,013 ; 0,012 ; 0,012
: 0,012 ;0,014 ;0,013 ; 0,013 5 0,015
: 0,011 5 0,009 ; 0,012 ; 0,010 ; 0,012
: 0,011 5 0,011 5 0,012 ; 0,014 ; 0,013
: 0,012 ;0,014 ;0,015 ; 0,015 5 0,014
: 0,015 0,018 ; 0,016 ; 0,017 ; 0,016
: 0,015 0,014 ; 0,013 ; 0,014 ; 0,014
: 0,012 ;0,014 5 0,012 ; 0,013 ; 0,012
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Figure 2. Histogramme d’analyse d’aluminium

L’ensemble de ces valeurs permettent de tracer un histogramme représentant le nombre

d’événements, la fréquence f en fonction des valeurs trouvées. L’enveloppe de cet




histogramme donne 1’image d’une distribution, dont I’approximation est une courbe de Gauss.

Le tableau ci-dessous retrace les différentes déterminations :

1000x % Al | 7 8 9

10

11

12

13

14

15

16

17

18

19

fréquence 1 1 2

10

11

A T’aide de ces résultats, on a fait une régression gaussienne en fonction de la concentration C

(1000x % Al) :

f (C ) —972x efo,oszs(cfls,en)2

a=9,72+0,87
b =0,0825+0,017
U =13,611+0,256
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Figure 3. régression gaussienne
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I1.4 Résumé

Voici un schéma synoptique qui illustre ces concepts :

@ ©) ® O,

° o ° °
° ° ° °
[ [ [ ] [ J
° o ° °
[ ° ° °
° o ° °
[ ] [ ] ° [}
® o [} [ J
X ou . =x X ou =X X ou u, #x X ou i, #xg

Cas n°l : juste et peu précis
Cas n°2 : juste et précis
Cas n°3 : pas juste et précis

Cas n°4 : pas juste et peu précis

Dans ces cas de figure, le meilleur résultat est 2 et le moins bon est 4.

I1I Les grandeurs statistiques

Dans cette partie, nous allons décrire les grandeurs statistiques en termes de calcul : les
différentes moyennes, 1’écart-type, I’erreur sur la moyenne, 1’incertitude sur la moyenne, ainsi

que la sensibilité.

I11.1 Movenne arithmétique

111.1.1 Définitions

La moyenne arithmétique est la plus couramment utilisée. Pour le calcul de la moyenne, il est
inutile de dresser la série dans un ordre croissant ou décroissant, les termes sont additionnés

dans un ordre quelconque. Deux propriétés caractérisent la moyenne : (i) la somme algébrique



des écarts de chaque valeur de la série par rapport a la moyenne est nulle ; (ii) la moyenne
arithmétique est la grandeur pour laquelle la somme des carrés des écarts par rapport a la

moyenne est minimum.

111.1.2 Calcul de la moyenne arithmétigue

La moyenne arithmétique désignée par x (/N < 20) ou g _ (N> 20) se calcule de la manicre
suivante :

=N
X.

Xt Xt Xt Xy T

X ou
Hy N N

La moyenne arithmétique est une bonne approximation d'un ensemble d'une certaine
population. C'est la valeur la plus rapprochée de la moyenne idéale, souvent inconnue. La

moyenne reste une grandeur estimée dans la plupart des cas.

I11.2 Ecart-type

111.2.1 Définitions

L'écart-type symbolisé par s (NV < 20) ou & (IV > 20) désigne l'erreur aléatoire ou fortuite d’une
série de mesures d’'un méme échantillon. En chimie analytique cette grandeur nous permet de
nous faire une idée sur la méthode de travail utilisée. C'est donc s (IV < 20) ou ¢ (N > 20) qui
fait foi quand il faudra se prononcer sur la qualité de la méthode d'analyse utilisée. Plus s sera
petit, meilleur sera la méthode choisie. Il va de soi, qu'en répétant les mesures sur le méme
échantillon, il faut s'attendre a des fluctuations quant a la répétitivit¢ de s. Cela est
principalement di au jeu du hasard parfaitement assimilable a l'analyse quantitative. Ce n'est
qu'en exerg¢ant un nombre infini de mesures sur un échantillon que 1'on pourra se rapprocher
de la vraie valeur de s qui devient alors ¢ car N >> 20. Comme dans la pratique, on ne peut
pas se permettre d’analyser chaque échantillon une vingtaine de fois, nous devons nous
contenter d'un nombre restreint de manipulations. Toute notre information est basée sur un
¢chantillonnage relativement petit. La question qui se pose alors est la suivante : est-il

possible de se prononcer fermement sur la qualité de la mesure et sur ses erreurs?



La réponse est affirmative et I’on peut se prononcer avec une certaine aisance sur le résultat
méme avec un nombre limité de mesures et d’échantillons. Dés lors, on doit introduire la
notion de niveau de confiance et de degré d'incertitude. La valeur déterminée sera alors
comprise entre une valeur d'incertitude inférieure et supérieure. Ce degré d'incertitude est de
lui-méme fonction du nombre de degrés de libert¢ du systéme. Pour ce faire, on utilise les

tables de distribution des lois de Student, test-F..., selon le cas.

111.2.2 Ecart-type d’un échantillon et d’une population

Les points mesurés sont groupés autour d'une valeur moyenne définie par la loi de gauss. Pour

calculer I’écart-type s (/V < 20) ou & (N > 20) on utilise :

Avec N-1 : le nombre de degré de liberté du systéme pour (V < 20)

111.2.3 Ecart-type relatif, variance et coefficient de variation

Le carré de ’écart type s ou 6” s appelle la variance. On peut aussi a partir de ces grandeurs
définir un écart-type relatif ("relative standard deviation" en anglais) s, (NV < 20) ou o, (V>

20) et le coefficient de variation CV :

s, =2 ou o, =% et CV, =2x100 ou CV, =Zxx100
X 1, X 1,

Attention, ces grandeurs ainsi définies sont adimensionnelles, ce qui n’est pas le cas de

I’écart-type.

I11.3 Groupement de données

Lorsque les analyses sont longues, on peut rarement faire plus de 20 mesures sur un
échantillon, ce qui est colteux en temps. Dans ce cas, les données de chaque échantillon

semblable, analysé avec un nombre minimum de mesures, peuvent étre groupées de manicre a
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obtenir une estimation de s qui soit meilleure que celle de chaque échantillon pris
individuellement. Il faut bien sur admettre que les erreurs aléatoire sur chaque échantillon

sont les mémes. On définit alors une moyenne et un écart-type groupés.

111.3.1 moyenne groupée

La moyenne groupée revient a calculer la moyenne des moyennes de chaque échantillon.
Considérons a présent que notre échantillon de départ est subdivisé en échantillon 1, 2 et 3.

Pour chaque échantillon, on aura procédé a plusieurs essais dont les moyennes sont X, X,,X,;.

La moyenne groupée x sera alors :

groupé

X X, X

X =
roupé
group! 3

Pour avoir une idée de la dispersion des résultats, on pourra calculer un écart-type sur la

moyenne groupée :

— 2 —_ 2 — 2
< _ (Xl - Xgroupé ) + (XZ - Xgroupé ) + (XS - Xgroupé )
ngroupé - 3 —_ 1

Cette valeur nous permettra de définir la qualité globale de I’analyse.

111.3.2 Ecart-type groupé

Si tous les essais réalisés sont comparables, on peut définir un écart-type groupé :

k=

p=d

i=N; =N, —

C > (6 =x) - 2 (%) + (XkX3)2+"'_\/(N11)sf+(N21)322+(N31)S32+...

i=1 j=1 =1
groupé x
N, +N, +N; +..— N, N, +N,+N;+..— N,

3

=

111.3.3 Exemple 2

Quatre étudiants ont fait le titrage de 10,00 mL d’une solution de NaOH (0,100 mol-L™!) par
HCI (0,100 mol-L!). Le calcul nous annonce une valeur de 10,00 mL de NaOH. Les étudiants

ont obtenu les valeurs suivantes :
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Etudiant Vua (1) Vua (2) Vua (3) Vua (4) Vua (5)
1 10,08 10,11 10,09 10,10 10,12
2 9,88 10,14 10,02 9,80 10,21
3 10,19 9,79 9,69 10,05 9,78
4 10,04 9,98 10,02 9,97 10,04
Etudiant X, (mL) X (mL) (% -X) mL) | (x—X)" (mL?)

10,08 -0,02 0,0004

10,11 0,01 0,0001

1 10,09 10,10 -0,01 0,0001

10,10 0,00 0,0000

10,12 0,02 0,0004

Sommes 50,50 0 0,0010

9,88 -0,13 0,0169

10,14 0,13 0,0169

2 10,02 10,01 0,01 0,0001

9,80 -0,21 0,0441

10,21 0,20 0,0400

Sommes 50,05 0 0,1180

10,19 0,29 0,0841

9,79 -0,11 0,0121

3 9,69 9,90 -0,21 0,0441

10,05 0,15 0,0225

9,78 -0,12 0,0144

Sommes 49,50 0 0,1772

10,04 0,03 0,0009

9,98 -0,03 0,0009

4 10,02 10,01 0,01 0,0001

9,97 -0,04 0,0016

10,04 0,03 0,0009

Sommes 0 0,0044

Pour I’étudiant 1 le détail des calculs est le suivant :

12




i=5

— 2 Vie 5,50

Moyenne : V,, = ‘=15 == = 10,10 mL

—\2
Vel
) ' i(Hcl) — VHel
Ecart type : S, =1 £ 1 = 0'0210 =0,0158 mL

Pour cet étudiant, il conviendra d’écrire le résultat comme étant : V,, =10,10+0,016 mL.

Attention, ici nous n’avons pris en compte que la variation du volume lu sur la burette, il
s’agit de ’erreur de mesure. Pour étre totalement rigoureux, 1’écart-type global doit prendre
ne compte aussi toutes les autres erreurs issues de la dilution de 1’échantillon (pipette, ballon
jaugé, précision de la burette) ainsi que I’erreur sur la solution de titrant. Dans ce cas, on
effectue une étude de propagation d’erreur que I’on étudiera en détail plus loin. En effectuant

ce méme genre de calcul pour chaque étudiant, il vient :

Etudiant | Voo (mL) | S, ML) | EVig (Vo ) (%) Conclusion
1 10,10 0,016 1 Peu juste et trés précis
2 10,01 0,172 0,1 Trés juste et peu précis
3 9,90 0,210 1 Peu juste et trés peu précis
4 10,01 0,033 0,1 Tres juste et précis

Si on décide de ne pas distinguer chaque étudiant, en admettant que I’opérateur est unique,

alors on peut calculer un Sgroupe :

St v :\/0,0010+0,1180 +0,1772+0,0044 04371 mL

5+5+5+5-4

En fait, tout ce qui se passe comme si on avait fait un seul échantillon mesuré 16 fois.

111.3.4 Résultat analytigue

Dans tous les cas de figure, un résultat analytique doit étre exprimé par une moyenne et un
écart-type. Les erreurs systématiques, qui n’agissent que sur la moyenne des résultats, ne doit

pas apparaitre. On doit présenter la moyenne corrigée. La moyenne n’est corrigée que dans le
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cas ou on a réussi a déterminer précisément les erreurs systématiques par recalibration de

I’appareil de mesure par exemple. On aura donc pour un échantillon :

X£S, OU Xjo0tS

group! groupé x

I11.4 Sensibilité

La précision d’une mesure peut €tre limitée par la sensibilité de la méthode analytique choisie.
Elle peut étre exprimée en €cart-type, écart-type relatif ou coefficient de variation (le pouvoir
de résolution). La sensibilité d’une méthode analytique est définie a la fois par la sensibilité de
I’appareillage de mesure et par sa réponse a un analyte donné. Par exemple, en gravimétrie, on
obtiendra une pesée moyenne de 500 mg +2 mg avec une balance qui n'est sensible qu'a 1 mg,
la masse ne pourra donc étre connue qu'a 1 mg prés au maximum. En sus de la sensibilité de
I’appareillage vient se greffer la limite de détection et la limite de quantification de I’analyte
en question. Ces deux grandeurs sont déterminées a 1’aide de la courbe d’étalonnage de
I’analyte étudié obtenue sur 1’appareil analytique en question. D¢&s lors, la sensibilité pourra
étre définie pour un couple appareil analytique-analyte donné. La détermination de ces deux

grandeurs sera abordée dans le chapitre relatif a 1’étalonnage des appareils analytiques.
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Statistique analytique quantitative

I L’erreur systématique des résultats calculés

I.1 Introduction

En chimie analytique, il faut souvent estimer I’erreur systématique d’un résultat qui a été
calculé a partir de plusieurs données expérimentales, ayant chacune une erreur systématique
connue. Dans bien des cas, si I’appareil de mesure a bien été calibré et qu’il n’y a pas eu
d’erreurs systématiques dans la préparation du calibrant et/ou des échantillons a analyser,
cette opération n’a pas lieu d’étre. Dans le cas contraire, I’erreur systématique du résultat final
dépend des opérations mathématiques réalisées entre les différentes données expérimentales.
Il est alors nécessaire d’effectuer un calcul combinant toutes les erreurs systématiques

identifiées afin de corriger le résultat analytique final.

1.2 Expression de ’erreur systématique globale

Opération Exemple Ecart-type du résultat final
Addition
y=a+b-c Ay = Ada+ Ab+ Ac
Soustraction
Combinaison
y=k,a+kb-k.c Ay =k da+k,Ab+k Ac
linéaire
Multiplication (axh) Ay [AaJ [Abj (ch
y = —=| — [+ — |+]| —
Division c y a b c
y="f(x)
Ay = AX ﬂ
X
Fonction G f
= X,Y,Z
(x,y,2) G = Axlaf()é’y'z)|+Ay|8f(X’y’Z)I+Az|af()é’zy’z)|

Dans ce tableau, ka, ko et ke sont des constantes. @, b, C, X, y et Z représentent des valeurs ou

des moyennes (a =g, OU a= a). Les erreurs peuvent étre des erreurs sur des valeurs par

rapport a une valeur vraie ou a la moyenne voir des erreurs sur la moyenne par rapport a la
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valeur vraie (Aai (a,) ou Aa, (5) ou Aa(ao)). Dans le cas ou ’on a ﬂ:valeur, pour

obtenir Ay, il faut multiplier cette valeur par y .

II écart-type des résultats calculés

I1.1 Introduction

En chimie analytique, il faut souvent estimer 1’écart-type d’un résultat qui a été calculé a
partir de plusieurs données expérimentales, ayant chacune un écart-type connu. L’écart-type
du résultat final dépend des opérations mathématiques réalisées entre les différentes données

expérimentales.

I1.2 Expression de I’écart-type globale

Le tableau suivant retrace les différentes propagations d’erreurs aléatoires dans les opérations

algébriques :
Opération Exemple Ecart-type du résultat final
Addition - - _ _
: y=a+b-c S, =+/S; +5; +5;
Soustraction
Combinaison | — K 3sk bk \/k 2 ks Vilks P
=k,a+kb-k.c S, =4/(K,S, ) +(Kys,) +(K.S,
linéaire y ° y =y (Kasa) (ks ) +(Kes,)
i 1 Auh 2 2 2
Multiplication §=(aXb) Sy _ (s_aj "‘(S:bj “‘(Scj
Division c y a b C
y="f (x) dy
S, =S, |—=
dx
Fonction
G=1f(xy,2) of(x,y,2)) of(x,y.2)) o (xy.z2))
o S = ( Y stf+( Y, JXSZ-F( Y ]xs2
oX oy 0z

S —
Dans le cas ot I’on a =% = valeur , pour obtenir S, » 1l faut multiplier cette valeur par y .
y
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I1.3 Exemples

11.3.1 Exemple 3

Un échantillon de 3,4842 g d’un mélange solide qui contient de 1’acide benzoique

(CeHsCOOH, M = 122,123 g-mol!) a été dissous et titré par une base en présence de

phénolphtaléine. Au point d’équivalence on a jouté 41,36 mL de NaOH (0,2328 mol-L™).

Quel est la fraction massique de 1’acide benzoique dans le mélange solide ?

A I’équivalence, I’acide benzoique étant un mono-acide on aura :

Ne,h.coon = Muaon = Chaon *Vaon
Or la masse de CcHsCOOH est donnée par :
mCGHSCOOH = nCGHSCOOH X MCGHSCOOH

On aura donc que le pourcentage massique sera donné par :

x M

Me_i.coon <100 = Chaon *Viaon
m m

C6H;C00R 100 = 33,749 %

solide solide

On a mesur¢ les incertitudes suivantes :

Incertitude sur la lecture de la burette : £0,02 mL
Incertitude sur la masse : £0,0001 g

Incertitude sur la concentration de NaOH : +0,0001 mol-L"!

Incertitude sur la masse molaire : négligeable

Pour déterminer I’incertitude sur le pourcentage massique en acide benzoique, il faut penser

que I’on a fait deux lectures de burette et donc deux erreurs, une a la mise a zéro et une a la

lecture du volume d’équivalence :

S, =4/(0,02)+(0,02) =0,028 mL
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2 2 2
S S 2 2 2
S0 _ [C—] +(SVNBOH] +[ } :\/(0,0001j +[0,028j +(o,oomj _8.02x10°
% Coon Vyaon Mgyice 0,2328 41,36 3,4842
On aura alors :

s,, =8,02x107 x% =0,0270

On aura donc un pourcentage d’acide benzoique dans le mélange solide de 33,75% +0,03%

Dans les exemples que nous avons vus précédemment, 1’incertitude du résultat ne dépendait
que de I’incertitude liée a la préparation de I’échantillon a analyser et a la précision de la
burette. C’est typiquement le cas d’un dosage par indicateur coloré ou I’incertitude liée a la
mesure elle-méme n’est pas quantifiable. En effet, le virage d’un indicateur n’est pas une
grandeur quantitative, mais une grandeur qualitative qui dépendent de I’acuité visuelle de
I’expérimentateur. Nous allons deés a présent nous intéresser au cas ou I’on peut quantifier
I’incertitude liée a la mesure d’une grandeur. Ceci n’est possible que lorsque 1’on utilise un
appareil de mesure (pH-meétre, voltmeétre...), ce qui est le cas le plus répandu en chimie
analytique. Dans cette optique, on doit définir une incertitude totale sur la mesure d’une
grandeur comme le pH par exemple. L’incertitude totale doit prendre en compte 1’incertitude
sur la mesure de I’échantillon analysé et I'incertitude sur la préparation de cet échantillon.

D’un point de vue écart-type on aura :

2 2
SpH = (SpH mes) +<spHprép)

Dans le cas ou I’incertitude sur la mesure est plus grande (au moins 100 fois) que

Iincertitude sur la preparation, alors cette dernicre est négligeable et done s, s, .

11.3.2 Exemple 4

Pour mesurer le pH d’une solution, on doit étalonner le pH-métre. Apres étalonnage, pour
vérifier la calibration, on prépare 1000 mL d’une solution test & pH 2. Nous avons a
disposition de I’acide chlorhydrique concentré a 1 mol-L'+0,0001 mol-L!. A partir de cette
solution d’acide concentré, il faut préparer une solution a 1102 mol-L™! en diluant par 100,

c'est-a-dire introduirel0 mL d’acide chlorhydrique dans la fiole jaugée et compléter jusqu’au
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trait de jauge. La mesure du pH de notre solution test donne les valeurs suivantes : 1,90 ;
2,00;2,20; 1,80 ; 2,10.

Calculer I’incertitude sur la mesure du pH.

Ona:

Solution d’acide chlorhydrique : £0,0001 mol-L"!

Pipette de 10 mL : +£0,02 mL

Fiole jaugée de 1000 mL : +0,40 mL

Sachant que I’incertitude sur le pH dépend de la préparation de la solution test et de la mesure
de cette dernicre, il faut calculer les deux incertitudes. Pour ce faire, il faut d’abord calculer le
pH moyen mesur¢ :

— 1,90+2,00+2,20+1,80+2,10

pH moyen : pH = £ =2,00

Incertitude sur la mesure du pH :

=0,16

\/(1,90—2,00)2 +(2,00-2,00)2 +(2,20—2,00)? +(1,80—2,00)? + (2,10 — 2,00 )2
4

SpHmes

Incertitude sur la préparation de la solution test :

@)

C_  —_Ha XVl

H;0 \Vi

solution

D’ou:

S . S ? S 2 S 2 2 2 2
CH30 _ \/[ Chci j _}_( Vher J _I_( Veolution J _ (0,0001) +(0,02) +(O,40 j :0’002
CH30+ CHC' VHCI Vsolution 1 10 1000
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On a alors :

SC
H3

S, = 0:434 =

° =0,434x0,002 =0,00087

H,0"

prép

L’incertitude totale sur le pH de la solution test est :

Son =\/(spHm ) + (s, )2 - (0,16’ +(0,00087)’ =0,1600

Attendu que le pH d’une solution se donne a deux chiffres aprées la virgule alors quel que soit

la formule utilisée on aura :
pH =2,00 £0,16

On remarque a travers cet exemple que l'incertitude sur la mesure est souvent beaucoup

grande que I’incertitude sur la préparation de 1’échantillon.

I1I Chiffres significatifs

II1.1 Introduction

Une maniere simple d’indiquer le degré d’incertitude associé a une mesure expérimentale est
d’arrondir le résultat afin qu’il ne contienne que les chiffres significatifs.
Par exemple, la lecture d’une burette est estimable a 0,02 mL. Ainsi, le volume devra étre

donné avec 4 chiffres significatifs comme 35,56 mL par exemple.

I11.2 Sommes et différences

Pour I’addition ou la soustraction, on peut trouver le nombre de chiffres significatifs

facilement :

3,4+0,0020+7,31=10,73=10,7

Ce résultat possede alors 3 chiffres significatifs.

20



I11.3 Produits et quotients

Pour la multiplication et la division, on a souvent tendance a arrondir le résultat avec le méme
nombre de chiffres significatifs que le terme qui en posseéde le moins. Regardons a présent ces
deux exemples ou les résultats sont exprimés selon la réponse que donne la calculatrice :

24 x4 52 24 x4 .02

=1,0848 et ———=0,9648
100,0 100,0

Selon la régle, les résultats devraient étre :
11 et 0,96

En effet, le premier résultat posséde 2 chiffres significatifs comme 24 et le deuxieme résultat
possede lui aussi 2 chiffres significatifs car les zéro qui ne servent qu’a localiser la virgule ne
sont pas significatifs. Maintenant examinons [’incertitude sur les chiffres de 1’opération.
L’incertitude relative sur ces nombres est de 1 pour 24 ; 0,01 pour 4,52 et 0,1 pour 100.

L’incertitude relative sur le résultat est donné par :

2 2 2
5= [ij J{ﬂj +(%j 0,04
24 4,52 100

L’incertitude relative étant +0,04, le résultat devra étre 1,08 et non 1,1. Pour le deuxiéme

résultat on a aussi une incertitude relative de £0,04. Le résultat devra étre 0,96.

I11.4 Logarithmes et exponentielles

Pour le logarithme d’un nombre, on garde autant de chiffres apreés la virgule qu’il n y a de

chiffres significatifs dans le nombre de départ :
log(6,000x107°)=-4,2218

Pour I’exponentielle ou puissance d’un nombre, on conserve autant de chiffres qu’il y a de

chiffres apres la virgule dans le nombre de départ :

10*° =3x 10"
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I11.5 Arrondir les valeurs numériques et les calculs

Par exemple, considérons I’ensemble des résultats : 61,60 ; 61,46 ; 61,55 ; 61,61. En calculant
la moyenne et I’écart-type, on trouve : 61,555 £0,069. Le résultat arrondi sera : 61,56 +0,07

Lorsqu’un nombre finit par 5, il faut toujours arrondir au nombre pair le plus proche.
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Interprétation des résultats analytiques

I Détection des erreurs grossieres

1.1 Introduction

Il s’agit de tests statistiques permettant de décider s’il faut prendre en compte une valeur

considérée comme suspecte dans un ensemble de données.

1.2 Test Q

1.2.1 Définition

Le test Q est un test statistique largement utilisé. Il consiste a calculer la valeur Q.. en
divisant par 1’étendue w la valeur absolue de la différence entre le résultat suspect x, et son

plus proche voisin x; :

3 ‘Xq =X,

Q
exp W

Cette valeur Q.p est ensuite comparée aux valeurs de rejet Qcrir. Si Qexp > Qerir alors la mesure

suspecte est rejetée. Ce test n’est valable que pour un nombre de mesures entre 3 et 7 en

assumant que la population suit une loi normale.

Nombre de mesures Qcrit (P=0,05)
3 0,970
4 0,831
5 0,717
6 0,621
7 0,570
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1.2.2 Exemple 1

L’analyse d’un échantillon de calcite fournit les fractions massiques en CaO suivantes :
55,95 ; 56,00 ; 56,04 ; 56,08 et 56,23% => C =56,06+0,09 %

La derniere valeur semble suspecte. Si on applique sur cette valeur un test Q on obtiendra :

%, —%,| |56,23-56,08
W  56,23-5505

Qup = =0,536 avec Qcrit (N=5) = 0,717

Comme Qexp < Qcrit alors la valeur suspecte peut étre considérée comme bonne.

[.3 Test G

1.3.1 Définition

Les normes ISO recommandent le test G comme test de détection des erreurs grossicres. Il

s’agit ici de comparer la valeur suspecte avec la moyenne des valeurs X et I’écart-type Sx :

o ke

exp

S

X

Cette valeur G,y est ensuite comparée aux valeurs de rejet Gerir. Si Gexp > Gerir alors la mesure

suspecte est rejetée. Ce test assume que la population suit une loi normale.

Nombre de mesures Gerie (P=0,05)

3 1,155

1,481

1,715

1,887

2,020

2,126

O| oo | O | b

2,215

10 2,290
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1.3.2 Exemple 2

L’analyse d’un échantillon de calcite fournit les fractions massiques en CaO suivantes :
55,95 ; 56,00 ; 56,04 ; 56,08 et 56,23% = C =56,06+0,09 %

La derniere valeur semble suspecte. Si on applique sur cette valeur un test G on obtiendra :

_|x =% _[56,23-56.06]

Gexp
S 0,09

=1,889 avec Gerit (N=5) = 1,715

Comme Gexp > Gerit alors la valeur suspecte doit étre rejetée.

1.2 Comparaison test G et Q

En considérant les exemples 1 et 2 qui sont les mémes, on peut s’apercevoir qu’avec le test Q
la valeur suspect de 56,23 % doit étre incluse dans le groupe de données alors qu’avec le test
G, elle doit en étre rejetée. Sachant que le test G est recommandé par les normes ISO, on aura

plutdt tendance a se fier a ce test dans le cas ou il existe une ambigiiité entre les deux tests.

II Comparaison de données

I1.1 Introduction

Lorsque I’on veut interpréter proprement des résultats analytiques, les tests auquels on a
recourt se basent sur des lois statistiques comme la loi de Student par exemple. La table de
Student est utilisée lorsque le nombre de détermination est inférieur a 20. Si le nombre de

détermination est supérieur ou égale a 20, on utilisera la table z.
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I1.2 Tables Statistiques

11.2.1 Table de Student

Ci-dessous, la table retragant les coefficients de Student pour diverses limites de confiance

(LC) en fonction du nombre de degrés de liberté du systéme statistique considéré :

N LC (90%) LC (95%) LC (98%) LC (99%)
P=0,10 P=0,05 P=0,02 P=0,01
1 6,31 12,71 31,82 63,66
2 2,92 4,30 6,96 9,92
3 2,35 3,18 4,54 5,84
4 2,13 2,78 3,75 4,60
5 2,02 2,57 3,36 4,03
6 1,94 2,45 3,14 3,71
7 1,89 2,36 3,00 3,50
8 1,86 2,31 2,90 3,36
9 1,83 2,26 2,82 3,25
11.2.2 Table de z
Les valeurs de z sont définies par rapport a la limite de confiance LC telles que :
LC (%) z LC (%) z LC (%) z
50 0,67 90 1,64 98 2,33
68 1,00 95 1,96 99 2,58
80 1,29 96 2,00 99,9 3,29
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I1.3 Comparaison d’une moyenne expérimentale avec une valeur vraie

11.3.1 Définition

Les résultats expérimentaux sont rarement en parfait accord avec les prédictions théoriques.
On doit alors fréquemment apprécier si le désaccord entre les résultats expérimentaux et les
résultats observés est une simple conséquence d’erreurs aléatoires inévitables (non
corrigeables) ou d’une erreur systématique dans la procédure de mesure. Un moyen usuel
pour rechercher une erreur systématique dans une méthode analytique consiste a analyser par
cette méthode un étalon dont la composition xy est exactement connue. Si on effectue alors V

mesures (< 20) de cet étalon dont la moyenne est X et I’écart-type sxon a :

= (x-x) 0

X

Si la valeur de ¢ ainsi déterminée est plus petite que celle donnée dans les tables, alors il n’y a
pas d’erreur systématique dans la méthode analytique ou celle-ci n’est pas significative. Si le

nombre de mesures NNV est grand (> 20) alors on pourra remplacer ¢ par z et s par 6.

11.3.2 Exemple 3

On mesure la teneur en Mercure d’une eau polluée et I’on trouve : 1,80 ; 1,58 et 1,64 ppm. La
moyenne et I’écart-type sont : C=1,67ppm et s=0,10ppm. Si on sait que la valeur vraie est
1,70 ppm alors on a :

N

t=(1,67 —1,7o)m =-0,52 = [t|=0,52

Si on se référe a la table de Student la valeur critique est t2 (P = 0,05) et vaut 4,30. Comme £/
< t2 alors I’hypothése nulle est retenue, il n’y a donc pas d’erreur systématique ou celle-ci

n’est pas significative.
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I1.4 Comparaison entre deux movennes expérimentales

11.4.1 Définition

On veut comparer les résultats d’analyse d’un matériau testé¢ deux fois par la méme méthode

avec deux préparations d’échantillon différentes. La premiere série de /N; mesures donne X, et
S, - La deuxieme série de V2 mesures donne X, et s, . On peut alors comparer X; et X, a

partir de Sgroupe :

=N,

;(Xi —X_1)2+ JZ_;(X] _X2)2 :\/(Nl_1)312+(N2_1)s§

N, +N,-2

S . =
groupé
N, +N,-2

s f N, +N,
groupé
NlN2
Si t/< terit (P = 0,05), cela signifie que les deux séries sont comparables, la source d’erreur
dominante qu’il existe entre les deux séries est purement aléatoire. Pour déterminer terit, 1l faut

considérer (N1+N2-2) degrés de liberté. Dans ce cas de figure aussi, pour un nombre suffisant

de déterminations on peut remplacer Sgroupeé Par Ggroupé €t £ par z.

11.4.2 Exemple 4

On recherche la teneur en aluminium d’une riviére proche d’une usine fabriquant des boites
de soda. On préléve un échantillon que 'on divise en deux et que 1’on confie a deux

laboratoires différents :

Laboratoire Teneur en Aluminium (%)
A 0,016 0,015 0,017 0,016 0,019
B 0,017 0,016 0,016 0,015 0,018

Ona: C, =0,017+0,0015% et C, =0,016+0,0011%
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On a aussi :

_ 2 _ 2 _ 2 _ 2
SgroupéZ\/(NA ;)S:L(N_Bz 1)s? :\/(5 1)(0,0012)+;£52 D001 _ | 01306
A B

(%—%)  (0,017-0,016)

s, [NatNg 0,0013\/5+5
0Pl NN, 5x5

t|= =1,22

Comme terit (P = 0,05) = 2,31 pour 8 degrés de liberté on a t/ < terit donc les résultats des

deux laboratoires sont comparables.
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La régression linéaire simple

I Etablissement et utilisation d’une régression linéaire simple

1.1 la méthode des moindres carrés

1.1.1 Introduction

La plupart des méthodes analytiques sont basées sur une courbe d’étalonnage
déterminée expérimentalement ou 1’on porte en ordonnée la réponse de I’appareil analytique
et en abscisse la concentration, la fraction molaire, la masse... des étalons préparés. Une
courbe d’¢étalonnage n’est valable que si elle est linéaire. L’expérimentateur doit alors essayer
de rechercher la meilleure droite compatible avec les points expérimentaux. La méthode
statistique usuelle est une régression linéaire obtenue par la méthode des moindres carrés. La

méthode des moindres carrés repose sur deux hypothéses :

1. laréponse de I’instrument analytique est linéaire par rapport a la grandeur mesurée.

2. tous les écarts individuels des points par rapport a la droite de calibration résultent

uniquement d’erreurs liées a la mesure et non pas d’erreurs liées a la préparation.

Lors d’une régression ou 1I’on minimalise selon la réponse du détecteur, on s’intéresse a une
minimalisation de la distance verticale entre un point de mesure et la droite de régression.
Chaque écart vertical entre un point et la droite obtenu par régression linéaire est appelée un
résidu. La droite calculée par la méthode des moindres carrés est celle qui minimise la somme
des carrés des résidus de tous les points. La droite en question aura comme équation :

y=mx+Db ou y représente I’ordonnée, x est 1’abscisse, m est le coefficient directeur de la

droite et b est I’ordonnée a 1’origine.

1.1.2 Régression linéaire simple par la méthode des moindres carrés

Soit la droite d’étalonnage suivante :
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La droite d’étalonnage suit 1’équation suivante: y=mx+b ou y et X représentent
respectivement la réponse du détecteur de 1’appareil analytique et la concentration.

La méthode de régression linéaire permet d’accéder au coefficient directeur m (A_y) et a son
X

écart-type sm ainsi qu’a ’ordonnée a I’origine b et son écart-type sp. Connaissant 1’équation de
la droite, il est alors ais€, a partir de la mesure d’une ordonnée d’accéder a 1’abscisse. Pour

construire la droite de régression, on définit les termes suivants :
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> (4 -%)(v,-) .
Bl sy

x; et y; représentent des couples de données issues des points d’étalonnage. N est le nombre de
couples de points utilisés pour établir la droite d’étalonnage. X et Yy sont les valeurs
moyennes de x et y. r représente le coefficient de corrélation. Grace a sxx, §yy €t Sxy on peut
déterminer les grandeurs suivantes :

S
le coefficient directeur de la droite : m=—*

XX

I’ordonnée a I’origine : b=y —mx

w

s, —m?’s,
résidus — N -2

I’écart-type des résidus : S

(Sre’sidus )2

S

I’écart-type de la pente : S, =

XX

I’écart-type de I’ordonnée a I’origine : S, =S =S

résidus i=N i=N 2 résidus
2
N> x? - (Z X, j
i=1

i=1

> (%

> (3-3)
-y

RR=1

(v-y)

Le coefficient de régression ou encore appelé coefficient de détermination R? est donné par :
N

i=l1

Dans cette relation, ¥, représente I’estimateur de y; par le biais de la régression. R? n’est le

carré de r que dans le cas d’une régression lin€aire, ce n’est pas le cas pour d’autres types de
régression : exponentielle, logarithmique...Pour une régression linéaire ona—-1<r<1letO

< R?’<1.
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Plus R? se rapproche de 0, plus le nuage de points est diffus autour de la droite de régression.
Plus R? se rapproche de 1, plus le nuage de points se rapproche de la droite de régression. Le
coefficient de corrélation r qualifie I’intensité et le sens de la relation qui existe entre les deux

variables x et y. Si r = 0, alors les deux variables varient indépendamment 1’une de 1’autre.

1.2 Dosage d’un analyte par étalonnage externe

1.2.1 Introduction

Pour le dosage d’un analyte par étalonnage externe, on prépare une série d’étalons que I’on

mesure en commengant par la solution la plus diluée puis par solutions de concentration
croissante. L’écart-type de la valeur mesurée S, —obtenue a I’aide de la courbe d’étalonnage

est donné par :

— —=\2
S i+ +(Ymes—y)

S — résidus

1
™ m \M N m’s,,

L’écart-type est calculé a partir de la moyenne de la mesure de I’échantillon Y, obtenue a
I’aide d’une série de M analyses lorsque I’on utilise une courbe d’étalonnage comportant N
points. Y représente la valeur moyenne de y pour les NV données d’étalonnage. S, — peut

concerner une masse, une concentration, une fraction molaire. ..

1.2.2 Exemple 1

Prenons par exemple le dosage de I’éthyle parabéne par chromatographie en HPLC. On
prépare des standards d’éthyle parabéne de fraction molaire croissante que 1’on mesure. Le
signal du chromatographe donne accés a 1’aire du pic chromatographique de 1’éthyle
parabene. On consigne dans le tableau suivant la fraction molaire en éthyle parabéne x; (%) et

I’aire du pic chromatographique y; qui lui correspond :
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Mesure X; Y, X7 y,2 XY,
1 0,352 1,09 0,12390 1,1881 0,38368
2 0,803 1,78 0,64481 3,1684 1,42934
3 1,08 2,60 1,16640 6,7600 2,80800
4 1,38 3,03 1,90440 9,1809 4,18140
5 1,75 4,01 3,06250 16,0801 7,01750
Somme 5,365 12,51 6,90201 36,3775 15,81992
Moyenne 1,073 2,502 1,380 7,275 3,164
4.0 +

o 3.5

g

)

g 30 +

g

5 25

S

g 2.0

> +

< 15

1.0-4%
04 06 08 1.0 12 14 1.6

Fraction molaire en éthyle parabéne / %

On détermine a partir du tableau les écart-type suivants :

5, = ZN X¥; =N (x)(y)=15,81992 -5x1,073x 2,502 = 2,39669
i=1

S

2,396

r=—=—= =
JS6S,  +/1,146x5,077
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Z-N (i)2 =6,90201-5x(1,073)" =1,14537

v N (y) =36,3775-5x(2,502)° =5,07748




Dés lors on peut calculer la pente de la droite ainsi que son ordonnée a 1’origine : Yy =mx+b

S

Sy 239699 oo
s, 1,14537
12,51 5,365

b=§—m§=T—2,0925xT=0,2567

L’¢écart-type des résidus est donnée par :

s, —m’s,,  [5,07748—(2,0925)° x1,14537
Srésidus = = = 0’144
N-2 5-2

On peut alors calculer les écart-types sur la pente et I’ordonnée a 1’origine :

2 2
Sm:\/(srésidus) :\/(0’144) 20’134

S 1,14537

XX

S, =S =0,158

residus N 5x1,14537

XX

—\2
S, +N(x 2
(%) 20’144\/1,14537 +5%1,073
L’équation de la droite d’étalonnage est :

y =2,09(+0,134 )x +0,256( 0,158 )

Maintenant on utilise cette courbe d’étalonnage pour doser 1’éthyle parabéne dans un

¢chantillon inconnu. L’injection du mélange inconnu conduit a une aire y,,,, = 2,65. On peut

alors grace a la courbe d’étalonnage déterminer la fraction molaire en éthyle parabéne X,

ainsi que I’incertitude sur la mesure. Comme : Yy =2,09x+0,256 alors :

_y-0,256 2,650,256

=1,14%
2,09 2,09

Calculons maintenant 1’incertitude sur la mesure de la fraction molaire obtenue :
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i Yines _9
S — Sresuﬁus 1 +i+(

= —+—+ 0,0763
™ m \M N m’s, 2,0925

1 5 2,0925°x1,14537

2
) 0144 \/1 1 (265-1251/5)

En finalité on a donc : X, =1,14 £0,08%

Si maintenant, on effectue 5 répliquas et que la valeur moyenne de I’aire est toujours la

méme, on aura alors :

S 1 1 (ymes_y

S — Zrésidus — 4

= m \M N m’s, 20925

=0,0437
5 5 2,0925°x1,14537

2
) 0144 \/1 1 (2.65-12,51/5)
= +o 4 -

En finalité on a donc X . =1,14 +0,04%

Cet exemple montre qu’en augmentant le nombre d’analyse sur le méme échantillon, en ayant
la méme moyenne pour la grandeur déterminée, on réduit ’incertitude sur la détermination de
cette grandeur. Dans un cas réel, il ne faudra pas oublier de combiner cette incertitude avec

I’incertitude liée a la préparation.

1.3 Dosage d’un analyte par ajouts dosés

1.3.1 Introduction

Cette méthode consiste a construire une courbe d’étalonnage a partir de 1’échantillon & doser
en ajoutant successivement [’analyte que 1’on veut doser en concentration croissante.

L’équation de la droite de régression toujours : y=mx+Db

Pour déterminer la teneur en analyte de 1’échantillon d’origine, on cherche la quantité en

analyte qu’il faudrait retirer de I’échantillon d’origine pour obtenir un signal nul (égale au
signal du blanc). Aprés avoir déterminé X,,,, pour lequel on a y = 0, on calculera 1’écart-type

lié a la détermination de cette teneur par :

S _ Sre’sidus l + (y)
Xmes - 2
m N m

2
XX
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L’écart-type est calculé¢ a partir d’une courbe d’étalonnage comportant N points et ou Yy

représente la valeur moyenne de y pour les N données d’étalonnage. S\,mes peut concerner une

masse, une concentration, une fraction molaire. ..

1.3.2 Exemple 2

On dose la concentration en argent d’un effluent photographique par absorption atomique.

Dans le tableau suivant, x; représente la quantité d’argent ajouté (ug'mL™") et y; I’absorbance

résultante :

Mesure X; Vi Xi2 Yi 2 XY,
1 0 0,32 0 0,1024 0
2 5 0,41 25 0,1681 2,05
3 10 0,52 100 0,2704 5,2
4 15 0,60 225 0,3600 9
5 20 0,70 400 0,4900 14
6 25 0,77 625 0,5929 19,25
7 30 0,89 900 0,7921 26,7

Somme 105 4,21 2275 2,7759 76,2
Moyenne 15 0,601 325 0,396 10,886
1.0

0.8 /
0.6 /r

N

0.0

Absorbance
=
~

-20 -10 0 10 20 30
Quantité d'argent ajoutée / ug'mL_1
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On détermine a partir du tableau les écart-type suivants :
i —\2
So = 2. %" =N (X] =2275-7x15" =700

i=N

5, =2y ~N(y) =27759-7x0,601* =0,2475

W 4
i=1
5, = i:Zinyi ~N(x)(y)=76,2-7x15x0,601=13,095
i=1

(__ Sy __ 13095 _
JS6S,  \/700x0,2475

b

Dés lors on peut calculer la pente de la droite ainsi que son ordonnée a 1’origine : 'y =mx+b

s, 13,095

S

XX

=0,0187

b=y-mx=0,601-0,0187 x15 =0,3205

L’écart-type des résidus est donnée par :

/s —m?s 0,2475—(0,0187)° x700
Srasidus = = . =\/ ( ) . =0,0233
N—-2 7-2

On peut alors calculer les écart-types sur la pente et I’ordonnée a I’origine :

2 2
Sm:\/(srésidus) :\/(0’0233) 20’00088

S 700

XX

—\2
S, +N(x 2
Sb = Srésidus ( ) = 010233 M = 0,0159
NS, \"~ 7x700

L’équation de la droite d’étalonnage est : y =0,0187(+0,0009 )x+0,3205(+0,0159)
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Dans ce cas, la concentration en argent est obtenue pour y = 0 soit pour x =- 17,1390 pg-mL"
I, Tout ce passe comme si on devait enlever une concentration 17,1390 pg-mL"! pour obtenir
le signal du blanc.

Le calcul de I’incertitude sur la concentration est :

—\2
. y ’
Sw |1, V) 00233 \/1+ 060 ;o

SCmES_ 2 - 7 2
m N m-s 0,01871\/7 (0,0187) x700

XX

En finalité on aura : C,,, =17,14 + 1,58ug-mL™,

Comme pour I’étalonnage externe, ’incertitude totale doit inclure I’incertitude sur la

préparation de 1’échantillon analysé.

II Détermination des limites de détection et de quantification a

P’aide d’une régression linéaire simple

I1.1 Définitions

Les définitions des limites de détection et de quantification LOD et LOQ sont basées sur le

signal d’un blanc utilisé comme référence pour les mesures analytiques :

LOD = yblanc + 35bIanc et LOQ = yblanc + 1osblanc

Dans ces équations, ypunc €t Spianc représentent le signal du blanc (souvent en ordonnée sur le
graphique) et son écart-type. On déterminera alors, par essais successifs, la concentration en

analyte dont le signal sera supérieur ou ¢gal a LOD ou LOQ.

I1.2 Détermination de LOD et LOQ a partir de la courbe d’étalonnage

Si ’on veut déterminer, les limites de détection et de quantification & partir d’une courbe
d’étalonnage, on cherchera alors la concentration en analyte dont I’ordonnée correspond a

LOD ou LOO.
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Considérons a présent que la courbe d’étalonnage suit I’équation :
y=m(£s,, )x+b(=£s,)
I1 faut alors chercher 1’abscisse correspondant a LOD ou LOQ :
LOD =mX,op +0 = Yijane +3Suiane = MXop +0
D’ou:

_ Yolanc + 35blanc -b

X _ Yolanc T lOsblanc -b
LOD —

- et X oq = —

Dans le cas ou ’on n’a pas de mesure de Yblanc €t de Sblanc, on peut estimer ces valeurs en

utilisant la courbe d’étalonnage : Yblanc=D et Sblanc=Srssidus.

On aura alors :

35

_ blanc
XLOD -

3s

résidus

10s .
_ résidus
ou X op = —_—

m m
Lorsque XLoq se situe dans une zone ou il n’y a pas d’étalon, il est conseillé d’étalonner entre
votre premier étalon et XLoq afin de valider la linéarité du détecteur dans cette zone. Si la
linéarité n’est pas vérifiée, alors XLog correspondra au signal le plus faible du domaine

linéaire.

111 Exemple concret

Un laboratoire d'analyse chimique est mandaté pour analyser la teneur en quinine d'un soda.
Le dosage s'effectue par mesure de fluorescence. La solution analysée a été réalisée en
prélevant 1 mL (£ 0,01 mL) de soda pur dilu¢ a 100 mL (£ 0,1 mL). L'étalonnage du
spectrofluorimetre se fait par la méthode de 1'étalonnage externe. Le spectrofluorimétre donne
la fluorescence de I'échantillon en fonction de la concentration de la solution étalon. La

courbe d'étalonnage est traitée par une régression linéaire simple basée sur la méthode des
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moindres carrés. Les concentrations des étalons a utiliser sont choisies en fonction de la

linéarité du détecteur de 1'appareil, elles sont en pg-L!. Ing = 1x10° g.

Concentration en quinine de I’étalon (ug-L™) xi Fluorescence Y,
200 50
400 90
600 126
800 173
1000 210
Moyenne = 600 Moyenne = 129,8

On calcule Sx, Syy, Sxy, ¥ et R?:

x2-N (%)2 = 2200000 - 5(600)” = 400000

S =

yZ~N(y) =100505-5(129,8)" = 16264,8

Sy =

<||
M= 1M 2

Il
U

XY, =N (x)(y) = 470000 -5(600)(129,8) = 80600

oS _ 80600
JS6S,, /400000 16264,8

R*=r*=0,9986

=0,9993

En se basant sur r, on peut observer un fort couplage entre x et y a travers une fonction affine.
De plus, la bonne valeur de R? indique une faible dispersion des points mesurés autour de la
droite de régression.

A partir de ces calculs, on peut établir I'équation de la droite de régression : Fluorescence =
f(concentration). L'équation de la droite est du type : y= mx + b. On donnera par la méme les

écart-types sur la pente et I'ordonnée a l'origine ainsi que Srésidus :

s, 80600

s 400000

XX

=0,2015

b=y-mx=129,8-0,2015x600 = 8,9000
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=2,8225

N \/16264,8—(0,2015)2><4OOOOO
résidus N—2 - 5_2

S 400000

XX

2 2
Sn = \/ (Suson) _ \/ (28225) _ ) ho4ag

Sb = Sre’sidus X
Ns 5x 400000

XX

2
SutN(x) 8225X\/400000+5(600)2 5 0603

Fluorescence = 0,2015(+0,0045)c,;.in. +8,9(+2,9603)

quinine

Une mesure effectuée a blanc montre que la fluctuation du signal conduit a un écart-type sur
la fluorescence Shianc de £ 0,0005. On peut donc déterminer la limite de détection et la limite

de quantification de la quinine par cette méthode.

LOD - 3 Spianc _ 3%0,0005 ~0,0074 gL
m 0.2015
10xS. . 10x0,0005
LOQ = 22 bane _ 19X _ () 554801
Q=—, 0.2015 #d

La solution de soda testée donne une fluorescence moyenne de 150. En utilisant 1'équation de
la droite d'étalonnage, on peut donner la concentration en quinine du soda analysé. Sachant
que la fluorescence moyenne a été obtenue a partir de 5 répliquas, on peut donner I'écart-type
sur la concentration mesurée :

= Aire—b 150-8,9

- =700,2481 ug-L*
m 0.2015 #9

diluée —

Sc

2 2
3 v -y 150-129,8
_ SI‘ESIdUS 1 +i+ (ymes y) _ 218225 \/1 +1+ ( > ) _ i9,133 ﬂg . L—l
N 5 5 0,2015°-40000

= m M m’s,  0,2015\5

La solution analysée a été réalisée en prélevant 1 mL (+ 0,01 mL) de soda pur dilué a 100 mL

(£ 0,1 mL). La concentration en quinine du soda ainsi que son écart-type global seront :

42



2 2 2 2
Sc.., = _diluée i + l =700,2481 (EJ +(£) =7,0374 ug-L*
P V, V, 1 100

= Sc..” +5c,,” =9,133° +7,0374° =11,5298 ug- L

Cdiluée

C

diluée

=700,2481(i11,5298) ug- Lt

C =100xC

diluée

=100x700,2481=70,02 mg - L™

Se =4/(100xs,, ) =100x11,5298 =1,15 mg - L*

C=70,02+1,15mg-L"
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