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Approche statistique 

I Introduction 

L'analyse quantitative requiert le traitement des données analytiques par une approche 

statistique. La statistique est la science qui a pour objet de recueillir un ensemble de données 

numériques relatives à tel ou tel phénomène aléatoire et d'exploiter cette information pour 

établir toutes les relations de causalité par l'analyse pour son interprétation. 

Un phénomène aléatoire est un phénomène comportant des variables aléatoires, c'est à dire 

des variables liées au hasard et dont les valeurs ne peuvent, en conséquence, être connues 

d'avance comme par exemple le nombre de points marqués par un dé lorsqu’on le lance. 

Dans le concept de la statistique, on distingue : 

La statistique descriptive, ou statistique de constatation, qui concerne les tableaux de 

données, tableaux relatifs à des inventaires, les graphiques, des recensements… 

La méthode statistique qui concerne l'ensemble des procédés et méthodes utilisées pour 

l'analyse et l'interprétation des données. 

I.1 Domaine d’application

Le domaine d'utilisation de la statistique est tellement étendu qu'il ne nous est impossible de 

citer toutes ses applications. Nous ne donnerons ici seulement que quelques exemples tels 

que : les domaines de recherche biologique, médicale, spatiale ; le contrôle de fabrication 

dans l'industrie ; les sondages d'opinion, enquêtes de marché, assurances ; la recherche 

opérationnelle ; les études de conjoncture, économiques… 

Dans tous les cas de figure, on doit définir un ensemble, ou référentiel statistique, composé 

d'éléments ou unités statistiques est appelé "population" ou "univers". 
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I.2 Caractères qualitatifs et quantitatifs, continus et discrets 

 

I.2.1 Les caractères qualitatifs et quantitatifs 

 

Les caractères quantitatifs sont ceux auxquels on peut attribuer une valeur numérique. En 

revanche, les caractères qualitatifs sont ceux auxquels on ne peut seulement associer qu’une 

valeur arbitraire, une indexation. Par exemple une taille est un caractère quantitatif alors 

qu’une couleur est un caractère qualitatif. 

Un ensemble ordonné de valeurs de caractère quantitatif constitue une suite ou série 

statistique. Un ensemble ordonné conventionnellement (indexation) de caractère qualitatif 

constitue une nomenclature. 

Dans le cadre de la convention fixée pour l'indexation (règle normalisée ou prescription 

légale), la nomenclature est parfois désignée sous le nom de code comme par exemple le code 

des départements applicables à l'immatriculation des automobiles françaises. 

 

I.2.2 Les caractères continus et discrets 

 

Un caractère continu est un caractère qui peut prendre n'importe quelle valeur numérique 

comme par exemple une masse, une surface, un prix… 

Un caractère discret (ou discontinu) est un caractère qui ne peut prendre que certaines valeurs 

(en général, des nombres entiers) comme par exemple le nombre de personnes constituant une 

famille. 

Dans le cas d'un caractère discret, l'interpolation est dénuée de sens. Très souvent on se sert de 

la représentation graphique pour illustrer les résultats. Les histogrammes et les distributions 

s'avèrent être des outils performants, clairs dans l'énonciation et compréhensifs vis-à-vis du 

lecteur. Les perfectionnements considérables des outils informatiques ont contribués à étendre 

les possibilités de la statistique. De nos jours, avec les nombreux logiciels à disposition, la 

représentation graphique des résultats ne pose plus guère de problèmes et l'avantage est 

évident; l'appréciation instantanée de la qualité du travail en tirant les conclusions qui 

s'imposent. Par exemple, une courbe symétrique provoque auprès de l'expérimentateur une 

satisfaction personnelle non cachée; qu'elle soit justifiée, reste encore à prouver. Les 

distributions à plusieurs sommets sont à considérer avec tout le respect que cela demande, il 

faut méditer sur le résultat et s'intéresser à d'éventuelles anomalies qui font surface. 
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II Les sources d’erreur et leurs quantifications 

 

II.1 Introduction 

 

Les sources d’erreur qui entachent la précision d’un résultat analytique sont de trois sortes : 

 

justesse (erreurs systématiques)

Qualité d'analyse précision (erreurs aléatoire)

sensibilité de la méthode analytique


 



 

 

Nous allons à présent, à travers des exemples, s’intéresser à ces différentes sources d’erreur 

ainsi qu’à leur quantification afin d’analyser aux mieux un résultat analytique. Chaque fois 

que l'on fait une mesure, on exprime par une valeur numérique xi l'estimation d'une grandeur, 

dont la valeur réelle, souvent inconnue, est x0. La détermination est d'autant plus juste que la 

différence xi - x0 est petite. Dans la plupart des cas, on effectue plusieurs mesures et l’on 

définit une moyenne. Si la moyenne la grandeur x est calculée à partir de N valeurs de x tel 

que N ≤ 20 alors elle sera notée  : x . Si par contre cette moyenne est calculée à partir de N 

valeurs de x tel que N > 20, alors elle sera notée  : x . Quel que soit la valeur de N, on 

associe à la moyenne un écart-type qui se notera sx pour N ≤ 20 et σx pour N > 20. Les calculs 

des moyennes et écart-types seront présentés au paragraphe III "les grandeurs statistiques". 

Dès lors, la valeur vraie est donc encadrée de la manière suivante : 

 

   x 0 xx s x x s  (N ≤ 20)   ou      x x 0 x xx     (N > 20) 

 

 

La qualité d’analyse est d’autant meilleure que l’intervalle autour de x0 est petit. Les 

différentes erreurs qui entachent la qualité d’analyse sont décrites ci-après. 

 

II.2 Justesse : erreur systématique 

 

La justesse ou encore erreur systématique en français est décrite par les termes "accuracy" en 

anglais et "systematische fehler" en allemand. Les erreurs systématiques sont caractérisées par 

un écart à la valeur vraie x0 soit positif, soit négatif, elles e agissent toujours dans le même 

sens et affectent l'exactitude de la méthode. Cet écart à la valeur vrai peut être qualifié par 

rapport à une valeur précise d’un groupe de données ou par rapport à la moyenne du groupe 
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de données. On peut donner comme exemple le mauvais calibrage d'une burette, un décalage 

de longueurs d'ondes d’un spectrophotomètre, un mauvais tarage de balance etc... Elles 

peuvent être corrigées lors de la détermination du facteur de décalibrage. Si on peut quantifier 

cette erreur, par exemple au moyen d'une détermination à partir d'un étalon, le résultat doit 

être corrigé. Parfois, un facteur correctif est indiqué dans les méthodes d'analyse.  

 

II.2.1 Ecart d’une valeur précise d’un groupe de donnée par rapport à la valeur vraie 

 

Si on mesure une valeur xi pour l’échantillon i dont la valeur réelle est x0 on peut alors donner 

l’erreur systématique absolue xi ou relative Erxi (%) sur la mesure de l’échantillon i : 

 

i 0 i 0x ( x ) x x     et  i 0
r i 0

0

x ( x )
E x ( x ) 100

x


   

 

II.2.2 Ecart d’une moyenne d’un groupe de données par rapport à la valeur vraie 

 

Dans le cas où la valeur trouvée pour la mesure de l’échantillon i est une moyenne déterminée 

à partir de N analyses : x  (N ≤ 20) ou x  (N > 20) on pourra la comparer avec la valeur vraie 

x0 : 

 

0 0x( x ) x x     ou   x 0 x 0( x ) x   

 

0
r 0

0

x( x )
E x( x ) 100

x


    ou   x 0

r x 0
0

( x )
E ( x ) 100

x


  

 

II.2.3 Ecart d’une valeur précise d’un groupe de donnée par rapport à moyenne du groupe de 

données 

 

Dans bien des cas en chimie analytique, on ne connaît pas la valeur vraie x0 d’une mesure. 

Dans ce cas il faut approximer la valeur vraie x0 par la moyenne des valeurs obtenues sur 

l’échantillon i mesuré N fois ( x  (N ≤ 20) ou x  (N > 20)). Dès lors, on ne peut que comparer 

une mesure xi par rapport à la moyenne x  : 

 

 i ix x x x     ou   i x i xx ( ) x    
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   i
r i

x x
E x x 100

x


    ou   i x

r i x
x

x ( )
E x ( ) 100

 



 

 

On peut calculer une erreur expérimentale moyenne d sur N analyses comme : 

 

i N

i
i 1

x

x x
d

N









  ou  








i N

i x
i 1

x

x
d

N


 

 

Ici, on mesure en fait la dispersion de toutes les mesures par rapport à la moyenne des 

mesures. On visualise alors une erreur autour de la moyenne x  ou x  qui caractérise la 

précision de la mesure. Cette approche simpliste doit être traitée d’un point de vue statistique, 

par le calcul de l’écart-type. 

 

II.3 Précision : erreur aléatoire 

 

La précision ou encore erreur aléatoire en français est décrite par les termes "precision ou 

standard deviation" en anglais et "zufallsfehler" en allemand. La non reproductibilité des 

résultats est souvent due à un grand nombre de petites sources d'erreur qui peuvent jouer dans 

les deux sens, positif et négatif (erreurs aléatoires). Elles trouvent leur nature à la fois dans la 

méthode analytique et dans l'appareil de mesure lui-même. Elles affectent la précision de la 

mesure. On peut alors utiliser les résultats des mesures pour fixer la limite de confiance au 

moyen des méthodes statistiques. 

 

II.3.1 Définitions 

 

L'erreur aléatoire ou fortuite se produit tantôt du côté positif, tantôt du côté négatif par 

rapport à la valeur moyenne. Pour un grand nombre de mesures, la somme algébrique de ses 

valeurs successives est nulle. Les erreurs aléatoires obéissent à la loi de Laplace-Gauss (loi 

normale). Toute erreur est de par nature fonction de la méthode d'analyse choisie, des 

conditions de travail, de l'habileté de l'expérimentateur, de l'homogénéité du produit à 

analyser. La densité de probabilité f(x) de la loi normale est :  

 

2
x

x

x1

2

x

A
f ( x ) e

2




 

 
  

    où A est une constante de pondération  
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Dont la représentation graphique est la suivante : 

 

 
 

Figure 1. densité de probabilité de la loi normale 

 

II.3.2 Exemple 1 : 

 

On a distribué un échantillon à analyser dans 12 laboratoires. Voici les valeurs fournies par les 

12 laboratoires concernant le pourcentage d’aluminium déterminé : 

 

 

A : 0,016 ; 0,015 ; 0,017 ; 0,016 ; 0,019 

B : 0,017 ; 0,016 ; 0,016 ; 0,015 ; 0,018 

C : 0,015 ; 0,014 ; 0,014 ; 0,014 ; 0,015 

D : 0,011 ; 0,007 ; 0,008 ; 0,010 ; 0,009 

E : 0,011 ; 0,011 ; 0,013 ; 0,012 ; 0,012 

F : 0,012 ; 0,014 ; 0,013 ; 0,013 ; 0,015 

G : 0,011 ; 0,009 ; 0,012 ; 0,010 ; 0,012 

H : 0,011 ; 0,011 ; 0,012 ; 0,014 ; 0,013 

I : 0,012 ; 0,014 ; 0,015 ; 0,015 ; 0,014 

J : 0,015 ; 0,018 ; 0,016 ; 0,017 ; 0,016 

K : 0,015 ; 0,014 ; 0,013 ; 0,014 ; 0,014 

L : 0,012 ; 0,014 ; 0,012 ; 0,013 ; 0,012 

 

0

2

4

6

8

10

12

6 8 10 12 14 16 18 20

f

Range*10
3

 
Figure 2. Histogramme d’analyse d’aluminium 

 

L’ensemble de ces valeurs permettent de tracer un histogramme représentant le nombre 

d’évènements, la fréquence f en fonction des valeurs trouvées. L’enveloppe de cet 
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histogramme donne l’image d’une distribution, dont l’approximation est une courbe de Gauss. 

Le tableau ci-dessous retrace les différentes déterminations : 

 

1000% Al 7 8 9 10 11 12 13 14 15 16 17 18 19 

fréquence 1 1 2 2 6 10 6 11 9 6 3 2 1 

 

A l’aide de ces résultats, on a fait une régression gaussienne en fonction de la concentration C 

(1000% Al) : 

 

2
C

C

C1

2

C

A
f ( C ) e

2




 

 
  

    soit  
2

Cb( C )f ( C ) a e     

 

20 ,0825( C 13,611 )f ( C ) 9,72 e    

 

C

a 9,72 0,87

b 0,0825 0,017

13,611 0,256

 
 
 

 

0
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4

6

8
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12

6 8 10 12 14 16 18 20

f

1000*[%Al]

 

Figure 3. régression gaussienne 
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II.4 Résumé 

 

Voici un schéma synoptique qui illustre ces concepts : 

 

 
 

Cas n°1 : juste et peu précis 

Cas n°2 : juste et précis 

Cas n°3 : pas juste et précis 

Cas n°4 : pas juste et peu précis 

 

Dans ces cas de figure, le meilleur résultat est 2 et le moins bon est 4. 

 

 

III Les grandeurs statistiques 

 

Dans cette partie, nous allons décrire les grandeurs statistiques en termes de calcul : les 

différentes moyennes, l’écart-type, l’erreur sur la moyenne, l’incertitude sur la moyenne, ainsi 

que la sensibilité. 

 

III.1 Moyenne arithmétique 

 

III.1.1 Définitions 

 

La moyenne arithmétique est la plus couramment utilisée. Pour le calcul de la moyenne, il est 

inutile de dresser la série dans un ordre croissant ou décroissant, les termes sont additionnés 

dans un ordre quelconque. Deux propriétés caractérisent la moyenne : (i) la somme algébrique 
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des écarts de chaque valeur de la série par rapport à la moyenne est nulle ; (ii) la moyenne 

arithmétique est la grandeur pour laquelle la somme des carrés des écarts par rapport à la 

moyenne est minimum. 

 

III.1.2 Calcul de la moyenne arithmétique 

 

La moyenne arithmétique désignée par x  (N ≤ 20) ou x  (N > 20) se calcule de la manière 

suivante : 

 



   
 


i N

i
1 2 3 N i 1

x

x
x x x ... x

x  ou 
N N

  

 

La moyenne arithmétique est une bonne approximation d'un ensemble d'une certaine 

population. C'est la valeur la plus rapprochée de la moyenne idéale, souvent inconnue. La 

moyenne reste une grandeur estimée dans la plupart des cas. 

 

III.2 Ecart-type 

 

III.2.1 Définitions 

 

L'écart-type symbolisé par s (N ≤ 20) ou σ (N > 20) désigne l'erreur aléatoire ou fortuite d’une 

série de mesures d’un même échantillon. En chimie analytique cette grandeur nous permet de 

nous faire une idée sur la méthode de travail utilisée. C'est donc s (N ≤ 20) ou σ (N > 20) qui 

fait foi quand il faudra se prononcer sur la qualité de la méthode d'analyse utilisée. Plus s sera 

petit, meilleur sera la méthode choisie. Il va de soi, qu'en répétant les mesures sur le même 

échantillon, il faut s'attendre à des fluctuations quant à la répétitivité de s. Cela est 

principalement dû au jeu du hasard parfaitement assimilable à l'analyse quantitative. Ce n'est 

qu'en exerçant un nombre infini de mesures sur un échantillon que l'on pourra se rapprocher 

de la vraie valeur de s qui devient alors σ car N >> 20. Comme dans la pratique, on ne peut 

pas se permettre d’analyser chaque échantillon une vingtaine de fois, nous devons nous 

contenter d'un nombre restreint de manipulations. Toute notre information est basée sur un 

échantillonnage relativement petit. La question qui se pose alors est la suivante : est-il 

possible de se prononcer fermement sur la qualité de la mesure et sur ses erreurs? 
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La réponse est affirmative et l’on peut se prononcer avec une certaine aisance sur le résultat 

même avec un nombre limité de mesures et d’échantillons. Dès lors, on doit introduire la 

notion de niveau de confiance et de degré d'incertitude. La valeur déterminée sera alors 

comprise entre une valeur d'incertitude inférieure et supérieure. Ce degré d'incertitude est de 

lui-même fonction du nombre de degrés de liberté du système. Pour ce faire, on utilise les 

tables de distribution des lois de Student, test-F…, selon le cas. 

 

III.2.2 Ecart-type d’un échantillon et d’une population 

 

Les points mesurés sont groupés autour d'une valeur moyenne définie par la loi de gauss. Pour 

calculer l’écart-type s (N ≤ 20) ou σ (N > 20) on utilise : 

 

 
i N

2

i
i 1

x

x x
s

N 1











  et  

 







i N

2

i x
i 1

x

x

N


  

 

Avec N-1 : le nombre de degré de liberté du système pour (N ≤ 20) 

 

III.2.3 Ecart-type relatif, variance et coefficient de variation 

 

Le carré de l’écart type s2 ou σ2 s’appelle la variance. On peut aussi à partir de ces grandeurs 

définir un écart-type relatif ("relative standard deviation" en anglais) sr (N ≤ 20) ou σr (N > 

20) et le coefficient de variation CV : 

 

 x
rx

s
s

x
  ou   x

rx
x




  et   x
x

s
CV 100

x
  ou   x

x
x

CV 100



 

 

Attention, ces grandeurs ainsi définies sont adimensionnelles, ce qui n’est pas le cas de 

l’écart-type. 

 

III.3 Groupement de données 

 

Lorsque les analyses sont longues, on peut rarement faire plus de 20 mesures sur un 

échantillon, ce qui est coûteux en temps. Dans ce cas, les données de chaque échantillon 

semblable, analysé avec un nombre minimum de mesures, peuvent être groupées de manière à 
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obtenir une estimation de s qui soit meilleure que celle de chaque échantillon pris 

individuellement. Il faut bien sur admettre que les erreurs aléatoire sur chaque échantillon 

sont les mêmes. On définit alors une moyenne et un écart-type groupés. 

 

III.3.1 moyenne groupée 

 

La moyenne groupée revient à calculer la moyenne des moyennes de chaque échantillon. 

Considérons à présent que notre échantillon de départ est subdivisé en échantillon 1, 2 et 3. 

Pour chaque échantillon, on aura procédé à plusieurs essais dont les moyennes sont 1 2 3x , x , x . 

La moyenne groupée groupéx  sera alors :  

 

1 2 3

3groupé

x x x
x

 
  

 

Pour avoir une idée de la dispersion des résultats, on pourra calculer un écart-type sur la 

moyenne groupée : 

 

     
groupé

2 2 2

1 groupé 2 groupé 3 groupé

x

x x x x x x
s

3 1

    



 

 

Cette valeur nous permettra de définir la qualité globale de l’analyse. 

 

III.3.2 Ecart-type groupé 

 

Si tous les essais réalisés sont comparables, on peut définir un écart-type groupé : 

 

           
31 2 k Ni N j N2 2 2

i 1 j 2 k 3 2 2 2
i 1 j 1 k 1 1 1 2 2 3 3

groupé  x
1 2 3 t 1 2 3 t

x x x x x x ...
N 1 s N 1 s N 1 s ...

s
N N N ... N N N N ... N

 

  

     
     

 
       

  
 

 

III.3.3 Exemple 2 

 

Quatre étudiants ont fait le titrage de 10,00 mL d’une solution de NaOH (0,100 mol·L-1) par 

HCl (0,100 mol·L-1). Le calcul nous annonce une valeur de 10,00 mL de NaOH. Les étudiants 

ont obtenu les valeurs suivantes : 
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Étudiant VHCl (1) VHCl (2) VHCl (3) VHCl (4) VHCl (5) 

1 10,08 10,11 10,09 10,10 10,12 

2 9,88 10,14 10,02 9,80 10,21 

3 10,19 9,79 9,69 10,05 9,78 

4 10,04 9,98 10,02 9,97 10,04 

 

Etudiant ix  (mL) x  (mL)  ix x  (mL)   2

ix x  (mL2) 

1 

10,08 

10,11 

10,09 

10,10 

10,12 

10,10 

-0,02 

0,01 

-0,01 

0,00 

0,02 

0,0004 

0,0001 

0,0001 

0,0000 

0,0004 

Sommes 50,50  0 0,0010 

2 

9,88 

10,14 

10,02 

9,80 

10,21 

10,01 

-0,13 

0,13 

0,01 

-0,21 

0,20 

0,0169 

0,0169 

0,0001 

0,0441 

0,0400 

Sommes 50,05  0 0,1180 

3 

10,19 

9,79 

9,69 

10,05 

9,78 

9,90 

0,29 

-0,11 

-0,21 

0,15 

-0,12 

0,0841 

0,0121 

0,0441 

0,0225 

0,0144 

Sommes 49,50  0 0,1772 

4 

10,04 

9,98 

10,02 

9,97 

10,04 

10,01 

0,03 

-0,03 

0,01 

-0,04 

0,03 

0,0009 

0,0009 

0,0001 

0,0016 

0,0009 

Sommes   0 0,0044 

 

Pour l’étudiant 1 le détail des calculs est le suivant : 
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Moyenne : 

i 5

HCl
i 1

HCl

V
5,50

V 10,10 mL
5 5



  


 

 

Écart type : 
  

HCl

i 5 2

i HClHCl
i 1

V

V V
0,0010

S 0,0158 mL
5 1 4






  




 

 

Pour cet étudiant, il conviendra d’écrire le résultat comme étant : HClV 10,10 0,016  mL  . 

Attention, ici nous n’avons pris en compte que la variation du volume lu sur la burette, il 

s’agit de l’erreur de mesure. Pour être totalement rigoureux, l’écart-type global doit prendre 

ne compte aussi toutes les autres erreurs issues de la dilution de l’échantillon (pipette, ballon 

jaugé, précision de la burette) ainsi que l’erreur sur la solution de titrant. Dans ce cas, on 

effectue une étude de propagation d’erreur que l’on étudiera en détail plus loin. En effectuant 

ce même genre de calcul pour chaque étudiant, il vient : 

 

Étudiant HClV  (mL) 
HClVs  (mL)   r HCl 0 HClE V V (%) Conclusion 

1 10,10 0,016 1 Peu juste et très précis 

2 10,01 0,172 0,1 Très juste et peu précis 

3 9,90 0,210 1 Peu juste et très peu précis 

4 10,01 0,033 0,1 Très juste et précis 

 

Si on décide de ne pas distinguer chaque étudiant, en admettant que l’opérateur est unique, 

alors on peut calculer un sgroupé : 

 

HClgroupé V

0,0010 0,1180 0,1772 0,0044
s  0,1371 mL

5 5 5 5 4

  
 

   
 

 

En fait, tout ce qui se passe comme si on avait fait un seul échantillon mesuré 16 fois. 

 

III.3.4 Résultat analytique 

 

Dans tous les cas de figure, un résultat analytique doit être exprimé par une moyenne et un 

écart-type. Les erreurs systématiques, qui n’agissent que sur la moyenne des résultats, ne doit 

pas apparaître. On doit présenter la moyenne corrigée. La moyenne n’est corrigée que dans le 

13



 

cas où on a réussi à déterminer précisément les erreurs systématiques par recalibration de 

l’appareil de mesure par exemple. On aura donc pour un échantillon : 

 

   ou  x groupé groupé xx s x s   

 

III.4 Sensibilité 

 

La précision d’une mesure peut être limitée par la sensibilité de la méthode analytique choisie. 

Elle peut être exprimée en écart-type, écart-type relatif ou coefficient de variation (le pouvoir 

de résolution). La sensibilité d’une méthode analytique est définie à la fois par la sensibilité de 

l’appareillage de mesure et par sa réponse à un analyte donné. Par exemple, en gravimétrie, on 

obtiendra une pesée moyenne de 500 mg ±2 mg avec une balance qui n'est sensible qu'à 1 mg, 

la masse ne pourra donc être connue qu'à 1 mg près au maximum. En sus de la sensibilité de 

l’appareillage vient se greffer la limite de détection et la limite de quantification de l’analyte 

en question. Ces deux grandeurs sont déterminées à l’aide de la courbe d’étalonnage de 

l’analyte étudié obtenue sur l’appareil analytique en question. Dès lors, la sensibilité pourra 

être définie pour un couple appareil analytique-analyte donné. La détermination de ces deux 

grandeurs sera abordée dans le chapitre relatif à l’étalonnage des appareils analytiques. 
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Statistique analytique quantitative 
 

 

I L’erreur systématique des résultats calculés 

 

I.1 Introduction 

 

En chimie analytique, il faut souvent estimer l’erreur systématique d’un résultat qui a été 

calculé à partir de plusieurs données expérimentales, ayant chacune une erreur systématique 

connue. Dans bien des cas, si l’appareil de mesure a bien été calibré et qu’il n’y a pas eu 

d’erreurs systématiques dans la préparation du calibrant et/ou des échantillons à analyser, 

cette opération n’a pas lieu d’être. Dans le cas contraire, l’erreur systématique du résultat final 

dépend des opérations mathématiques réalisées entre les différentes données expérimentales. 

Il est alors nécessaire d’effectuer un calcul combinant toutes les erreurs systématiques 

identifiées afin de corriger le résultat analytique final. 

 

I.2 Expression de l’erreur systématique globale 

 

Opération Exemple Ecart-type du résultat final 

Addition 

Soustraction 
y a b c    y a b c       

Combinaison 

linéaire 
a b cy k a k b k c    a b cy k a k b k c       

Multiplication 

Division  

 a b
y

c


  

y a b c

y a b c

               
     

 

Fonction 

y f ( x )  

 

G f ( x, y,z )  

 

dy
y x

dx
   

f ( x, y,z ) f ( x, y,z ) f ( x, y,z )
G x y z

x y z
     

  
  

 

 

Dans ce tableau, ka, kb et kc sont des constantes. a, b, c, x, y et z représentent des valeurs ou 

des moyennes      ia a ou a a  . Les erreurs peuvent être des erreurs sur des valeurs par 

rapport à une valeur vraie ou à la moyenne voir des erreurs sur la moyenne par rapport à la 
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valeur vraie       0 0      ou  i ia a ou a a a a   . Dans le cas où l’on a 
y

valeur
y


 , pour 

obtenir y , il faut multiplier cette valeur par y . 

 

II l’écart-type des résultats calculés 

 

II.1 Introduction 

 

En chimie analytique, il faut souvent estimer l’écart-type d’un résultat qui a été calculé à 

partir de plusieurs données expérimentales, ayant chacune un écart-type connu. L’écart-type 

du résultat final dépend des opérations mathématiques réalisées entre les différentes données 

expérimentales.  

 

II.2 Expression de l’écart-type globale 

 

Le tableau suivant retrace les différentes propagations d’erreurs aléatoires dans les opérations 

algébriques : 

 

Opération Exemple Ecart-type du résultat final 

Addition 

Soustraction 
y a b c    2 2 2

y a b cs s s s    

Combinaison 

linéaire 
a b cy k a k b k c         2 2 2

y a a b b c cs k s k s k s    

Multiplication 

Division  

 a b
y

c


  

2 2 2
y a b c

s s s s

y a b c
            
     

 

Fonction 

 y f x  

 

G f ( x, y,z )  

 

y x

d y
s s

d x
  

2 2 2

2 2 2
G x y z

f ( x, y,z ) f ( x, y,z ) f ( x, y,z )
s s s s

x y z

       
          

       
 

 

Dans le cas où l’on a ys
valeur

y
 , pour obtenir ys , il faut multiplier cette valeur par y . 
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II.3 Exemples 

 

II.3.1 Exemple 3 

 

Un échantillon de 3,4842 g d’un mélange solide qui contient de l’acide benzoïque 

(C6H5COOH, M = 122,123 g·mol-1) a été dissous et titré par une base en présence de 

phénolphtaléine. Au point d’équivalence on a jouté 41,36 mL de NaOH (0,2328 mol·L-1). 

Quel est la fraction massique de l’acide benzoïque dans le mélange solide ? 

 

A l’équivalence, l’acide benzoïque étant un mono-acide on aura : 

 

6 5C H COOH NaOH NaOH NaOHn n C V    

 

Or la masse de C6H5COOH est donnée par : 

 

6 5 6 5 6 5C H COOH C H COOH C H COOHm n M   

 

On aura donc que le pourcentage massique sera donné par : 

 

6 5 6 5C H COOH NaOH NaOH C H COOH

solide solide

m C V M
100 100 33,749 %

m m

 
     

 

On a mesuré les incertitudes suivantes : 

Incertitude sur la lecture de la burette : ±0,02 mL 

Incertitude sur la masse : ±0,0001 g 

Incertitude sur la concentration de NaOH : ±0,0001 mol·L-1 

Incertitude sur la masse molaire : négligeable 

 

Pour déterminer l’incertitude sur le pourcentage massique en acide benzoïque, il faut penser 

que l’on a fait deux lectures de burette et donc deux erreurs, une à la mise à zéro et une à la 

lecture du volume d’équivalence : 

 

NaOH

2 2
VS (0,02 ) (0,02 ) 0,028 mL    
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NaOH NaOH solide

2 2 2 2 2 2
C V m 4%

NaOH NaOH solide

s s Ss 0,0001 0,028 0,0001
8,02 10

0,2328 41,36 3,4842% C V m
                             

          
 

On aura alors : 

 

4
%s 8,02 10 % 0,0270     

 

On aura donc un pourcentage d’acide benzoïque dans le mélange solide de 33,75% ±0,03% 

 

Dans les exemples que nous avons vus précédemment, l’incertitude du résultat ne dépendait 

que de l’incertitude liée à la préparation de l’échantillon à analyser et à la précision de la 

burette. C’est typiquement le cas d’un dosage par indicateur coloré où l’incertitude liée à la 

mesure elle-même n’est pas quantifiable. En effet, le virage d’un indicateur n’est pas une 

grandeur quantitative, mais une grandeur qualitative qui dépendent de l’acuité visuelle de 

l’expérimentateur. Nous allons dès à présent nous intéresser au cas où l’on peut quantifier 

l’incertitude liée à la mesure d’une grandeur. Ceci n’est possible que lorsque l’on utilise un 

appareil de mesure (pH-mètre, voltmètre…), ce qui est le cas le plus répandu en chimie 

analytique. Dans cette optique, on doit définir une incertitude totale sur la mesure d’une 

grandeur comme le pH par exemple. L’incertitude totale doit prendre en compte l’incertitude 

sur la mesure de l’échantillon analysé et l’incertitude sur la préparation de cet échantillon. 

D’un point de vue écart-type on aura : 

 

    
mes prép

22

pH pH pHs s s  

 

Dans le cas où l’incertitude sur la mesure est plus grande (au moins 100 fois) que 

l’incertitude sur la préparation, alors cette dernière est négligeable et donc 
mespH pHs s . 

 

II.3.2 Exemple 4 

 

Pour mesurer le pH d’une solution, on doit étalonner le pH-mètre. Après étalonnage, pour 

vérifier la calibration, on prépare 1000 mL d’une solution test à pH 2. Nous avons à 

disposition de l’acide chlorhydrique concentré à 1 mol·L-1±0,0001 mol·L-1. A partir de cette 

solution d’acide concentré, il faut préparer une solution à 1·10-2 mol·L-1 en diluant par 100, 

c'est-à-dire introduire10 mL d’acide chlorhydrique dans la fiole jaugée et compléter jusqu’au 
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trait de jauge. La mesure du pH de notre solution test donne les valeurs suivantes : 1,90 ; 

2,00 ; 2,20 ; 1,80 ; 2,10. 

Calculer l’incertitude sur la mesure du pH. 

On a : 

Solution d’acide chlorhydrique : ±0,0001 mol·L-1 

Pipette de 10 mL : ±0,02 mL 

Fiole jaugée de 1000 mL : ±0,40 mL 

 

Sachant que l’incertitude sur le pH dépend de la préparation de la solution test et de la mesure 

de cette dernière, il faut calculer les deux incertitudes. Pour ce faire, il faut d’abord calculer le 

pH moyen mesuré : 

 

pH moyen : 
1,90 2,00 2,20 1,80 2,10

pH 2,00
5

   
   

 

Incertitude sur la mesure du pH :  

 

 
mes

2 2 2 2 2

pH

1,90 2,00 ( 2,00 2,00 ) ( 2,20 2,00 ) (1,80 2,00 ) ( 2,10 2,00 )
s 0,16

4

        
 

 

Incertitude sur la préparation de la solution test : 

 

3

0

H O
pH log

C

     
 
 

  et  H O3

prép

3

C

pH

H O

s
s 0,434

C





  

 

3

HCl HCl
H O

solution

C V
C

V



  

 

D’où : 

 

H O3 HCl HCl solution

3

2 2 2 2 2 2
C C V V

HCl HCl solutionH O

s s S S 0,0001 0,02 0,40
0,002

1 10 1000C C V V





                            
          
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On a alors : 

 

H O3

prép

3

C

pH

H O

s
s 0,434 0,434 0,002 0,00087

C





     

 

L’incertitude totale sur le pH de la solution test est : 

 

       
mes prép

22 2 2

pH pH pHs s s 0,16 0,00087 0,1600      

 

Attendu que le pH d’une solution se donne à deux chiffres après la virgule alors quel que soit 

la formule utilisée on aura : 

 

pH 2,00 0,16   

 

On remarque à travers cet exemple que l’incertitude sur la mesure est souvent beaucoup 

grande que l’incertitude sur la préparation de l’échantillon. 

 

 

III Chiffres significatifs 

 

III.1 Introduction 

 

Une manière simple d’indiquer le degré d’incertitude associé à une mesure expérimentale est 

d’arrondir le résultat afin qu’il ne contienne que les chiffres significatifs. 

Par exemple, la lecture d’une burette est estimable à ±0,02 mL. Ainsi, le volume devra être 

donné avec 4 chiffres significatifs comme 35,56 mL par exemple. 

 

III.2 Sommes et différences 

 

Pour l’addition ou la soustraction, on peut trouver le nombre de chiffres significatifs 

facilement : 

 

3,4 0,0020 7,31 10,73 10,7     

 

Ce résultat possède alors 3 chiffres significatifs. 
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III.3 Produits et quotients 

 

Pour la multiplication et la division, on a souvent tendance à arrondir le résultat avec le même 

nombre de chiffres significatifs que le terme qui en possède le moins. Regardons à présent ces 

deux exemples où les résultats sont exprimés selon la réponse que donne la calculatrice : 

 

24 4,52
1,0848

100,0


   et  

24 4,02
0,9648

100,0


  

 

Selon la règle, les résultats devraient être : 

 

1,1  et  0,96  

 

En effet, le premier résultat possède 2 chiffres significatifs comme 24 et le deuxième résultat 

possède lui aussi 2 chiffres significatifs car les zéro qui ne servent qu’à localiser la virgule ne 

sont pas significatifs. Maintenant examinons l’incertitude sur les chiffres de l’opération. 

L’incertitude relative sur ces nombres est de 1 pour 24 ; 0,01 pour 4,52 et 0,1 pour 100. 

L’incertitude relative sur le résultat est donné par : 

 

22 2
1 0,01 0,1

s 0,04
24 4,52 100

           
    

 

 

L’incertitude relative étant ±0,04, le résultat devra être 1,08 et non 1,1. Pour le deuxième 

résultat on a aussi une incertitude relative de ±0,04. Le résultat devra être 0,96. 

 

III.4 Logarithmes et exponentielles 

 

Pour le logarithme d’un nombre, on garde autant de chiffres après la virgule qu’il n y a de 

chiffres significatifs dans le nombre de départ : 

 

5log(6 ,000 10 ) 4,2218    

 

Pour l’exponentielle ou puissance d’un nombre, on conserve autant de chiffres qu’il y a de 

chiffres après la virgule dans le nombre de départ :  

 

12,5 1210 3 10   
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III.5 Arrondir les valeurs numériques et les calculs 

 

Par exemple, considérons l’ensemble des résultats : 61,60 ; 61,46 ; 61,55 ; 61,61. En calculant 

la moyenne et l’écart-type, on trouve : 61,555 ±0,069. Le résultat arrondi sera : 61,56 ±0,07 

Lorsqu’un nombre finit par 5, il faut toujours arrondir au nombre pair le plus proche. 
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Interprétation des résultats analytiques 

 

 

I Détection des erreurs grossières 

 

I.1 Introduction 

 

Il s’agit de tests statistiques permettant de décider s’il faut prendre en compte une valeur 

considérée comme suspecte dans un ensemble de données. 

 

I.2 Test Q 

 

I.2.1 Définition 

 

Le test Q est un test statistique largement utilisé. Il consiste à calculer la valeur Qexp en 

divisant par l’étendue w la valeur absolue de la différence entre le résultat suspect xq et son 

plus proche voisin xn : 

 

q n

exp

x x
Q

w


  

 

Cette valeur Qexp est ensuite comparée aux valeurs de rejet Qcrit. Si Qexp > Qcrit alors la mesure 

suspecte est rejetée. Ce test n’est valable que pour un nombre de mesures entre 3 et 7 en 

assumant que la population suit une loi normale. 

 

Nombre de mesures Qcrit (P=0,05) 

3 0,970 

4 0,831 

5 0,717 

6 0,621 

7 0,570 
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I.2.2 Exemple 1 

 

L’analyse d’un échantillon de calcite fournit les fractions massiques en CaO suivantes : 

 

55,95 ; 56,00 ; 56,04 ; 56,08 et 56,23%    56,06 0,09C   % 

 

La dernière valeur semble suspecte. Si on applique sur cette valeur un test Q on obtiendra : 

 

q n

exp

x x 56 ,23 56,08
Q 0,536

w 56,23 55,95

 
  


 avec Qcrit (N=5) = 0,717 

 

Comme Qexp < Qcrit alors la valeur suspecte peut être considérée comme bonne. 

 

I.3 Test G 

 

I.3.1 Définition 

 

Les normes ISO recommandent le test G comme test de détection des erreurs grossières. Il 

s’agit ici de comparer la valeur suspecte avec la moyenne des valeurs x et l’écart-type sx : 

 


 q

exp
x

x x
G

s
 

 

Cette valeur Gexp est ensuite comparée aux valeurs de rejet Gcrit. Si Gexp > Gcrit alors la mesure 

suspecte est rejetée. Ce test assume que la population suit une loi normale. 

 

Nombre de mesures Gcrit (P=0,05) 

3 1,155 

4 1,481 

5 1,715 

6 1,887 

7 2,020 

8 2,126 

9 2,215 

10 2,290 
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I.3.2 Exemple 2 

 

L’analyse d’un échantillon de calcite fournit les fractions massiques en CaO suivantes : 

 

55,95 ; 56,00 ; 56,04 ; 56,08 et 56,23%    56,06 0,09C   % 

 

La dernière valeur semble suspecte. Si on applique sur cette valeur un test G on obtiendra : 

 

q

exp

x x 56,23 56,06
G 1,889

s 0,09

 
    avec Gcrit (N=5) = 1,715 

 

Comme Gexp > Gcrit alors la valeur suspecte doit être rejetée.  

 

I.2 Comparaison test G et Q 

 

En considérant les exemples 1 et 2 qui sont les mêmes, on peut s’apercevoir qu’avec le test Q 

la valeur suspect de 56,23 % doit être incluse dans le groupe de données alors qu’avec le test 

G, elle doit en être rejetée. Sachant que le test G est recommandé par les normes ISO, on aura 

plutôt tendance à se fier à ce test dans le cas où il existe une ambigüité entre les deux tests. 

 

 

II Comparaison de données 

 

II.1 Introduction 

 

Lorsque l’on veut interpréter proprement des résultats analytiques, les tests auquels on a 

recourt se basent sur des lois statistiques comme la loi de Student par exemple. La table de 

Student est utilisée lorsque le nombre de détermination est inférieur à 20. Si le nombre de 

détermination est supérieur ou égale à 20, on utilisera la table z. 
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II.2 Tables Statistiques 

 

II.2.1 Table de Student 

 

Ci-dessous, la table retraçant les coefficients de Student pour diverses limites de confiance 

(LC) en fonction du nombre de degrés de liberté du système statistique considéré : 

 

N-1 
LC (90%) 

P=0,10 

LC (95%) 

P=0,05 

LC (98%) 

P=0,02 

LC (99%) 

P=0,01 

1 6,31 12,71 31,82 63,66 

2 2,92 4,30 6,96 9,92 

3 2,35 3,18 4,54 5,84 

4 2,13 2,78 3,75 4,60 

5 2,02 2,57 3,36 4,03 

6 1,94 2,45 3,14 3,71 

7 1,89 2,36 3,00 3,50 

8 1,86 2,31 2,90 3,36 

9 1,83 2,26 2,82 3,25 

 

 

II.2.2 Table de z 

 

Les valeurs de z sont définies par rapport à la limite de confiance LC telles que : 

 

LC (%) z LC (%) z LC (%) z 

50 0,67 90 1,64 98 2,33 

68 1,00 95 1,96 99 2,58 

80 1,29 96 2,00 99,9 3,29 
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II.3 Comparaison d’une moyenne expérimentale avec une valeur vraie 

 

II.3.1 Définition 

 

Les résultats expérimentaux sont rarement en parfait accord avec les prédictions théoriques. 

On doit alors fréquemment apprécier si le désaccord entre les résultats expérimentaux et les 

résultats observés est une simple conséquence d’erreurs aléatoires inévitables (non 

corrigeables) ou d’une erreur systématique dans la procédure de mesure. Un moyen usuel 

pour rechercher une erreur systématique dans une méthode analytique consiste à analyser par 

cette méthode un étalon dont la composition x0 est exactement connue. Si on effectue alors N 

mesures (< 20) de cet étalon dont la moyenne est x  et l’écart-type sx on a : 

 

   0
x

N
t x x

s
 

 

Si la valeur de t ainsi déterminée est plus petite que celle donnée dans les tables, alors il n’y a 

pas d’erreur systématique dans la méthode analytique ou celle-ci n’est pas significative. Si le 

nombre de mesures N est grand (≥ 20) alors on pourra remplacer t par z et s par σ. 

 

II.3.2 Exemple 3 

 

On mesure la teneur en Mercure d’une eau polluée et l’on trouve : 1,80 ; 1,58 et 1,64 ppm. La 

moyenne et l’écart-type sont : 1,67   et  0,10C ppm s ppm  . Si on sait que la valeur vraie est 

1,70 ppm alors on a : 

 

      
3

t 1,67 1,70 0,52 t 0,52
0,10

       

 

Si on se réfère à la table de Student la valeur critique est t2 (P = 0,05) et vaut 4,30. Comme t 

< t2 alors l’hypothèse nulle est retenue, il n’y a donc pas d’erreur systématique ou celle-ci 

n’est pas significative. 
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II.4 Comparaison entre deux moyennes expérimentales 

 

II.4.1 Définition 

 

On veut comparer les résultats d’analyse d’un matériau testé deux fois par la même méthode 

avec deux préparations d’échantillon différentes. La première série de N1 mesures donne 1x  et 

1xs . La deuxième série de N2 mesures donne 2x  et 
2xs . On peut alors comparer 1x  et 2x  à 

partir de sgroupé : 

 

       
1 2i N j N2 2

i 1 j 2 2 2
i 1 j 1 1 1 2 2

groupé
1 2 1 2

x x x x
N 1 s N 1 s

s
N N 2 N N 2

 

 

  
  

 
   

 
 

 

 

 1 2

1 2
groupé

1 2

x x
t

N N
s

N N





 

 

Si t < tcrit (P = 0,05), cela signifie que les deux séries sont comparables, la source d’erreur 

dominante qu’il existe entre les deux séries est purement aléatoire. Pour déterminer tcrit, il faut 

considérer (N1+N2-2) degrés de liberté. Dans ce cas de figure aussi, pour un nombre suffisant 

de déterminations on peut remplacer Sgroupé par σgroupé et t par z. 

 

II.4.2 Exemple 4 

 

On recherche la teneur en aluminium d’une rivière proche d’une usine fabriquant des boîtes 

de soda. On prélève un échantillon que l’on divise en deux et que l’on confie à deux 

laboratoires différents : 

 

Laboratoire Teneur en Aluminium (%) 

A 0,016 0,015 0,017 0,016 0,019 

B 0,017 0,016 0,016 0,015 0,018 

 

On a : 0,017 0,0015%  et  0,016 0,0011%A BC C     
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On a aussi : 

 

         2 22 2
A A B B

groupé
A B

N 1 s N 1 s 5 1 0,0015 5 1 0,0011
s 0,0013%

N N 2 5 5 2

     
  

   
 

 

   A B

A B
groupé

A B

x x 0,017 0,016
t 1,22

N N 5 5
0,0013s

5 5N N

 
  

 


 

 

Comme tcrit (P = 0,05) = 2,31 pour 8 degrés de liberté on a t < tcrit donc les résultats des 

deux laboratoires sont comparables. 
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La régression linéaire simple 

 

 

I Etablissement et utilisation d’une régression linéaire simple  

 

I.1 la méthode des moindres carrés 

 

I.1.1 Introduction 

 

 La plupart des méthodes analytiques sont basées sur une courbe d’étalonnage 

déterminée expérimentalement où l’on porte en ordonnée la réponse de l’appareil analytique 

et en abscisse la concentration, la fraction molaire, la masse… des étalons préparés. Une 

courbe d’étalonnage n’est valable que si elle est linéaire. L’expérimentateur doit alors essayer 

de rechercher la meilleure droite compatible avec les points expérimentaux. La méthode 

statistique usuelle est une régression linéaire obtenue par la méthode des moindres carrés. La 

méthode des moindres carrés repose sur deux hypothèses :  

 

1. la réponse de l’instrument analytique est linéaire par rapport à la grandeur mesurée. 

 

2. tous les écarts individuels des points par rapport à la droite de calibration résultent 

uniquement d’erreurs liées à la mesure et non pas d’erreurs liées à la préparation.  

 

Lors d’une régression où l’on minimalise selon la réponse du détecteur, on s’intéresse à une 

minimalisation de la distance verticale entre un point de mesure et la droite de régression. 

Chaque écart vertical entre un point et la droite obtenu par régression linéaire est appelée un 

résidu. La droite calculée par la méthode des moindres carrés est celle qui minimise la somme 

des carrés des résidus de tous les points. La droite en question aura comme équation : 

y mx b   où y représente l’ordonnée, x est l’abscisse, m est le coefficient directeur de la 

droite et b est l’ordonnée à l’origine. 

 

I.1.2 Régression linéaire simple par la méthode des moindres carrés 

 

Soit la droite d’étalonnage suivante : 
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10

8

6

4

2

R
ép

on
se

108642

Concentration  
 

La droite d’étalonnage suit l’équation suivante : y mx b   où y et x représentent 

respectivement la réponse du détecteur de l’appareil analytique et la concentration. 

La méthode de régression linéaire permet d’accéder au coefficient directeur m (
y

x




) et à son 

écart-type sm ainsi qu’à l’ordonnée à l’origine b et son écart-type sb. Connaissant l’équation de 

la droite, il est alors aisé, à partir de la mesure d’une ordonnée d’accéder à l’abscisse. Pour 

construire la droite de régression, on définit les termes suivants : 

 

   

2i N

ii N i N i N2 2
i 12 2

xx i i i
i 1 i 1 i 1

x

s x x x x N x
N



  


  

 
 
      


    

 

   

2i N

ii N i N i N2 2
i 12 2

yy i i i
i 1 i 1 i 1

y

s y y y y N y
N



  


  

 
 
      


    

 

     
i N i N

i ii N i N i N
i 1 i 1

xy i i i i i i
i 1 i 1 i 1

x y
s x x y y x y x y N x y

N

 

  
 

  

      
 

    
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  

   
1

2 2

1 1

N

i i
xyi

N N
xx yy

i i
i i

x x y y
s

r
s s

x x y y



 

 
 

  



 
 

 

xi et yi représentent des couples de données issues des points d’étalonnage. N est le nombre de 

couples de points utilisés pour établir la droite d’étalonnage. x  et y  sont les valeurs 

moyennes de x et y. r représente le coefficient de corrélation. Grâce à sxx, syy et sxy on peut 

déterminer les grandeurs suivantes : 

 

le coefficient directeur de la droite : xy

xx

s
m

s
  

 

l’ordonnée à l’origine : b y mx   

 

l’écart-type des résidus : 
2

yy xx
résidus

s m s
s

N 2





 

 

l’écart-type de la pente : 
 2

résidus
m

xx

s
s

s
  

 

l’écart-type de l’ordonnée à l’origine : 
 

i N
2 2

i
xxi 1

b résidus résidus2i N i N
xx2

i i
i 1 i 1

x s N x
s s s

Ns
N x x





 

 


 

   
 



 
 

 

Le coefficient de régression ou encore appelé coefficient de détermination R2 est donné par : 

 

 
 

2

2 1

2

1

N

i
i
N

i
i

y y
R

y y













 

 

Dans cette relation, iŷ  représente l’estimateur de yi par le biais de la régression. R2 n’est le 

carré de r que dans le cas d’une régression linéaire, ce n’est pas le cas pour d’autres types de 

régression : exponentielle, logarithmique…Pour une régression linéaire on a – 1 < r < 1 et 0 

< R2 <1. 
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Plus R2 se rapproche de 0, plus le nuage de points est diffus autour de la droite de régression. 

Plus R2 se rapproche de 1, plus le nuage de points se rapproche de la droite de régression. Le 

coefficient de corrélation r qualifie l’intensité et le sens de la relation qui existe entre les deux 

variables x et y. Si r = 0, alors les deux variables varient indépendamment l’une de l’autre. 

 

I.2 Dosage d’un analyte par étalonnage externe 

 

I.2.1 Introduction 

 

Pour le dosage d’un analyte par étalonnage externe, on prépare une série d’étalons que l’on 

mesure en commençant par la solution la plus diluée puis par solutions de concentration 

croissante. L’écart-type de la valeur mesurée 
mesvs  obtenue à l’aide de la courbe d’étalonnage 

est donné par : 

 

 
  

mes

2

mesrésidus
v 2

xx

y ys 1 1
s

m M N m s
 

 

L’écart-type est calculé à partir de la moyenne de la mesure de l’échantillon mesy  obtenue à 

l’aide d’une série de M analyses lorsque l’on utilise une courbe d’étalonnage comportant N 

points. y  représente la valeur moyenne de y pour les N données d’étalonnage. 
mesvs  peut 

concerner une masse, une concentration, une fraction molaire… 

 

I.2.2 Exemple 1 

 

Prenons par exemple le dosage de l’éthyle parabène par chromatographie en HPLC. On 

prépare des standards d’éthyle parabène de fraction molaire croissante que l’on mesure. Le 

signal du chromatographe donne accès à l’aire du pic chromatographique de l’éthyle 

parabène. On consigne dans le tableau suivant la fraction molaire en éthyle parabène xi (%) et 

l’aire du pic chromatographique yi qui lui correspond : 
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Mesure ix   iy  2
ix  2

iy  i ix y  

1 0,352 1,09 0,12390 1,1881 0,38368 

2 0,803 1,78 0,64481 3,1684 1,42934 

3 1,08 2,60 1,16640 6,7600 2,80800 

4 1,38 3,03 1,90440 9,1809 4,18140 

5 1,75 4,01 3,06250 16,0801 7,01750 

Somme 5,365 12,51 6,90201 36,3775 15,81992 

Moyenne 1,073 2,502 1,380 7,275 3,164 

 

4.0

3.5

3.0

2.5

2.0

1.5

1.0

A
ir

e 
du

 p
ic

 c
hr

om
at

og
ra

ph
iq

ue

1.61.41.21.00.80.60.4
Fraction molaire en éthyle parabène / %  

 

On détermine à partir du tableau les écart-type suivants : 

 

   
i N 2 22

xx i
i 1

s x N x 6,90201 5 1,073 1,14537




       

 

   
i N 2 22

yy i
i 1

s y N y 36,3775 5 2,502 5,07748




       

 

  
i N

xy i i
i 1

s x y N x y 15,81992 5 1,073 2,502 2,39669




        

 

,
,

, ,
xy

xx yy

s 2 396
r 0 994

s s 1 146 5 077
  


 

 

34



 

Dès lors on peut calculer la pente de la droite ainsi que son ordonnée à l’origine : y mx b   

 

xy

xx

s 2,39699
m 2,0925

s 1,14537
    

 

12,51 5,365
b y mx 2,0925 0,2567

5 5
       

 

L’écart-type des résidus est donnée par : 

 

 22
yy xx

résidus

s m s 5,07748 2,0925 1,14537
s 0,144

N 2 5 2

  
  

 
 

 

On peut alors calculer les écart-types sur la pente et l’ordonnée à l’origine : 

 

   2 2

résidus
m

xx

s 0,144
s 0,134

s 1,14537
    

 

 2
2

xx

b résidus
xx

S N x 1,14537 5 1,073
s s 0,144 0,158

NS 5 1,14537

  
  


 

 

L’équation de la droite d’étalonnage est : 

 

y 2,09( 0,134 )x 0,256( 0,158 )     

 

Maintenant on utilise cette courbe d’étalonnage pour doser l’éthyle parabène dans un 

échantillon inconnu. L’injection du mélange inconnu conduit à une aire 2 65mesy ,  . On peut 

alors grâce à la courbe d’étalonnage déterminer la fraction molaire en éthyle parabène mesx  

ainsi que l’incertitude sur la mesure. Comme : y 2,09x 0,256   alors : 

 

mes

y 0,256 2,65 0,256
x 1,14%

2,09 2,09

 
    

 

Calculons maintenant l’incertitude sur la mesure de la fraction molaire obtenue : 
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    
      

mes

2
2

mesrésidus
x 2 2

xx

y y 2,65 12,51 / 5s 1 1 0,144 1 1
s 0,0763

m M N m s 2,0925 1 5 2,0925 1,14537
 

 

En finalité on a donc :  0,08% mesx 1,14  

 

Si maintenant, on effectue 5 répliquas et que la valeur moyenne de l’aire est toujours la 

même, on aura alors : 

 

    
      

mes

2
2

mesrésidus
x 2 2

xx

y y 2,65 12,51 / 5s 1 1 0,144 1 1
s 0,0437

m M N m s 2,0925 5 5 2,0925 1,14537
 

 

En finalité on a donc   mesx 1,14 0,04%  

 

Cet exemple montre qu’en augmentant le nombre d’analyse sur le même échantillon, en ayant 

la même moyenne pour la grandeur déterminée, on réduit l’incertitude sur la détermination de 

cette grandeur. Dans un cas réel, il ne faudra pas oublier de combiner cette incertitude avec 

l’incertitude liée à la préparation. 

 

I.3 Dosage d’un analyte par ajouts dosés 

 

I.3.1 Introduction 

 

Cette méthode consiste à construire une courbe d’étalonnage à partir de l’échantillon à doser 

en ajoutant successivement l’analyte que l’on veut doser en concentration croissante. 

L’équation de la droite de régression toujours : y mx b   

Pour déterminer la teneur en analyte de l’échantillon d’origine, on cherche la quantité en 

analyte qu’il faudrait retirer de l’échantillon d’origine pour obtenir un signal nul (égale au 

signal du blanc). Après avoir déterminé mesx  pour lequel on a y = 0, on calculera l’écart-type 

lié à la détermination de cette teneur par : 

 

 
 

mes

2

résidus
x 2

xx

ys 1
s

m N m s
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L’écart-type est calculé à partir d’une courbe d’étalonnage comportant N points et où y  

représente la valeur moyenne de y pour les N données d’étalonnage. 
mesvs  peut concerner une 

masse, une concentration, une fraction molaire… 

 

I.3.2 Exemple 2 

 

On dose la concentration en argent d’un effluent photographique par absorption atomique. 

Dans le tableau suivant, xi représente la quantité d’argent ajouté (μg·mL-1) et yi l’absorbance 

résultante : 

 

Mesure ix   iy  2
ix  2

iy  i ix y  

1 0 0,32 0 0,1024 0 

2 5 0,41 25 0,1681 2,05 

3 10 0,52 100 0,2704 5,2 

4 15 0,60 225 0,3600 9 

5 20 0,70 400 0,4900 14 

6 25 0,77 625 0,5929 19,25 

7 30 0,89 900 0,7921 26,7 

Somme 105 4,21 2275 2,7759 76,2 

Moyenne 15 0,601 325 0,396 10,886 
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On détermine à partir du tableau les écart-type suivants : 

 

 
i N 2

2 2
xx i

i 1

s x N x 2275 7 15 700




       

 

 
i N 2

2 2
yy i

i 1

s y N y 2,7759 7 0,601 0,2475




       

 

  
i N

xy i i
i 1

s x y N x y 76,2 7 15 0,601 13,095




        

 

,
,

,
xy

xx yy

s 13 095
r 0 995

s s 700 0 2475
  


 

 

Dès lors on peut calculer la pente de la droite ainsi que son ordonnée à l’origine : y mx b   

 

xy

xx

s 13,095
m 0,0187

s 700
    

 

b y mx 0,601 0,0187 15 0,3205       

 

L’écart-type des résidus est donnée par : 

 

 22
yy xx

résidus

s m s 0,2475 0,0187 700
s 0,0233

N 2 7 2

  
  

 
 

 

On peut alors calculer les écart-types sur la pente et l’ordonnée à l’origine : 

 

   2 2

résidus
m

xx

s 0,0233
s 0,00088

s 700
    

 

 2
2

xx

b résidus
xx

S N x 700 7 15
s s 0,0233 0,0159

NS 7 700

  
  


 

 

L’équation de la droite d’étalonnage est : y 0,0187( 0,0009 )x 0,3205( 0,0159 )     
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Dans ce cas, la concentration en argent est obtenue pour y = 0 soit pour x = - 17,1390 μg·mL-

1. Tout ce passe comme si on devait enlever une concentration 17,1390 μg·mL-1 pour obtenir 

le signal du blanc. 

Le calcul de l’incertitude sur la concentration est : 

 

 
 mes

2
2

résidus
C 22

xx

ys 1 0,0233 1 0,601
s 1,5851

m N m s 0,0187 7 0,0187 700
    


 

 

En finalité on aura :   1
mesC 17,14  1,58 g·mL . 

 

Comme pour l’étalonnage externe, l’incertitude totale doit inclure l’incertitude sur la 

préparation de l’échantillon analysé. 

 

 

II Détermination des limites de détection et de quantification à 

l’aide d’une régression linéaire simple 

 

II.1 Définitions 

 

Les définitions des limites de détection et de quantification LOD et LOQ sont basées sur le 

signal d’un blanc utilisé comme référence pour les mesures analytiques : 

 

 blanc blancLOD y 3s   et   blanc blancLOQ y 10s  

 

Dans ces équations, yblanc et sblanc représentent le signal du blanc (souvent en ordonnée sur le 

graphique) et son écart-type. On déterminera alors, par essais successifs, la concentration en 

analyte dont le signal sera supérieur ou égal à LOD ou LOQ. 

 

II.2 Détermination de LOD et LOQ à partir de la courbe d’étalonnage 

 

Si l’on veut déterminer, les limites de détection et de quantification à partir d’une courbe 

d’étalonnage, on cherchera alors la concentration en analyte dont l’ordonnée correspond à 

LOD ou LOQ. 
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Considérons à présent que la courbe d’étalonnage suit l’équation : 

 

m by m( s )x b( s )     

 

Il faut alors chercher l’abscisse correspondant à LOD ou LOQ : 

 

         LOD blanc blanc LODLOD mx b y 3s mx b  

 

D’où : 

 

 
 blanc blanc

LOD

y 3s b
x

m
  et  

 
 blanc blanc

LOQ

y 10s b
x

m
 

 

Dans le cas où l’on n’a pas de mesure de yblanc et de sblanc, on peut estimer ces valeurs en 

utilisant la courbe d’étalonnage : yblanc=b et sblanc=srésidus.  

 

On aura alors : 

 

  ou   blanc résidus
LOD LOD

3s 3s
x x

m m
  et    ou   blanc résidus

LOQ LOQ

10s 10s
x x

m m
 

 

Lorsque xLOQ se situe dans une zone où il n’y a pas d’étalon, il est conseillé d’étalonner entre 

votre premier étalon et xLOQ afin de valider la linéarité du détecteur dans cette zone. Si la 

linéarité n’est pas vérifiée, alors xLOQ correspondra au signal le plus faible du domaine 

linéaire. 

 

 

III Exemple concret 

 

Un laboratoire d'analyse chimique est mandaté pour analyser la teneur en quinine d'un soda. 

Le dosage s'effectue par mesure de fluorescence. La solution analysée a été réalisée en 

prélevant 1 mL ( 0,01 mL) de soda pur dilué à 100 mL ( 0,1 mL). L'étalonnage du 

spectrofluorimètre se fait par la méthode de l'étalonnage externe. Le spectrofluorimètre donne 

la fluorescence de l'échantillon en fonction de la concentration de la solution étalon. La 

courbe d'étalonnage est traitée par une régression linéaire simple basée sur la méthode des 
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moindres carrés. Les concentrations des étalons à utiliser sont choisies en fonction de la 

linéarité du détecteur de l'appareil, elles sont en g·L-1. 1g = 110-6 g. 

 

Concentration en quinine de l’étalon (g·L-1) xi Fluorescence iy  

200 50 

400 90 

600 126 

800 173 

1000 210 

Moyenne = 600 Moyenne = 129,8 

 

On calcule Sxx, Syy, Sxy, r et R2 : 

 

   

   

     

, ,

,

,
,

,







    

    

    

  


 







N 2 22
xx i

i 1

N 2 22
yy i

i 1

N

xy i i
i 1

xy

xx yy

2 2

s x N x 2200000 5 600 400000

s y N y 100505 5 129 8 16264 8

s x y N x y 470000 5 600 129 8 80600

s 80600
r 0 9993

s s 400000 16264 8

R r 0 9986

 

 

En se basant sur r, on peut observer un fort couplage entre x et y à travers une fonction affine. 

De plus, la bonne valeur de R2 indique une faible dispersion des points mesurés autour de la 

droite de régression. 

A partir de ces calculs, on peut établir l'équation de la droite de régression : Fluorescence = 

f(concentration). L'équation de la droite est du type : y= mx + b. On donnera par la même les 

écart-types sur la pente et l'ordonnée à l'origine ainsi que Srésidus : 

 

xy

xx

s 80600
m 0,2015

s 400000
    

 

b y mx 129,8 0,2015 600 8,9000       
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 22
yy xx

résidus

s m s 16264,8 0,2015 400000
s 2,8225

N 2 5 2

  
  

 
 

 

   2 2

résidus
m

xx

s 2,8225
s 0,00446

s 400000
    

 

   
2

2
xx

b résidus
xx

s N x 400000 5 600
s s 2,8225 2,9603

Ns 5 400000

 
    


 

 

      quinineFluorescence 0,2015 0,0045 c 8,9 2,9603  
 

Une mesure effectuée à blanc montre que la fluctuation du signal conduit à un écart-type sur 

la fluorescence Sblanc de  0,0005. On peut donc déterminer la limite de détection et la limite 

de quantification de la quinine par cette méthode. 

 

 
   

 
   

-1blanc

-1blanc

3 S 3 0,0005
LOD 0,0074 g L

m 0,2015

10 S 10 0,0005
LOQ 0,0248 g L

m 0,2015





 

 

La solution de soda testée donne une fluorescence moyenne de 150. En utilisant l'équation de 

la droite d'étalonnage, on peut donner la concentration en quinine du soda analysé. Sachant 

que la fluorescence moyenne a été obtenue à partir de 5 répliquas, on peut donner l'écart-type 

sur la concentration mesurée : 

 

-1
diluée

Aire b 150 8,9
C 700,2481 g L

m 0,2015
 

     

 

   
mes

2 2

mes -1résidus
C 2 2

xx

y y 150 129,8s 1 1 2,8225 1 1
s 9,133 g L

m M N m s 0,2015 5 5 0,2015 40000


 
        


 

 

La solution analysée a été réalisée en prélevant 1 mL ( 0,01 mL) de soda pur dilué à 100 mL 

( 0,1 mL). La concentration en quinine du soda ainsi que son écart-type global seront : 
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prep

22 2 2
Vf -1V i

C diluée

i f

ss 0,01 0,1
s C 700,2481 7,0374 g L

1 100V V


                         
 

 

diluée mes prep

2 2 2 2 -1
C C Cs s s 9,133 7,0374 11,5298 g L       

  -1
diluéeC 700,2481 11,5298  g L    

 

-1
diluéeC 100 C 100 700,2481 70,02 mg L       

 

 
diluée

2 -1
C CS 100 s 100 11,5298 1,15 mg L       

 

   -1C 70,02 1,15 mg L  
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