Symmetry and Group Theory — Exercise Set 5, Solutions

5.1) Show that the nitrogen px and py orbitals in NH3 form the basis for an irreducible
representation of Ca,.

- - I " -
We write the two p orbitals as a vector (J_;), where W, respresents the radial part of the
T

wavefunction. We find that the following matrices for the symmetry operations.

coszn sinzn L E

1 0 1 0 3 3 Tz 2
E= = (3 = =

(0 1)’0” (0 —1)’ T\ sinE cos%ﬂ _¥B 1

2 2

The corresponding characters are y(E) = 2, x(o,) = 0, x(C3) = —1. The py and py orbitals therefore
form a basis for the irreducible representation E.

Alternative easy solution, which is possible if we have access to a character table and if the character
table shows transformation of Cartesian coordinates: Clearly, p, transforms as x and p,, transforms as

y. Inspecting the character table, we see that (x, y) transforms as the two-dimensional irrep E.

5.2) The characters y(R) of the representation of a direct product are the products of the
characters y{(R) and y,(R) of the representations for which the individual functions are the

basis, i.e. x(R)= x;(R)x,(R). Demonstrate this for one-dimensional (irreducible)
representations, where the proof is particularly simple.

X(R)XY = R(XY) = ROR(Y) = xy(R)X - x2(R)Y = 1 (R)x2(R)XY

hence y(R) = x1(R) - x2(R), where y; (R) is the character of I, y, (R) is the character of T,, and y(R)
is the characterof T =T} ® I.

5.3) In the Cs, point group, what are the characters of the representation belonging to the direct
productsA; ® A1, A1 ® A, A, ®E,EQE,andE ® E ® E? Which irreducible representations
are contained?

Cav E 2C; 3o
A 1 1 1
A 1 1 -1
E 2 -1 0
AL @A 1 1 1 |= M
AL ®A, 1 1 -1 | = Az
A, QE 2 -1 0 |=E
EQE 4 1 0 |=A DA, DE
EQE®E |8 -1 = A; DA, D3E




5.4) Determine the symmetry species (the irreducible representation(s)) of the carbon p orbitals
in CHa..

| E 8C: 3C. 65 6o
Fp=T. | 3 0 1 1 1

Easy solution: Clearly, p, transforms as x, p, transforms as y, and p, transforms as z. Inspecting the
character table, we see that (x,y, z) (which is also the vector representation I5..) transforms as the
three-dimensional irrep T». Hence the carbon p orbitals transform as To.

Alternative solution: If the character table did not show transformation of Cartesian coordinates,
effectively we would have to determine the characters of the vector representation.

(Below, the characters are found using a specific orientation of the molecule along x, y, z axes and the
clockwise convention from Ulrich Lorenz’s lecture notes for C5 rotation. While the matrices depend on
the choice, the characters do not depend on the choice of basis, which means that they do not depend
on the orientation of the molecule with respect to x, y, z axes or on the sense of rotation for C5.)

x(E) = 3 is trivial. To find the character of the Cs rotation, consider a Cartesian coordinate system
inscribed into a cube (with the CH4 hydrogens occupying four of the eight corners). We consider a
Cartesian coordinate system, because we know that the px, py, and p; orbitals are proportional to X, y,
and z, respectively. When viewed along the Cs axis, we recognize that the Cs rotation interchanges the
three Cartesian axes.

0 1 0
We therefore obtain €5 = (0 0 1), with y(C3) = 0.
1 0 0
Furthermore, it is easy to see that
-1 0 O
CZZ = 0 -1 0 ,Wlth X(CZZ) = —1,
0 0 1

0 1 0
s4z=<—1 0 0 ) with x(S,,) = —1; and

0 0 -1
0 -1 0

04 = (—1 0 0), with y(ay) = 1.
0 0 1

The transformation matrix for o; becomes apparent when viewing a cube along the —z direction, as
shown below.



5.5) Determine the symmetry species (the irreducible presentation(s)) of the four hydrogen 1s
orbitals in CHa..

| E 8C: 3C. 65 6o
4

This =
A+T>

Easy solution: The four hydrogen 1s orbitals form a basis for a four-dimensional permutation
representation. The character of symmetry operation R is the number of hydrogens that remain in their
original position. Therefore, e.g., x(C3) = 1 because only one hydrogen remains at its original place.
Likewise, we can fill in the rest of the characters in the table. Because there is no 4-dimensional irrep
of the point group of CH,, the representation must be reducible. Using the procedure for reduction, we
findthat’'=1-4, H1-T,

Alternative solution: We can find the characters in a more tedious way by evaluating the representation
matrices explicitly. (Below, we use again the convention from Ulrich Lorenz’s lecture notes.)

With the help of the sketches below, we find

0 0 0 1
(1 00 o) . _
Cs; = 00 1 0 , with y(C3) =1
0 1.0 O
01 0 0
(1 0 0 o) . _
CZZ_ 00 0 1 !WlthX(CZZ)_O
0 0 1 0
0 0 0 1
[0 0o 1 0\ . _
S4-Z_ 1 0 0 O 'WlthX(S4-Z)_O
01 0 O
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5.6) In the context of crystal or ligand field theory, we
frequently deal with the symmetry of the metal orbitals. For a
square planar complex ML, determine the irreducible
representations of the metal s, p, and d orbitals. In this case,
this can still be easily done by visual inspection. The shape of
the d orbitals is sketched to the right.

A square planar complex belongs to the point group Dan, which is
the direct product of the groups Ds and Ci, D,®C;, i.e. all the
symmetry operations in D4 and C; commute with the ones of the
other group. We can therefore solve the problem for the point group
D4 and then simply add the labels ‘g’ or ‘U’ to the irreducible
representations that we obtain.

In the following, we first find the characters of the reducible representations in D4 and determine the
irreducible representations. The characters for the additional symmetry operations in Dan are also listed
for completeness. However, they are simply derived by considering that upon inversion, an s orbital
remains unchanged (‘g’), a p orbital changes sign (‘U’), and a d orbital remains again unchanged (‘Q’).

We could determine the matrix representation as above by writing down the orbitals as a vector (the p
orbitals are proportional to x, y, or z; the d orbitals to xy, zy, yz, ...). However, the problem is simple

enough so that we can deduce the behavior just by visual inspection.

For the s orbital, we find,

D4 | Dan ‘ E 2C, C, 2Cy 2G| i 2S¢  on 20y 204
(=Cs%)
[s= Ar| Agg ‘ 1 1 1 1 1 ‘ 1 1 1 1 1
We conclude that the s orbital belongs to the representation Aug in Da.
For the p orbitals,
Ds | Dan ’ E 2C, C 2C,"  2Cy” i 28, on 200 204
(=Cs)
r 1 1 1

) 3 1 -1 1 a1 | 3 4
= A2+E | A2u+Eu



We conclude that the p orbitals belong to the representations A, and Ey in Dan.

For the d orbitals,

D4 | Dan ‘ E 2C, C, 2C,’ 2C” | i 25  on 20y 204
(=Cs)
Ty 5 -1 1 1 1 5 1 1 1 1
= A1+B1+Bo+E |
AagtBagtBagtEg

We conclude that the d orbitals belong to the representations Aig, B1g, B2g, and Eg in Dan.

5.7) Construct the qualitative MO diagram of CHs" (trigonal planar).

0) Point group? — Dsp

D3, E 2C; 3G, Oh 253 30,

(6) m2

A; 1 1 1 1 1 1 X+y, Z
Ab 1 1 -1 1 -1 R,

E’ 2 -1 0 2 -1 0 (% y) (x* - y?, 2xy)
Al 1 1 1T - -1 -1

A’ 1 1 -1 - -1 1 z

E” 2 -1 0 -2 1 0 (Rx Ry) (xz, y2)

1) Which AOs will contribute to the MOs of CH3z*?
Carbon 2s and 2py,,; orbitals as well the hydrogen 1s orbitals.

2) Use groups of symmetry equivalent orbitals as bases to form reducible representations. Then use the

reduction formula to determine which irreducible representations contribute.

The carbon 2s orbital is invariant under all symmetry operations and therefore belongs to the symmetry
species A:. Using the character table, we can also conclude that the 2p, orbital (proportional to z)

transforms according to A,”, while the 2px and 2py orbitals transform according to E’.

Finally, the three hydrogen 1s orbitals form the basis for a reducible representation with the following

characters.



oh 2Ss 3oy
1

2Cs  3C
3 0

Dsn ‘ E
This=A1r +FE 3 0 1
We find that the hydrogen 1s orbitals belong to the symmetry species A:” and E’.

3) Determine Symmetry Adapted Linear Combinations for groups of orbitals.
We can easily see that the hydrogen 1s orbitals with A;> symmetry, the correct Symmetry Adapted
Linear Combination is
Pp15(Ar) =51 +5; + 55

The two E’ orbitals must match the py and py orbitals (compare the character table).
®y15(ENy = 251 — 55 — 53

Dpy15(ENy =55 — 53

In order to get the correct coefficients for the individual orbitals, we have also used the fact that the

orbitals have to be orthogonal to each other and to the ®y;;,(A;") orbital.
o
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4) Construct a qualitative MO diagram.
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Homework

5.8) In the cyclopropenyl cation (CsHs*), the three carbon atoms form an equilateral triangle. One
can use the three carbon 2p; orbitals to construct the molecular & orbitals of the cyclopropenyl
cation.

a) Determine the symmetry species of these molecular & orbitals.

b) Draw a qualitative MO diagram for these 7 orbitals. In other words, draw an energy diagram
showing how the three p orbitals split up to form the molecular orbitals.

¢) Write down the Symmetry Adapted Linear Combinations (SALCs) of these & orbitals (neglect
normalization). Hint: You can figure the coefficients of the SALCs out by considering the shape
of atomic orbitals of the same symmetry species.

a) Point group Dasp.
Using the three carbon 2p; orbitals as a basis we obtain the following reducible representation.

Dah ‘ E 2C3 3C, oh 2S; 30y
T=A"+E” \3 0 -1 -3 0 1

With the help of the reduction formula, we find that the three p orbitals give rise to one molecular &
orbital of A,” symmetry as well as two degenerate £ orbitals.

b) We obtain the following MO diagram.

n(E)

carbon 2p

c) For the SALCs, we obtain

”(Az) =D1+p2+Dps3
n(E )1 =P1—P2
”(E")Z =p1+P2—2p3

The shape of the E" orbitals becomes clear when one considers that the dx, and dy, orbitals belong to
the same irreducible representation and that these two orbitals should be orthogonal to the A4, orbital.



5.9) A molecule ABs has a trigonal prismatic structure. Assume that the orbitals of atom A that
are involved in bonding are the 2s orbital and the three 2p orbitals. For the atoms B, assume
that each bond is with an s orbital.

a) Determine the symmetry species of all orbitals.
b) Draw a qualitative MO diagram. The exact energy ordering of the MOs is not important.

B//B
// Ii\\\B
B\B/

a) Point group Dasp.

Using the character table, we find that the 2s orbital on A has A:’ symmetry, the 2py and 2py orbitals
have E’ symmetry, and the 2p; orbital has A2~ symmetry.

Using the six s orbitals on the B atoms as a basis, we obtain the following reducible representation.

Dsn \E 2Cs 3C, on 253 30,
T=A +A " +E +E” ‘6 0 0 0 0 2

With the help of the reduction formula, we find that the six s orbitals give rise to one SALC of A;’
symmetry, one of A;’’ symmetry, two degenerate SALCs of £’ symmetry, and two of £’ symmetry.

b) We obtain the following MO diagram.




