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Symmetry and Group Theory – Exercise Set 4, Solutions 
 
4.1) Determine the classes of symmetry operations in C3v. 
 
𝐶!" = {𝐸, 𝐶!, 𝐶!#, 𝜎" , 𝜎"$ , 𝜎"′′}, ℎ = 6 
 
Since E commutes with every other element, it forms a class of its own. 
 
Since 𝐶! and 𝐶!# commute, their similarity transforms do not tell us anything new. 
 

(𝐶!#)%&𝐶!𝐶!# = 𝐶! 
𝐶!%&𝐶!#𝐶! = 𝐶!# 

 
We have more luck by transforming a rotation with a reflection. 
 
Solution using conventions from Ulrich Lorenz’s lecture notes: 
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Therefore,	𝐶! and 𝐶!# are conjugate. 
 
If we transform a reflection with a rotation, we obtain the following. 
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Upon close inspection of the result, we find that 𝐶!%&𝜎"'(𝐶! = 𝜎"$ , where 𝜎"$  is the second symmetry 
plane, which is rotated counterclockwise by #)

!
 with respect to 𝜎"'(. This can be easily verified by a 

geometrical construction, similar to the one in exercise 1.3 that we used to prove the formula for the 
rotation matrices. 
 
We could have predicted this result, since the expression 𝐶!%&𝜎"'(𝐶! simply represents a coordinate 
transformation of 𝜎"'(, in which 𝜎"'( is rotated counterclockwise by #)

!
. It is therefore clear that 

 
(𝐶!#)%&𝜎"'(𝐶!# = 𝜎"$$ 
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i.e. we obtain the third symmetry plane 𝜎"$$, which is rotated clockwise by #)

!
 with respect to 𝜎"'(. 

 
Solution using conventions from Jiří Vaníček’s lecture and handout: 
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Therefore,	𝐶! and 𝐶!# are conjugate. 
 
If we transform a reflection with a rotation, we obtain the following. 
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Upon close inspection of the result, we find that 𝐶!%&𝜎"

*(𝐶! = 𝜎"$ , where 𝜎"$  is the second symmetry 
plane, which is rotated counterclockwise by +)

!
 with respect to 𝜎"

*(. This can be easily verified by a 
geometrical construction, similar to the one in exercise 1.3 that we used to prove the formula for the 
rotation matrices. 
 
We could have predicted this result, since the expression 𝐶!%&𝜎"

*(𝐶! simply represents a coordinate 
transformation of 𝜎"

*(, in which 𝜎"
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!
. It is therefore clear that 

 
(𝐶!#)%&𝜎"
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i.e. we obtain the third symmetry plane 𝜎"$$, which is rotated counterclockwise by #)

!
 with respect to 

𝜎"
*(. 

 
 
We conclude that the three 𝜎" planes are all conjugate to each other. Moreover, since the order of a 
class has to be a divisor of the order of the group, the two conjugate 𝐶! rotations and the three conjugate 
𝜎" planes cannot belong to the same class. Otherwise, the order of this class would be 5. Instead, we 
conclude that 𝐶!" has the following three classes. 
 

{𝐸};	{𝐶!, 𝐶!#};	{𝜎" , 𝜎"$ , 𝜎"′′} 
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4.2) Show that by carrying out a similarity transform of one representation of a group 𝑮 =
	{𝑬, 𝑨, 𝑩, 𝑪,… }, one obtains an isomorphic representation 𝑮$ = {𝑬′, 𝑨′, 𝑩′, 𝑪′, … }. 
 
For every product 𝐴𝐵 = 𝐶 in the representation 𝐺, we can form a product 𝐴′𝐵′ = 𝐶′ in the new 
representation	𝐺′ 
 

𝐴$𝐵$ = 𝑋%&𝐴𝑋	𝑋%&𝐵𝑋 = 𝑋%&𝐴𝐵𝑋 = 𝑋%&𝐶𝑋 = 𝐶′ 
 
which demonstrates that both representations are isomorphic. (Note that the employed “similarity” 
matrix 𝑋 is the same for all matrices 𝐸, 𝐴, 𝐵, 𝐶, … in the original representation.) 
 
 
4.3) Find a three-dimensional representation of the group C3v by considering the corners of an 

equilateral triangle as a vector 𝒓 = -
𝟏
𝟐
𝟑
1. 

 
Solution using conventions from Ulrich Lorenz’s lecture notes: 
By considering how the different symmetry operations interchange the 
corners of the triangle, we arrive at the following representation of C3v. 

 

𝐸 = -
1 0 0
0 1 0
0 0 1

1, 𝐶! = -
0 0 1
1 0 0
0 1 0

1, 𝐶!# = -
0 1 0
0 0 1
1 0 0

1, 

 

𝜎" = -
1 0 0
0 0 1
0 1 0

1, 𝜎"′ = -
0 1 0
1 0 0
0 0 1

1, 𝜎"" = -
0 0 1
0 1 0
1 0 0

1 

 

 

Solution using conventions from Jiří Vaníček’s lecture and handout: 
 
We have the following representation: 
 

𝐸 = -
1 0 0
0 1 0
0 0 1

1, 𝐶! = -
0 0 1
1 0 0
0 1 0

1, 𝐶!# = -
0 1 0
0 0 1
1 0 0

1,  

 

𝜎" = -
1 0 0
0 0 1
0 1 0

1, 𝜎"′ = -
0 1 0
1 0 0
0 0 1

1, 𝜎"" = -
0 0 1
0 1 0
1 0 0

1 

 
 
 
4.4) Reduce the following reducible representation Γ of C3v. 
 

C3v E 2C3 3σv 
A1 1 1 1 
A2 1 1 -1 
E 2 -1 0 
Γ 6 3 -2 
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ℎ = 6 
 

𝑎& =
1
6
(1 ∙ 1 ∙ 6 + 2 ∙ 1 ∙ 3 − 3 ∙ 1 ∙ 2) = 1 

𝑎# =
1
6
(1 ∙ 1 ∙ 6 + 2 ∙ 1 ∙ 3 − 3 ∙ (−1) ∙ 2) = 3 

𝑎! =
1
6
(1 ∙ 2 ∙ 6 + 2 ∙ (−1) ∙ 3 − 3 ∙ 0 ∙ 2) = 1 

 
 
Homework 
 
4.5) Determine the point groups of the following molecules and objects. Which of these molecules 
and objects can have a permanent dipole moment and which are chiral? 
 
A Cs 
B C2 
C D3h 
D D∞h 
E C4v 
F C3 

G Oh 

H Td 

 
Permanent dipole moment: A, B, E, F 
Chiral: B, F 
 
4.6) If the order of a group is 𝒉, can that group have a class that also has order 𝒉? 
 
If the group is {E}, then yes, this obviously is the case. 
 
If the order of the group is larger than 1, ℎ	 > 	1, then the identity E always forms a class by itself, since 
𝑋%&𝐸𝑋	 = 	𝐸. Therefore, the number of elements of any other class must be smaller than ℎ. 
 
 
4.7) Show that in an Abelian group of order 𝒉, all irreducible representations are one 
dimensional. 
 
In an Abelian group, all elements are conjugate only to themselves since 𝑋%&𝐴𝑋	 = 	𝑋%&𝑋𝐴	 = 	𝐴. 
Therefore, the group has ℎ classes and therefore also ℎ irreducible representations (Rule 5). 
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4.8) Complete the character table of D3. Hint: Use the “Five important rules” for character tables 
that we have derived using the great orthogonality theorem. Explain how you arrive at the 
solution. Finding the correct labels for the irreducible representations is not required. 
 
 

D3 E 2C3 3C2 

 

 
 

 
 
 
Every group has a totally symmetric representation: 
 

D3 E 2C3 3C2 
A1 1 1 1 
    
    

 
Since the number of classes must be equal to the number of irreducible representations (Rule 5), we 
know that there are two more representations. In other words, the character table is square. 
 
Moreover, since the sum of the squares of the dimensions of all representations must be equal to the 
order of the group (Rule 1), we can conclude that one of the remaining representations must be one-
dimensional, the other one two-dimensional (1# + 1# + 2# = 6 is the only solution). Then, we use the 
fact that the character of 𝐸 is equal to the dimension of the representation:  
 

D3 E 2C3 3C2 
A1 1 1 1 
A2 1   
E 2   

 
We can fill in the rest of the table by recalling that the rows must be orthogonal to each other (Rule 3) 
and that each row itself must be normalized to the group order (Rule 2). Alternatively, we can use the 
orthogonality of columns of the character table, which says that ∑ 𝜒,(𝑅)∗𝜒,(𝑆) = 0,  if 𝑅 and 𝑆 belong 
to different conjugacy classes and ∑ 𝜒,(𝑅)∗𝜒,(𝑅) = ℎ/𝑛.(0), , where the sums go over the irreps and 
𝑛.(0) is the number of elements of the conjugacy class of 𝑅: 
 

D3 E 2C3 3C2 
A1 1 1 1 
A2 1 1 -1 
E 2 -1 0 

 


