Symmetry and Group Theory — Exercise Set 4, Solutions

4.1) Determine the classes of symmetry operations in Cs,.

C3, = {E,C3,C2,0,,0),0,’},h=6

Since £ commutes with every other element, it forms a class of its own.

Since C3 and €2 commute, their similarity transforms do not tell us anything new.
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We have more luck by transforming a rotation with a reflection.

Solution using conventions from Ulrich Lorenz’s lecture notes:
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Therefore, C; and C? are conjugate.

1

1 0
0 -1
0 O

If we transform a reflection with a rotation, we obtain the following.
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Upon close inspection of the result, we find that C3 10 ?C5; = o, where o, is the second symmetry
plane, which is rotated counterclockwise by ?ﬂ with respect to g%, This can be easily verified by a
geometrical construction, similar to the one in exercise 1.3 that we used to prove the formula for the

rotation matrices.

We could have predicted this result, since the expression C3 10%C5 simply represents a coordinate
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transformation of ¢;7%, in which g% is rotated counterclockwise by ?n It is therefore clear that

(CHo3C} = o



i.e. we obtain the third symmetry plane a,,’, which is rotated clockwise by ?n with respect to o;%.

Solution using conventions from Jifi Vanic¢ek’s lecture and handout:
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Therefore, C3 and C? are conjugate.

If we transform a reflection with a rotation, we obtain the following.
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Upon close inspection of the result, we find that C; 10, ”C; = oy, where o, is the second symmetry
D . am . . . .
plane, which is rotated counterclockwise by ?n with respect to o, “. This can be easily verified by a

geometrical construction, similar to the one in exercise 1.3 that we used to prove the formula for the
rotation matrices.

We could have predicted this result, since the expression C; 1o, ”C; simply represents a coordinate

. . . . . 4 .
transformation of o, *, in which o, * is rotated counterclockwise by ?n It is therefore clear that
() et = oy

i.e. we obtain the third symmetry plane a,,, which is rotated counterclockwise by ?n with respect to
vz
o, .

We conclude that the three g, planes are all conjugate to each other. Moreover, since the order of a
class has to be a divisor of the order of the group, the two conjugate C; rotations and the three conjugate
0, planes cannot belong to the same class. Otherwise, the order of this class would be 5. Instead, we
conclude that C3,, has the following three classes.

{E}r {631 63‘2}' {0'1], 0-1;' 0-17”}



4.2) Show that by carrying out a similarity transform of one representation of a group G =
{E,A, B, (C, ..}, one obtains an isomorphic representation ' = {E',A’,B’,C’, ... }.

For every product AB = C in the representation G, we can form a product A'B’ = C' in the new
representation G’

AB' =X 1AX X 'BX =X"1ABX =X"CxX =

which demonstrates that both representations are isomorphic. (Note that the employed ““similarity”
matrix X is the same for all matrices E, 4, B, C, ... in the original representation.)

4.3) Find a three-dimensional representation of the group Cj;, by considering the corners of an

1
equilateral triangle as a vector r = (2)
3

Solution using conventions from Ulrich Lorenz’s lecture notes:
By considering how the different symmetry operations interchange the
corners of the triangle, we arrive at the following representation of Cs,,

1 0 0 0 0 1 01 0
E=|0 1 0),C=[1 0 0}),c2=(0 0 1)
0 0 1 010 10 0

1 0 0 010 0 0 1
o,=(0 0 1)o,/=|1 0 0)ag,"=(0 1 0
0 10 0 0 1 1 0 0

Solution using conventions from Jifi Vanic¢ek’s lecture and handout:

We have the following representation:
1 0 0 0 0 1 0 1 0 .
E={0 1 0)cz=(1 0 o)cz=(0 o 1]} L
0 0 1 0 1 0 1 0 0 >£<
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o,=(0 0 1)o,/=|1 0 0)ag,"=(0 1 0 ¥
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4.4) Reduce the following reducible representation I' of Cs,.

Cs, E 2Cs 3oy
Ay 1 1 1
A 1 1 -1
E 2 -1 0
r 6 3 -2




h=26

1
a=(1-1:6+2:1-3-3-1-2) =1

1
ay=7(1+1:6+2:1:3-3(-1)+2) =3

1
a3=7(1:2:6+2:(-1)-3-3-0-2) =1

Homework

4.5) Determine the point groups of the following molecules and objects. Which of these molecules
and objects can have a permanent dipole moment and which are chiral?
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Permanent dipole moment: A, B, E, F
Chiral: B, F

4.6) If the order of a group is h, can that group have a class that also has order h?
If the group is {E}, then yes, this obviously is the case.
If the order of the group is larger than 1, h > 1, then the identity £ always forms a class by itself, since

X"1EX = E. Therefore, the number of elements of any other class must be smaller than h.

4.7) Show that in an Abelian group of order h, all irreducible representations are one
dimensional.

In an Abelian group, all elements are conjugate only to themselves since X 1AX = X 1XA = A.
Therefore, the group has h classes and therefore also h irreducible representations (Rule 5).



4.8) Complete the character table of Ds. Hint: Use the “Five important rules” for character tables
that we have derived using the great orthogonality theorem. Explain how you arrive at the
solution. Finding the correct labels for the irreducible representations is not required.

D; E 2C; 3C;

Every group has a totally symmetric representation:

D; E 2C; 3C;
A 1 1 1

Since the number of classes must be equal to the number of irreducible representations (Rule 5), we
know that there are two more representations. In other words, the character table is square.

Moreover, since the sum of the squares of the dimensions of all representations must be equal to the
order of the group (Rule 1), we can conclude that one of the remaining representations must be one-
dimensional, the other one two-dimensional (12 + 12 + 22 = 6 is the only solution). Then, we use the
fact that the character of E is equal to the dimension of the representation:

p; |E 20 30
A |1 1
A |1

E 2

We can fill in the rest of the table by recalling that the rows must be orthogonal to each other (Rule 3)
and that each row itself must be normalized to the group order (Rule 2). Alternatively, we can use the
orthogonality of columns of the character table, which says that },; x; (R)*x;(S) = 0 if R and S belong
to different conjugacy classes and Y;; x;(R)*x;(R) = h/n.(g), where the sums go over the irreps and
N (g) 1s the number of elements of the conjugacy class of R:

p; |E 20 30
A |1 1
A |11 1
E 2 0



