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Symmetry and Group Theory – Exercise Set 3, Solutions 
 

 
3.1) Show that all molecules are chiral that do not possess an Sn axis. 
 
We can easily show that all molecules with an Sn axis are achiral. 
 

𝐶!"#𝑆! = 𝐶!"#𝐶!𝜎 = 𝜎 
 
In other words, if one performs an 𝑆! rotation followed by a 𝐶!"# rotation, one obtains the mirror image 
of the original configuration. That means that the molecule and its mirror image are superimposable. 
Hence, the molecule is achiral. 
Since the only two symmetry elements are 𝐶! and 𝑆! axes (with 𝜎 = 𝑆# and 𝑖 = 𝑆$), all other molecules 
without 𝑆! axes must be chiral. 
 
3.2) Determine the point group of 1,3,5,7-tetramethylcyclooctatetraene. Show that the molecule 
is achiral even though it does not have a reflection plane or a center of inversion. 
 
Point group S4. 
 
 

 
 

 
3.3) Sketch the dipole moment in NH3, phenol, PPh3. 
 
Note that we use the convention that the dipole points from the negative to the positive charge. 
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3.4) Show that the group multiplication table of 𝑪𝟐𝒗 = {𝑬, 𝑪𝟐, 𝝈𝒗(𝒙𝒛), 𝝈𝒗(𝒚𝒛)} is the one given 
below. Show this by expressing the symmetry operations by transformation matrices acting on a 

point in Cartesian coordinates 1
𝒙
𝒚
𝒛
2. 

C2v E C2 σv(xz) σv(yz) 

E E C2 σv(xz) σv(yz) 

C2 C2 E σv(yz) σv(xz) 

σv(xz) σv(xz) σv(yz) E C2 

σv(yz) σv(yz) σv(xz) C2 E 

 
 
Filling out the first column and the top row is trivial, since 𝐴𝐸 = 𝐸𝐴 = 𝐴. Moreover, we have 
 
 

𝐸 =	6
1 0 0
0 1 0
0 0 1

9, 𝐶$ =	6
−1 0 0
0 −1 0
0 0 1

9, 𝜎'(𝑥𝑧) = 	6
1 0 0
0 −1 0
0 0 1

9, 𝜎'(𝑦𝑧) = 	6
−1 0 0
0 1 0
0 0 1

9 

 
 
Clearly, for the 𝐶$' point group, 𝐴$ = 𝐸 for any element 𝐴, which explains the diagonal. Furthermore, 
we note that 𝐶$' is Abelian. Therefore, 
 

𝐶$𝜎'(𝑥𝑧) = 𝜎'(𝑥𝑧)𝐶$ =	6
−1 0 0
0 −1 0
0 0 1

96
1 0 0
0 −1 0
0 0 1

9 = 6
−1 0 0
0 1 0
0 0 1

9 = 𝜎'(𝑦𝑧) 

 

𝐶$𝜎'(𝑦𝑧) = 𝜎'(𝑦𝑧)𝐶$ =	6
−1 0 0
0 −1 0
0 0 1

96
−1 0 0
0 1 0
0 0 1

9 = 6
1 0 0
0 −1 0
0 0 1

9 = 𝜎'(𝑥𝑧) 

 

𝜎'(𝑥𝑧)𝜎'(𝑦𝑧) = 𝜎'(𝑦𝑧)𝜎'(𝑥𝑧) = 	6
1 0 0
0 −1 0
0 0 1

96
−1 0 0
0 1 0
0 0 1

9 = 6
−1 0 0
0 −1 0
0 0 1

9 = 𝐶$ 

 
 
 
 
3.5) Show that (𝑨𝑩𝑪)"𝟏 = 𝑪"𝟏𝑩"𝟏𝑨"𝟏. 
 

𝐴𝐵𝐶[𝐶"#𝐵"#𝐴"#] = 𝐴𝐵𝐵"#𝐴"# = ⋯ = 𝐸 
 
Therefore, 𝐶"#𝐵"#𝐴"# is the reciprocal of 𝐴𝐵𝐶, or (𝐴𝐵𝐶)"# = 𝐶"#𝐵"#𝐴"#. 
 
 
 
 



Symmetry and Group Theory, Exercise Set 3 3 

3.6) Are the natural numbers ℕ = {𝟏, 𝟐, 𝟑, … } a group with respect to multiplication? 
 

1) Completeness: 𝑛# ∙ 𝑛$ = 𝑛) ✔ 
2) Neutral element: 𝑛 ∙ 𝐸 = 𝑛, therefore 𝐸 = 1 ✔ 
3) Associative law: (𝑛#𝑛$)𝑛) = 𝑛#(𝑛$𝑛)) ✔ 
4) Reciprocal element: 𝑛 ∙ 𝑛"# = 𝐸 = 1, therfore 𝑛"# = #

!
, but #

!
∉ ℕ X 

 
Because the last condition is not fulfilled, ℕ does not form a group with respect to multiplication. 
 
 
 
3.7) Are the integers ℤ = {… ,−𝟐,−𝟏, 𝟎, 𝟏, 𝟐, … } a group with respect to addition? 
 

1) Completeness: 𝑧# + 𝑧$ = 𝑧) ✔ 
2) Neutral element: 𝑧 + 𝐸 = 𝑧, therefore 𝐸 = 0 ✔ 
3) Associative law: (𝑧# + 𝑧$) + 𝑧) = 𝑧# + (𝑧$ + 𝑧)) ✔ 
4) Reciprocal element: 𝑧 + 𝑧"# = 𝐸 = 0, therfore 𝑧"# = −𝑧 ✔ 
5) Commutativity: 𝑧# + 𝑧$ = 𝑧$ + 𝑧# ✔ 

 
ℤ forms a group with respect to addition. Moreover, ℤ is Abelian. 
 
 
3.8) Name subgroups of C2v. 
 
Subgroups of C2v = {E, C2, σv, σv’} are C1 = {E}, Cs = {E, σv}, and C2 = {E, C2}. 
 
 
3.9) A , B, and C are elements of a group. Prove that if A is conjugate with B and A is conjugate 
with C, then B is conjugate with C. 
 
Since 𝐴 = 𝑋"#𝐵𝑋 and 𝐴 = 𝑌"#𝐶𝑌, it follows that 
 

𝑋"#𝐵𝑋 = 𝑌"#𝐶𝑌 
 
By left-multiplying with 𝑋 and right-multiplying with 𝑋"#, we obtain 
 

𝐵 = (𝑋𝑌"#)𝐶(𝑌𝑋"#) 
 
Since 𝑋𝑌"# must be another element of the group, say 𝑍 
 

𝑋𝑌"# = 𝑍 
 
and 𝑌𝑋"# =	(𝑋𝑌"#)"#, we find 
 

𝐵 = (𝑋𝑌"#)𝐶(𝑌𝑋"#) = 𝑍𝐶𝑍"# 
 
Therefore, B and C are conjugate. 
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3.10) Determine the multiplication table of the group G3 = {E, A, B}. What can you tell about the 
properties of this group? Determine the classes of G3. 
 
It is easy to fill out the first column and row of the multiplication table. 
 

G3 E A B 
E E A B 
A A   
B B   

 
In order to find the product A·A, we consider the different possibilities. This becomes simple when we 
consider that in each row and column of a group multiplication table, each element must appear exactly 
once. (Prove that this is the case!) 
 
If we choose 𝐴 ∙ 𝐴	 = 𝐸, we would therefore get 𝐵 ∙ 𝐴	 = 𝐵 in the second column, so that 𝐴	 = 𝐸. 
However, 𝐴 has to be different from 𝐸. 
 
Similarly, if we choose 𝐴 ∙ 𝐴	 = 𝐴, this also leads to 𝐴	 = 𝐸. 
 
This only leaves 𝐴 ∙ 𝐴	 = 𝐵. Filling out the rest of the table is straightforward. 
 

G3 E A B 
E E A B 
A A B E 
B B E A 

 
 
We can see that G3 is cyclic and therefore Abelian. 
 
Since G3 is Abelian, 𝑋!"𝐴𝑋 = 𝑋−1𝑋𝐴 = 𝐴. Therefore, every element forms its own class. 
 
 
 
Homework 
 
3.11) Determine the point groups of the following molecules and objects. 
 
A C2v 
B C3h 
C C1 
D C∞v 
E C2h 
F D4d 

G Ci 

H D2d 
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3.12) Construct the group multiplication table of the point group C2h. Determine the classes of 
the point group C2h. 
 
 

C2h E C2 i σh 

E E C2 i σh 

C2 C2 E σh i 

i i σh E C2 

σh σh i C2 E 

 
 
The point group C2h is Abelian (multiplication table symmetric with respect to the diagonal). Since all 
the elements commute, every element is only conjugate with itself. The classes of C2h therefore are {E}, 
{C2}, {i}, {σh}. 
 
 
3.13) Which point group is obtained if one deletes the inversion operation i from the point group 
S6? 
 
If we lower the symmetry of a molecule, its new point group must be a subgroup of its original point 
group. The subgroups of S6 are C1, Ci, and C3. Since the new point group does not have a center of 
inversion, it must be either C1 or C3. Since we did not delete any operation associated with the C3 axis, 
the new point group must be C3. 
 

3.14) Show that the numbers {𝒄, 𝒄𝟐, 𝒄𝟑, … , 𝒄𝒏}	with 𝒄 = 𝒆𝒊
𝟐𝝅
𝒏  and integer n form a group with 

respect to multiplication. 
 

1) Completeness, any product 𝑐-𝑐. = 𝑐-/. is another element of the group since 𝑝 + 𝑞 is another 
integer and since 𝑒0

$%
& /0$12 = 𝑒0

$%
&  for any 𝑘 ∈ ℤ. 

2) Existence of a neutral element, 𝐸 = 𝑐! = 1 and 1 is the neutral element for multiplication of 
complex numbers. 

3) Multiplication of complex numbers is associative. 
4) Every element has a reciprocal, (𝑐-)"# = 𝑐"- = 𝑐!"-. 

 
The point group 𝐶! is cyclic, generated by the rotation 𝐶!. The isomorphism Γ: 𝐶! → {𝑐, 𝑐$, … , 𝑐!}, 
Γ]𝐶!2^ = 𝑐!2, is a 1-dimensional representation of the point group 𝐶!. 
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3.15) Show that 𝑮	 = 	 {𝟏, −𝟏, 𝒊, −𝒊} is a group with respect to multiplication. Here, i refers to the 
complex number with 𝒊𝟐 = −𝟏. 
 
a) First, write down the group multiplication table. 
b) Then show that G meets all the criteria for the definition of a group. 
c) Which special properties does the group G have? 
 
 
a)  

G 1 i -1 -i 

1 1 i -1 -i 

i i -1 -i 1 

-1 -1 -i 1 i 

-i -i 1 i -1 

 
 
b) 
 

1) Completeness as demonstrated by the group multiplication table 
2) Existence of a neutral element, 𝐸 = 1 
3) Multiplication of complex numbers is associative. 
4) Every element has a reciprocal, (1)"# = 1, (𝑖)"# = −𝑖, (−1)"# = −1, (−𝑖)"# = 𝑖 

 
c) The group is cyclic (all elements are powers of 𝑖) and therefore also Abelian. 
 
The point group 𝐶3 is cyclic, generated by the rotation 𝐶3. The isomorphism Γ: 𝐶3 → {1,−1, 𝑖, −𝑖}, 
Γ]𝐶32^ = 𝑖2, is a 1-dimensional representation of the point group 𝐶3. (That can also be obtained from 
exercise 3.14, by taking 𝑛 = 4, in which case 𝑐 = 𝑖.) 
 
 


