

Mathematical methods in chemistry. Exam for Part I.

Total = 90 points

April 8, 2025

You do not need to derive any formulas in the provided **formula sheet** or **hints on page 2**.

Problem 1 (30 points)

Let $f(x) = \sin(x/2)$ for $-\pi < x \leq \pi$ and $f(x + 2\pi) = f(x)$ for all $x \in \mathbb{R}$.

(a) Find the Fourier series of $f(x)$.
(b) To what values does this Fourier series converge at $x = 0$ and $x = \pi$?

Now let $g(t) = \sin(t/2)$ for all $t \in \mathbb{R}$.

(c) Find the Laplace transform of $g(t)$.

Problem 2 (30 points)

Consider the motion in a harmonic potential with friction, where a particle of mass m feels both the harmonic force $F_1 = -kx(t)$ and friction force $F_2 = -\gamma v(t)$, proportional to the velocity $v(t) = \dot{x}(t)$. Displacement $x(t)$ of the particle satisfies the ordinary differential equation (ODE)

$$m\ddot{x}(t) = F_1 + F_2.$$

Assume that $m = k = 1$, $\gamma = 2$, and that the initial displacement and velocity are $x(0) = 0$ and $\dot{x}(0) = 1$. (Do not solve the problem for general values of parameters.)

(a) Use the **Laplace transform** to solve this ODE, i.e., find the function $x(t)$ explicitly.
(b) What is the velocity of the particle at time t ?
(c) What are the limiting values of the displacement and velocity at infinitely long times?
(d) What is the maximum displacement $x(t)$ of the particle?
(e) Plot (by hand) the displacement $x(t)$ as a function of time t .

All answers should be expressed in terms of t only.

Problem 3 (30 points)

Use the **method of separation of variables** and **Fourier series** to solve the wave equation

$$\frac{\partial^2 y(x, t)}{\partial t^2} = \frac{\partial^2 y(x, t)}{\partial x^2}, \quad 0 < x < \pi, t > 0,$$

with boundary conditions

$$\left. \frac{\partial y(x, t)}{\partial x} \right|_{x=0} = 0 \quad \text{and} \quad \left. \frac{\partial y(x, t)}{\partial x} \right|_{x=\pi} = 0 \quad \text{for } t \geq 0$$

and initial conditions

$$y(x, 0) = [\sin(x)]^2 \quad \text{and} \quad \left. \frac{\partial y(x, t)}{\partial t} \right|_{t=0} = 0 \quad \text{for } 0 \leq x \leq \pi.$$

Hints for Problems 1 to 3

General solutions of homogeneous ODEs ($k \in \mathbb{R}$; $n \in \mathbb{N}$; a and b are arbitrary constants):

$$\frac{d}{dx}y(x) + k x^n y(x) = 0 \quad \text{has a general solution} \quad y(x) = a e^{-kx^{n+1}/(n+1)},$$

$$\frac{d^2}{dx^2}y(x) + k^2 y(x) = 0 \quad \text{has a general solution} \quad y(x) = a \cos(kx) + b \sin(kx),$$

$$\frac{d^2}{dx^2}y(x) - k^2 y(x) = 0 \quad \text{has a general solution} \quad y(x) = a e^{kx} + b e^{-kx}.$$