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Lecture 1: Laplace transform
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Why should one study Laplace transforms in physical
chemistry and chemical engineering?

Definition and basic properties of the Laplace transform
Heaviside function
Inverse Laplace transform

Why study Laplace transforms?

(1) Chemical kinetics:

Given initial concentrations of 4, B, C,..., what are their
concentrations at time ¢?

Examples:
(a) Reversible reaction:

(b) Consecutive reaction:

Why study Laplace transforms?

(2) Molecular dynamics (e.g., vibrations)

Given initial positions 7;(0) and velocities v;(0) of atoms, what
are their positions 7;(?) and velocities v;(t) at time t?



Why study Laplace transforms?

(3) Chemical engineering (solve partial differential equations)

What is the temperature dependence on position r and time ¢ in a
material or reaction vessel?

Definition of the Laplace transform

Definition: F(s) is a Laplace transform of f(t) and we write
LIf@®)] = F(s) if
F(s) = fooo f(He stdt.

This defines a mapping L: f(t) = F(s). Note that f(t) has to be
a “suitable” function so that the integral is well defined. This is
so, e.g., if f(t) is of “exponential order,” i.e., if there are positive
constants C and M such that

|f(t)| < CeMt forallt > 0.

Example 1: f(t) = 1.

F(s) = LIF(O)] = f 1. estdt = —

0

Basic properties of the Laplace transform

(1) Linearity: L[af (t) + bg(t)] = aL[f(t)] + bL[g(t)]
Proof: Using the linearity of the integral, we have
LHS = [[af (t) + bg()]e~st dt
=a fooof(t)e‘“ dt+ b fooog(t)e‘“ dt = RHS
(Note that one should also prove the existence of the LHS.)
Example 2: Laplace transform of sin t, cos t:
Use a trick—recall that e'* = cost + isint and linearity:

@ (i-s)t «©

Llcost] +iL[sint] = L[et] = f elte=st dt = —

0 0

_ s+i _s+i_ S + i
S (s—=1D(s+i) s24+1 s2+1 s2+1

Basic properties of the Laplace transform

dTL
Q@) LIt"f (O] = (=1)"ZF(s)
Proof by induction:
(a) Forn = 0, L[f(t)] = F(s) is just the definition of LT.

(b) Assume that the claim holds for n = k,i.e.,, L[t*f(t)] =
(—1Dkd*F(s)/ ds*. Let us prove it forn = k + 1:

LILF1f ()] = f tht1f(t)e st dt = _4 thf(t)e st de

ds
0 0
__ 94 1k __ 4 \kde — (_qyk+1 €
= —S LI O] = = (D 7 F(s) = (=D 7 F(s).
where we used the relation % e™St = —teSt in the second step

and the induction assumption in the penultimate step.



Basic properties of the Laplace transform

Example 3: f(t) = t™

dan d™ 1
L[] = L[em - 1] = ()" o L[] = (= Dnﬁ?
DD n!
T 2 "'n=5n+1

(3) First shift theorem: L[e P! f(t)] = F(s + b)

Proof LHS = [ e~Ste ™t f(¢) dt = fOOO e~ (D)t £(1) dt = RHS.
Example 4: g(t) = t"e%

L[t"e®] = L[e¥f(t)]=F(s—a) = #

Exercise: Derive it from L[t"e%] = L[t"f(¢)] with f(t) = e®.

Basic properties of the Laplace transform

(4) Change of scale: L[f(at)] = %F G)

Proof'is an exercise.

Example 5: g(t) = sin(wt)

Note that g(t) = f(wt), where f(t) = sint.
L[sin(wt)] = %F (i> ! ! -2

w

w(£)2+1_52+a)2
w
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Basic properties of the Laplace transform

(5) Laplace transform of a derivative
[dtn f(t)l =s"F(s) — Sn_lf(()) _ s"‘zf’(O) —_———— f(n—l)(o)

Proof by induction:
(a)n = 0: L[f(t)] = F(s) is the definition of the LT.
(b) Assume the claim holds for n = k. Let’s prove it forn = k + 1:

Lus = £[ £ 7)) = [ FE D@t de = FO e +
[ f@@sestde = —=f0O0) + sL[F R (©)] = —F 9 (0) +

s[skF(s) = sk71f(0) — - — Fk=D(0)] = s¥+1 F(s) — s¥£(0) —
. — f(k)(()) = RHS

Basic properties of the Laplace transform

LIf'®)] = sF(s) — f(0)

LIf" ()] = s*F(s) — sf(0) — £'(0)

LT of a derivative is extremely important in chemical kinetics
because it transforms linear differential equations to algebraic
equations.

Example 6:

Example 7: If f(t) = sin(wt) then, by ex. 5, F(s) = #
Also, f'(t) = w cos(wt) and, by ex. 6,
Llw cos(wt)] = LIf'(t)] =sF(s) — f(0) =s

Hence L[cos(wt)] =

@ 0
s2 + w?

2+0)2
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Basic properties of the Laplace transform

(6) Laplace transform of an integral: £ [ f Ot f(uw) du] = @

Proof: Define g(t) := [, f(u) du. Then g(0) = 0, g'(t) = f(t).
F(s) = LIf®)] = L[g'(©)] = sG(s) — g(0) = 5G(s)

Hence G(s) = @ , QED.

DIfL [@] — 0 as s = oo, then £ [@] = fsoo F(u) du.
Proof: Define g(t) := f(t)/t, use (2) and integrate from s to co:

d d
F(s) = LIF@] = Lltg(®)] = - —Llg®)] = =L [&tﬂl

o -] -
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Basic properties of the Laplace transform

Example 8: Find LT of sinct := (sint)/t.
Define f(t) := sint and use (7) with F(s) =

2+1

Slnt j _ " ® tos = t1
211 arcgus—2 arcgs—arcgs

t .
Example 9: Find LT of the sine integral Si(t) = ] 2 du
0

Define f(t) = (sint)/t and use (6) and Ex. 8:

1 1
L[Si(t)] =——= ;arctg;
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Heaviside function

Heaviside step function is defined by:
h(t) =0 for t <O,
h(t) =1 for t=>0.

Laplace transform: L[h(t)] = L[1] = %

Shifted Heaviside function:

h(t—ty) =0 for t<t,

h(t —ty) =1 for t=>t,.

Exercise: Find L[h(t — t,)] for t, = 0.

Interpretation: h(t — ty)f (t) “turns on” f(t) at time ¢t

Second shift theorem

(8) Second shift theorem: L[h(t — t,)f(t — ty)] = e St F(s)
(if t, > 0).

Proof: LHS = [ h(t — to)f (t — to)e ™t dt
= ft(;of(t —ty)e Stdt = fooof(u)e_s(t0+u) du = RHS,

where we used the definition of h and substitution u = t — t.
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Inverse Laplace transform

Definition: If F(s) is the Laplace transform of f(t), F(s) =
L[f(t)], then f(t) is said to be the inverse Laplace transform of
F(s) and we write L71[F(s)] = f(b).

Properties of the inverse Laplace transform: L™1[F(s)]:

—_

) 1s linear,

2) is unique (up to “null’> functions n(t) for which L[n(t)] = 0),
3) may not exist; a necessary condition: F(s) — 0 for s - oo,
(unless we use “generalized functions,” see next lecture)

4) can be hard to find.
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Inverse Laplace transforms

Example 10: F(s) = = =L what is L7YF(s)]?

+25-8
. . s—-1 a b 5 1
Partial fractions: F(s) = GG sia + 2 a= p b = e

o
Linearity: L7'[F(s)] = aL™! [ ]+b£— [ 2]
Shift theorem:

-1 _ a4t p-1]1 2e0p-1 1] 2 5 54 . 1 2t
LF($)] = ae™ L7 [+ be L7 [H] = 2o 4 2e

where we used L[1] = % in the last step.
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Inverse Laplace transforms

Example 11: F(s) = what is L71[F(s)]?

2+6 +9’
1 3

Partial fractions: F(s) = W =53 (13)7

Linearity: L™ [F(s)] = L™ [m

1
(s+3)2]
Shift theorem:

L7YF(s)] = e~3tL1 E] — 3e-3tL-1 [Siz] = e3t(1 - 3p),

where we used L[1] = % and L[t] = Siz in the last step.
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Inverse Laplace transforms

Example 12: F(s) = ——;, what is L71[F(s)]?

« _12_1p

Partial fractions: F (S) = GtOG-a)  s-a  sta

Linearity: L7[F(s)] = —L“ L a] —=-L£7t [S+a
Shift theorem (3) and/or ex. 4:

LTUF(s)] =3 (e% — e L7 [3] = 2 (e — e74) = sinh(at).
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Limiting theorems

If you do not know F () explicitly, it is nice to know its behavior
for large or small values of s.

(9) Initial value theorem: f(0) = lim sF(s)
s$§—>00

Proof: We know that sF(s) — f(0) = L[f'(t)]. Assuming that f

is of exponential order, |f'(t)| < CeMt, we have:

LI O = | [, e™stF @) dt] < [ le st (D] dt <

w0 _ c
CJ, esteMdt=———->0ass—>
0 M-s ’

hence
lim[sF(s) = £(0)] = 0.

Limiting theorems
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(10) Final value theorem: tlim f() = lin&sF (s) if the limits exist.
—00 S—

Proof: See the book by Dyke.

Example 13: f(t) = e7t = F(s) = L[f(t)] = ;11
Check (9):
oo = 1= lim 75

Check (10):

lime™t = 0 = lim
t—o0 s>01+s
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