
Numerical methods in chemistry. Exercises 6

Problem 1

Using separation of variables and the Fourier method, solve the boundary value problem describing heat
conduction:
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= 0 for all time.

Hint : Use the methods you have learned to determine the Fourier sine series representation of the function
f(x) := x
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)
on the (nonstandard) interval
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]
.

Problem 2

Use the Laplace transform to solve the PDE describing heat conduction
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with boundary conditions φ(x, 0) = 0, φ(0, t) = 1, t > 0 and

lim
x→∞

φ(x, t) = 0.

Hint : You will need the inverse Laplace transform L−1
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, where the complementary

error function is defined by
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Express the solution in terms of erfc(x); do not try to simplify it further.
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