Numerical methods in chemistry. Solutions to exercises 4

Problem 1

Applying Laplace transform to both sides of the ODE leads to
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Since y(0) = 3 and 3'(0) = 1 we get

6
(2 +1)Y(s) = —— +3s5+1,

s2+4
6 3s 1
Y(s) = .
() (s2+4)(s2+1)+82+1+32+1
We now use partial fractions on the first summand y(t)
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We can now write Y (s) as Problem 1: Plot of y(t).
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Applying the inverse Laplace transform leads to

y(t) = 3sint — sin 2t + 3 cost.

Problem 2

The transform can be found by straightforward integration
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(One can see that a, = 0 for n # 0 also from the fact that H(z) — 1/2 is an odd function.) As for the sine

coefficients,
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Since b,, = 0 for all even n, the resulting Fourier series can be written as
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Since h(x) is continuous at = 7/2, the Fourier series

at © = m/2 converges to h(rw/2). Taking z = 7/2 gives P | | i 0 p
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Problem 2: Plot of h(x) and its Fourier series trun-
This series is attributed to the Scottish mathemati- cated at n = 5.
cian James Gregory (1638-1675).

Problem 3

The Fourier series can be found using standard integration by parts. Note that since f(z) is an even function

b, = 0 for all n € N. As for the cosine coefficients a,,, we have
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The resulting Fourier series is therefore f(x)
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Problem 3: Plot of f(x) and its Fourier series trun-
cated at n = 10.



Problem 4

We find the Fourier series coefficients by straightfor-
ward algebra:
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We can now write the Fourier series as
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Since f(t) is continuous at t = 0, the Fourier series at ¢ = 0 converges to f(0). Therefore, to find the first series
we simply take ¢ = 0 and obtain
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The value of the second series can be obtained by taking ¢ = w. However, since the function f(¢) is not
continuous at t = 7 [the the limit from the left (¢ — ) being 7% and the limit from the right (t+ — 7_) being
0], we need to use Dirichlet’s theorem to find the sum of the Fourier series. The result is
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Problem 4: Plot of f(x) and its Fourier series trun-
cated at n = 10.



