Numerical methods in chemistry. Solutions to exercises 3

Problem 1

The equivalence f * g = g x f can be proven by writing out the definition of convolution and changing the
integration variable from 7 tou =t — 7

t 0 t
f*g:/of(T)g(t_T)dT:_/t f(t—u)g(u)du:/og(u)f(t—u)d’u:g*f-

Problem 2
Since L[1] =1/s and L[f(t)] = F(s) we have, by virtue of the convolution theorem,
P& — Py 2 = 15 £0) = £17) + 1.

After applying inverse Laplace transform to both sides of the equation and using the definition of convolution

one obtains )
£t [F(S)] =f(t)*1 :/O f(r)dr.

S

Problem 3
The integrals can be found straightforwardly using the definition of convolution

(a)
¢ ¢ ¢
t*cost:/ (th)COSTdT:tSiHT%*/ TCOSTdT:tSiIltf/ Td(sinT)
0 0 0
t
:tsint—TsinT|6+/ sin7‘d7‘=—cos¢|g:1—cost7
0
(b)

t 2 3
t*t:/(t—T)TdT: (tT—T)
; 2 3

(c) the last one uses the trigonometric identity sinasinb = [cos(a — b) — cos(a + b)]/2

t t
1
sint % sint = / sin(t — 7) sinrdr = 5/ [cos(2T —t) — cost]dT
0 0

t

1(1 1
B [QSin(QT—t) - Tcostq = i(sint—tcost).

0

Alternative solution:

Using the Laplace transform and the convolution theorem leads to the following expressions:
(a)

S 1 s24+1—s?

1
L[t * cost] = L[t]L[cost] = 221 = s(s2+1)  s(s241)

_1 S
T s 2417



hence

(b)

hence

(c)
111
s24+1s2+1  (s2+1)2

L[sint * sint] = L[sint]L[sint] =

Finding inverse Laplace transforms for expressions appearing in (a) and (b) was straightforward, while for (c)
the problem can be solved, for example, in the following two ways. The first approach uses the partial fraction
decomposition in complex space
1 1 @ )
B T,

FA1? ri2G—i2 s+i +iE s—i -

where
a=1i/4
B=-1/4
v =—i/4
§d=-1/4

Applying the inverse Laplace transform yields

sintsint = £~ |:(82j>1)2:| =L} [2 (Sii_slz) _i{(sji)2+(sli)2H

= [ZZL (e‘it — e”) — i (te_it + teit)} _ ! (sint — tcost).
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The second approach uses the identity

d s 1 252 1 2
£52+1_52+1_(52+1)2__52+1+(52+1)2'
Therefore
1 1/ 1 d s
(52+1)2_2(52+1+(1532+1>’
and

1 1 1 d s 1 s
. R | R -1 el
sintxsint = L {(524—1)2] 3 (E LQ—Fl] + L {dss2+1}) 3 (smt tL LQ—I—J)

1
= — (sint — tcost).

Problem 4
Applying Laplace transform to the differential equation leads to
X (s) — 2(0) + 3X(s) = S_LQ
Since z(0) = 1 one can rewrite the equation as follows
1 1

X(s) = (s—2)(s+3)+s—|—3'



We now use partial fractions on the first summand

1 o« B8
(s—2)(s+3) s—2+s+3’

a+p8=0
3a—28=1 "
a=-p
S5a =1 ’

ﬁ:_
=

1 1 1 4

(S

This leads us to

1

X(s) = 5(s —2)

x(t) can now be found straightforwardly by inverse Laplace transform

4 1
2Bty 2t

z(t) = 7 E

Problem 5

Solution 1

‘We have

T5(5+3) 543 5(s+3) Bs—2)

with the boundary conditions a(0) = ag, b(0) = ¢(0) = 0. First we note that the first equation only contains
a(t), hence it can be solved separately. After accounting for the boundary conditions one obtains

a(t) = age™ k1,

Substituing the expression for a(t) into the second ODE yields

b(t) + kgb(t) = klaoe_klt.

Again, this equation can be solved separately to obtain b(t). We apply Laplace transform to both sides of the

equation, the result is

kiao
B(s) — b(0) + ko B(s) = .
SB(s) = b(0) + haB(s) =
Keeping in mind that 5(0) = 0 the equation can be rewritten as
k1a0
B(s)= ——F—F——.
) = G r)(s T Ra)
Now we simplify B(s) using partial fractions
o B
B =
(S) S+k1+8+1€2’

)

aky + Bk = kiag
— _kiag

o ko—k1
8= kiag
k1 —ko

k1a0 1 1
B(s) = -
S <s+k1 s+k2)’

{OH—B:O

Finally we can write




and the inverse Laplace transform is

k
b(t) = Tk 1_(1(;1 (efklt — 67k2t) .

Now we can substitute b(t) into the last ODE to obtain

) kikaao  _y, _
C(t):ﬁgfkl (e7ht — et

Applying Laplace transform leads to

k1k2a0 1 1
C(s) —c(0) = —
5 (S) C() ko — k1 (S+k1 3+k2)’
with ¢(0) = 0 we get
k:1k2a0 1 1
C(s) = — .
(S) kg 7k1 |:S(S+l€1) S(S+k2):|
We now use partial fractions
1 « I}
- = 4 ,
s(s+ki) s s+k
a+ =0
Oékl =1 ’

- _ 1
Oé:k*1

Having done the same procedure for 1/[s(s + k2)] we get

C( )_ k?llfgao 1 1 1 1 1 1
5 _kgfkl kl S 5+k1 k‘g S S+k’2 '

The final result is obtained after applying inverse Laplace transform,

_ kikeao [ 1 gy 1o g
C(t)_kg—kl [/ﬁ (1—e ") " (1—e )}

Just to make sure that we didn’t make some stupid mistake during the derivation let’s check some of the
solutions’ properties. First of all, the boundary conditions at ¢t = 0

a(0) = age’ = ay,

b(0) = _kido0 (e?—e%) =0,

k1 — ke
_ kakaao f 1oy L g0y 2
C(O)_kl—kg L& (1-¢") " (1 e)] =0.

Secondly, the total reactant mass should always be conserved, a(t) 4+ b(t) + ¢(t) = const

kia k1koa 1 1
t b t t) = —kqt 140 —kqit _ —kot 17200 1 _ —kqt _ 1 _ —kot
alE) + B0+ eft) = ape 4 0 (et bty g R0 |LL (g o) (1 et

k’lkgao 1 1
= — — — ] = ag.
ko —ky \k1 ko 0

Lastly, in the ¢ — oo limit the entire reactant mass should end up being converted to C

lim a(t) = tlim ap-0=0,
—00

t—o00

. T kiag _

A = B T 070 =0

. klk‘gao 1 1 k1k2a0 1 1

1 t)=——F-|—(1-0)——(1-0)| = — — — | =ap.
tl{go C( ) ]{}1 — kQ ]{}2 ( ) kl ( ):| kl - kQ (kg kl) o

The final analytical solution is plotted in Fig. 1.
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FIGURE 1: Plot of analytical solution to Problem 5, ag = 1, ky = 2, ks = 1.5.

Solution 2

In Solution 1 we kept going between time domain functions and their Laplace transforms, but it is possible to
solve the problem directly in the Laplace transform space. First we apply Laplace transform to the original
equation set

sA(s) —a(0) = —k1 A(s),
sB(s) — b(0) = k1 A(s) — k2B(s),
sC(s) — ¢(0) = ko B(s).

A(s) is found straightforwardly from the first equation and the fact that a(0) = ao,

ao
A(s) = .
)= m
Substituing A(s) into the second one readily yields B(s)
k‘l ap

B(s)= — 90
) = G m) s+ )
(we already accounted for b(0) = 0). Lastly, introducing B(s) into the third equation leads to

k1k2a0
S(S + kl)(S + ]{72)

C(s) =

(again, ¢(0) = 0). For a(t) finding the Laplace transform is straightforward, for b(t) and c¢(t) we need to use
partial fractions as discussed in Solution 1.



