
Numerical methods in chemistry. Solutions to exercises 3

Problem 1

The equivalence f ∗ g = g ∗ f can be proven by writing out the definition of convolution and changing the
integration variable from τ to u = t− τ

f ∗ g =

∫ t

0

f(τ)g(t− τ)dτ = −
∫ 0

t

f(t− u)g(u)du =

∫ t

0

g(u)f(t− u)du = g ∗ f.

Problem 2

Since L [1] = 1/s and L [f(t)] = F (s) we have, by virtue of the convolution theorem,

F (s)

s
= F (s) · 1

s
= L[f(t)] · L[1] = L [f(t) ∗ 1] .

After applying inverse Laplace transform to both sides of the equation and using the definition of convolution
one obtains

L−1
[
F (s)

s

]
= f(t) ∗ 1 =

∫ t

0

f(τ)dτ.

Problem 3

The integrals can be found straightforwardly using the definition of convolution

(a)

t ∗ cos t =

∫ t

0

(t− τ) cos τdτ = t sin τ |t0 −
∫ t

0

τ cos τdτ = t sin t−
∫ t

0

τ d(sin τ)

= t sin t− τ sin τ |t0 +

∫ t

0

sin τdτ = − cos τ |t0 = 1− cos t,

(b)

t ∗ t =

∫ t

0

(t− τ)τdτ =

(
t
τ2

2
− τ3

3

)∣∣∣∣t
0

= t
t2

2
− t3

3
=
t3

6
,

(c) the last one uses the trigonometric identity sin a sin b = [cos(a− b)− cos(a+ b)]/2

sin t ∗ sin t =

∫ t

0

sin(t− τ) sin τdτ =
1

2

∫ t

0

[cos(2τ − t)− cos t]dτ

=
1

2

[
1

2
sin(2τ − t)

∣∣∣∣t
0

− τ cos t|t0

]
=

1

2
(sin t− t cos t) .

Alternative solution:

Using the Laplace transform and the convolution theorem leads to the following expressions:

(a)

L[t ∗ cos t] = L[t]L[cos t] =
1

s2
s

s2 + 1
=

1

s(s2 + 1)
=
s2 + 1− s2

s(s2 + 1)

=
1

s
− s

s2 + 1
,
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hence

t ∗ cos t = L−1
[

1

s

]
− L−1

[
s

s2 + 1

]
= 1− cos t;

(b)

L[t ∗ t] = L[t]L[t] =
1

s2
1

s2
=

1

s4
,

hence

t ∗ t = L−1
[

1

s4

]
=
t3

6
;

(c)

L[sin t ∗ sin t] = L[sin t]L[sin t] =
1

s2 + 1

1

s2 + 1
=

1

(s2 + 1)2
.

Finding inverse Laplace transforms for expressions appearing in (a) and (b) was straightforward, while for (c)
the problem can be solved, for example, in the following two ways. The first approach uses the partial fraction
decomposition in complex space

1

(s2 + 1)2
=

1

(s+ i)2(s− i)2
=

α

s+ i
+

β

(s+ i)2
+

γ

s− i
+

δ

(s− i)2
,

where 
α = i/4

β = −1/4

γ = −i/4
δ = −1/4

.

Applying the inverse Laplace transform yields

sin t sin t = L−1
[

1

(s2 + 1)2

]
= L−1

[
i

4

(
1

s+ i
− 1

s− i

)
− 1

4

{
1

(s+ i)2
+

1

(s− i)2

}]
=

[
i

4

(
e−it − eit

)
− 1

4

(
te−it + teit

)]
=

1

2
(sin t− t cos t) .

The second approach uses the identity

d

ds

s

s2 + 1
=

1

s2 + 1
− 2s2

(s2 + 1)2
= − 1

s2 + 1
+

2

(s2 + 1)2
.

Therefore
1

(s2 + 1)2
=

1

2

(
1

s2 + 1
+

d

ds

s

s2 + 1

)
,

and

sin t ∗ sin t = L−1
[

1

(s2 + 1)2

]
=

1

2

(
L−1

[
1

s2 + 1

]
+ L−1

[
d

ds

s

s2 + 1

])
=

1

2

(
sin t− tL−1

[
s

s2 + 1

])
=

1

2
(sin t− t cos t) .

Problem 4

Applying Laplace transform to the differential equation leads to

sX(s)− x(0) + 3X(s) =
1

s− 2
.

Since x(0) = 1 one can rewrite the equation as follows

X(s) =
1

(s− 2)(s+ 3)
+

1

s+ 3
.
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We now use partial fractions on the first summand

1

(s− 2)(s+ 3)
=

α

s− 2
+

β

s+ 3
,

{
α+ β = 0

3α− 2β = 1
,

{
α = −β
5α = 1

,

{
β = − 1

5

α = 1
5

.

This leads us to

X(s) =
1

5(s− 2)
− 1

5(s+ 3)
+

1

s+ 3
=

4

5(s+ 3)
+

1

5(s− 2)
.

x(t) can now be found straightforwardly by inverse Laplace transform

x(t) =
4

5
e−3t +

1

5
e2t.

Problem 5

Solution 1

We have

ȧ(t) = −k1a(t),

ḃ(t) = k1a(t)− k2b(t),
ċ(t) = k2b(t),

with the boundary conditions a(0) = a0, b(0) = c(0) = 0. First we note that the first equation only contains
a(t), hence it can be solved separately. After accounting for the boundary conditions one obtains

a(t) = a0e
−k1t.

Substituing the expression for a(t) into the second ODE yields

ḃ(t) + k2b(t) = k1a0e
−k1t.

Again, this equation can be solved separately to obtain b(t). We apply Laplace transform to both sides of the
equation, the result is

sB(s)− b(0) + k2B(s) =
k1a0
s+ k1

.

Keeping in mind that b(0) = 0 the equation can be rewritten as

B(s) =
k1a0

(s+ k1)(s+ k2)
.

Now we simplify B(s) using partial fractions

B(s) =
α

s+ k1
+

β

s+ k2
,

{
α+ β = 0

αk2 + βk1 = k1a0
,

{
α = k1a0

k2−k1

β = k1a0

k1−k2

.

Finally we can write

B(s) =
k1a0
k2 − k1

(
1

s+ k1
− 1

s+ k2

)
,
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and the inverse Laplace transform is

b(t) =
k1a0
k2 − k1

(
e−k1t − e−k2t

)
.

Now we can substitute b(t) into the last ODE to obtain

ċ(t) =
k1k2a0
k2 − k1

(
e−k1t − e−k2t

)
.

Applying Laplace transform leads to

sC(s)− c(0) =
k1k2a0
k2 − k1

(
1

s+ k1
− 1

s+ k2

)
,

with c(0) = 0 we get

C(s) =
k1k2a0
k2 − k1

[
1

s(s+ k1)
− 1

s(s+ k2)

]
.

We now use partial fractions
1

s(s+ k1)
=
α

s
+

β

s+ k1
,{

α+ β = 0

αk1 = 1
,

{
β = − 1

k1

α = 1
k1

.

Having done the same procedure for 1/[s(s+ k2)] we get

C(s) =
k1k2a0
k2 − k1

[
1

k1

(
1

s
− 1

s+ k1

)
− 1

k2

(
1

s
− 1

s+ k2

)]
.

The final result is obtained after applying inverse Laplace transform,

c(t) =
k1k2a0
k2 − k1

[
1

k1

(
1− e−k1t

)
− 1

k2

(
1− e−k2t

)]
.

Just to make sure that we didn’t make some stupid mistake during the derivation let’s check some of the
solutions’ properties. First of all, the boundary conditions at t = 0

a(0) = a0e
0 = a0,

b(0) =
k1a0
k1 − k2

(
e0 − e0

)
= 0,

c(0) =
k1k2a0
k1 − k2

[
1

k2

(
1− e0

)
− 1

k1

(
1− e0

)]
= 0.

Secondly, the total reactant mass should always be conserved, a(t) + b(t) + c(t) = const

a(t) + b(t) + c(t) = a0e
−k1t +

k1a0
k2 − k1

(
e−k1t − e−k2t

)
+
k1k2a0
k2 − k1

[
1

k1

(
1− e−k1t

)
− 1

k2

(
1− e−k2t

)]
=
k1k2a0
k2 − k1

(
1

k1
− 1

k2

)
= a0.

Lastly, in the t→∞ limit the entire reactant mass should end up being converted to C

lim
t→∞

a(t) = lim
t→∞

a0 · 0 = 0,

lim
t→∞

b(t) = lim
t→∞

k1a0
k2 − k1

(0− 0) = 0,

lim
t→∞

c(t) =
k1k2a0
k1 − k2

[
1

k2
(1− 0)− 1

k1
(1− 0)

]
=
k1k2a0
k1 − k2

(
1

k2
− 1

k1

)
= a0.

The final analytical solution is plotted in Fig. 1.
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Figure 1: Plot of analytical solution to Problem 5, a0 = 1, k1 = 2, k2 = 1.5.

Solution 2

In Solution 1 we kept going between time domain functions and their Laplace transforms, but it is possible to
solve the problem directly in the Laplace transform space. First we apply Laplace transform to the original
equation set

sA(s)− a(0) = −k1A(s),

sB(s)− b(0) = k1A(s)− k2B(s),

sC(s)− c(0) = k2B(s).

A(s) is found straightforwardly from the first equation and the fact that a(0) = a0,

A(s) =
a0

s+ k1
.

Substituing A(s) into the second one readily yields B(s)

B(s) =
k1a0

(s+ k1)(s+ k2)

(we already accounted for b(0) = 0). Lastly, introducing B(s) into the third equation leads to

C(s) =
k1k2a0

s(s+ k1)(s+ k2)

(again, c(0) = 0). For a(t) finding the Laplace transform is straightforward, for b(t) and c(t) we need to use
partial fractions as discussed in Solution 1.
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