Numerical Methods in Chemistry

Solutions to Exercises 1

Problem 1
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Problem 2

(a) One can use the 1°* shift theorem:

L{eM"F()} = F(s +b).
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In our case, we identify

Application of the 15 shift theorem yields:
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(c) One can the 1% shift theorem with
)
b=4, f(t)=sin(5t), F(s)=L{sin(5¢)} "&° o
Application of the 15 shift theorem yields:
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Problem 3

Recall property (2) from the lecture:

LA} = (1) T F (o)

(a) We need to use property (2) with
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Thus we obtain:
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(b) We use property (2) with
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Thus we obtain:
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(c) We use property (2) with

n=2, f(t)=cost, F(s)=L{cost} =
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Thus we obtain: 0 6
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Problem 4
The derivative property of the Laplace Transform is (e.g. 6 in the lecture):

L)} = sF(s) — f(0).

In our problem we have

f'(t) = —asin(at), F(s) = L {cos(at)} = S2j—a2 F(0) = 1.
We get
L{—asin(at)} = s 82i—a2 -1,
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Problem 5

To prove the change of scale result

sy ==F(2),

a

one can start from

£{f(at)} = / " flat) e dt,

and use the change of variable u = at, which implies
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Therefore
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(We observed that the last integral is a Laplace Transform in the variable s/a).
Now to compute L{tcos(6t)}, start from L£{6¢cos(6t)} and use the change of
scale for f(t) = tcost with a = 6:

S

£{6tcos(60) = £{f(an} = F (2) = 2 F (3) "2

where we used the following result from Problem 3(b):

21

F(s) = LIf()) = L {tcost) = (;+—1>2

Hence
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