
Numerical methods in chemistry. Solutions to exercises 6

Problem 1

Using the separation of variables technique, we first find particular solutions. The ansatz

ϕ(x, t) = X(x)T (t)

gives equations for X(x) and T (t) as

T ′(t)

T (t)
= κ

X ′′(x)

X(x)
= λ

where λ is the separation constant. This constant must be negative as I will show you at the end. Therefore,
we can write λ = −α2. The solution of the equation T ′(t) = −α2T (t) is

T (t) = T0e
−α2t, t ≥ 0.

A general solution of the equation X ′′(x) = −α2

κ X(x) for X(x) is

X(x) = A cos

(
α√
κ
x

)
+B sin

(
α√
κ
x

)
, x ∈

[
0,

π

4

]
.

The second boundary condition, ϕ(0, t) = 0, implies X(0) = 0. Therefore,

0 = X(0) = X(x)|x=0 = A.

The boundary condition ϕ
(
π
4 , t

)
= 0 implies X

(
π
4

)
= 0. Therefore,

0 = X
(π
4

)
= X(x)|x=π

4
= B sin

(
α√
κ

π

4

)
.

Because B ̸= 0 (otherwise the inhomogeneous boundary condition would never be satisfied), we obtain

sin

(
α√
κ

π

4

)
= 0 ⇔ α√

κ

π

4
= nπ, n ∈ N.

We can solve the equation on the right side and obtain

αn = 4n
√
κ.

For each n ∈ N, there is a particular solution

ϕn(x, t) = b̃n sin (4nx) e
−(4n)2κt, b̃n = T0Bn.

Particular solutions will not satisfy the inhomogeneous boundary condition, but an infinite sum of them will
(and the sum will still satisfy the homogeneous boundary conditions). Therefore, the general solution is

ϕ(x, t) =

∞∑
n=1

b̃n sin (4nx) e
−(4n)2κt.

To obtain the coefficients b̃n, we use the inhomogeneous boundary condition (here the initial condition), leading
to (π

4
− x

)
= ϕ(x, 0) = ϕ(x, t)|t=0 =

∞∑
n=1

b̃n sin (4nx) .
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We express f(x) = x
(π
4
− x

)
as a Fourier sine series f(x) =

∑∞
n=1 bn sin

(
nπ
L x

)
in the interval 0 ≤ x ≤ L =

π

4
in order to satisfy the boundary conditions automatically. Combining the concept of Fourier sine series with
the concept of a Fourier series on a general interval, we can compute the bn’s using the expression

bn :=
2

L

∫ L

0

x
(π
4
− x

)
sin

(nπ
L

x
)
dx.

The length L of the interval is equal to
π

4
in our specific case. The bn’s then read

bn =
8

π

∫ π
4

0

x
(π
4
− x

)
sin (4nx) dx

=
8

π

{[
−cos(4nx)

4n

(π
4
x− x2

)]π
4

0

+

∫ π
4

0

cos(4nx)

4n

(π
4
− 2x

)
dx

}

=
8

π

{[
sin(4nx)

(4n)2

(π
4
− 2x

)]π
4

0

+ 2

∫ π
4

0

sin(4nx)

(4n)2

}

=
8

π

[
−2 cos(4nx)

(4n)3

]π
4

0

=
1

4πn3
[1− cos(nπ)] =

{
0, n = 2k,

1
2π

1
(2k−1)3 , n = 2k − 1.

Hence, the Fourier sine series is given by

f(x) =
1

2π

∞∑
k=1

1

(2k − 1)3
sin [4(2k − 1)x]

and ϕ(x, t) satisfies the inhomogeneous boundary condition when b̃n = bn. The final solution is therefore given
by

ϕ(x, t) =
1

2π

∞∑
k=1

1

(2k − 1)3
e−42(2k−1)2κt sin [4(2k − 1)x] .

Proof that the separation constant has to be negative: Assume the separation constant is positive, i.e.,

T ′(t)

T (t)
= κ

X ′′(x)

X(x)
= α2.

The general solution of the equation X ′′(x) = α2

κ X(x) for X(x) is

X(x) = c1e
αx√
κ + c2e

− αx√
κ .

Using the boundary condition X(0) = 0, we obtain

0 = X(0) = X(x)|x=0 = c1 + c2.

Therefore, c2 = −c1 and

X(x) = c1e
αx√
κ − c1e

− αx√
κ = 2c1sinh

(
αx√
κ

)
.

Using the boundary condition X
(
π
4

)
= 0, we obtain

0 = X
(π
4

)
= X(x)|x=π

4
= 2c1sinh

(
α√
κ

π

4

)
.

Because sinh(x) = 0 only for x = 0 (on the real domain), c1 has to be 0. Therefore,

X(x) = 0

and the solution would never satisfy the inhomogeneous boundary condition.
In the case of α2 = 0, X(x) is the linear function X(x) = c1x + c2. From the boundary conditions X(0) = 0
and X

(
π
4

)
= 0 it follows X(x) = 0. This results in the trivial solution ϕ(x, t) = 0 which does not satisfy the

inhomogeneous boundary condition.
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Problem 2

Taking the Laplace transform Φ(x, s) of ϕ(x, t) and using the boundary condition ϕ(x, 0) = 0 gives the ODE

d2Φ(x, s)

dx2
= sΦ(x, s)− ϕ(x, 0)

d2Φ(x, s)

dx2
= sΦ(x, s).

The general solution of this ODE for Φ(x, s) reads (you have solved exactly this ODE in Homework 2):

Φ(x, s) = Ae−
√
sx +Be

√
sx.

From the third boundary condition
lim
x→∞

ϕ(x, t) = 0 (1)

it follows that limx→∞ Φ(x, s) = 0 and hence [from Eq. (1)] that B = 0. Thus, Φ(x, s) reduces to

Φ(x, s) = Ae−
√
sx. (2)

By taking the Laplace transform of the second boundary condition, ϕ(0, t) = 1, we get Φ(0, s) =
1

s
, and therefore

[from Eq. (2)] that A =
1

s
.

Finally, Φ(x, s) can be written as

Φ(x, s) =
1

s
e−

√
sx,

and is inverted thanks to the hint to

ϕ(x, t) = erfc

(
x

2
√
t

)
.
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In[1]:= H∗ Lecture ∗L
f@x_, t_D = x ê H2. Sqrt@Pi t^3DL ∗ Exp@−x^2 ê H4 tLD ;

In[2]:= Plot3D@f@x, tD, 8x, −0.001, 1<, 8t, −0.001, 0.3<,

PlotRange → 80, 3<, AxesLabel → 8x, t, "fHx,tL"<D
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In[3]:= H∗ Problem 1 ∗L
nterms = 10;

f@x_, t_D =

1

2 Pi

SumB
1

H2 k − 1L3

ExpA−16 H2 k − 1L2
tE Sin@4 H2 k − 1L xD, 8k, 1, nterms<F

Out[4]=
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+
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Sin@60 xD
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+
ã−4624 t

Sin@68 xD
4913

+
ã−5776 t

Sin@76 xD
6859

In[5]:= Plot3D@f@x, tD, 8x, 0, Pi ê 4<, 8t, 0, 0.2<, AxesLabel → 8x, t, "fHx,tL"<D
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In[6]:= H∗ Problem 2 ∗L
f@x_, t_D = Erfc@x ê 2. ê Sqrt@tDD ;

In[7]:= Plot3D@f@x, tD, 8x, −0.001, 1<, 8t, −0.001, 1<, AxesLabel → 8x, t, "fHx,tL"<D
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