

Mathematical methods in chemistry. Exam for Part II.

Total = 90 points

May 28, 2024

You do not need to derive any formulas in the provided **formula sheet** or **hints** on page 2.

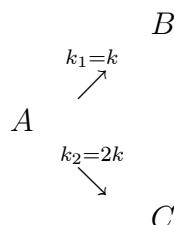
Problem 1 (30 points)

Let $f(x) = \cos(2x)$. Find the

- (a) Laplace transform $\mathcal{L}[f(t)]$,
- (b) cosine Fourier series of $f(x)$ on the interval $(0, \pi)$, and
- (c) sine Fourier series of $f(x)$ on the interval $(0, \pi)$.

Problem 2 (30 points)

Consider the **parallel reactions**



with the indicated rate constants ($k_1 = k$ and $k_2 = 2k$) and initial concentrations $[A]_0 = a_0$ and $[B]_0 = [C]_0 = 0$. The concentrations $a(t) := [A]_t$, $b(t) := [B]_t$, and $c(t) := [C]_t$ at time t satisfy the following system of ordinary differential equations (ODEs):

$$\begin{aligned}\dot{a}(t) &= -(k_1 + k_2)a(t), \\ \dot{b}(t) &= k_1 a(t), \\ \dot{c}(t) &= k_2 a(t).\end{aligned}$$

- (a) Use the **Laplace transform** to solve this system and find the concentrations $a(t)$, $b(t)$, and $c(t)$ at time t .
- (b) What is the branching ratio of this reaction [i.e., $c(t)/b(t)$]?
- (c) What are the concentrations of A , B , and C reached at infinitely long times $t \rightarrow \infty$?

Note: The answers to (a), (b), and (c) should be expressed in terms of a_0 , k , and t alone.

- (d) Draw a figure of the concentrations $a(t)$, $b(t)$, and $c(t)$ as functions of time t for $a_0 = k = 1$.

EXAM CONTINUES ON PAGE 2 !

Problem 3 (30 points)

Use the **method of separation of variables** and **Fourier series** to solve the Laplace equation

$$u_{xx}(x, y) + u_{yy}(x, y) = 0, \quad x \geq 0, 0 \leq y \leq \pi,$$

describing the steady temperatures in a semi-infinite plate, whose edges are kept at fixed temperatures

$$\begin{aligned} u(x, 0) &= 0 \quad \text{and} \quad u(x, \pi) = 0 \quad \text{for } x \geq 0, \text{ and} \\ u(0, y) &= \sin(y) - \sin(2y) \quad \text{for } 0 \leq y \leq \pi. \end{aligned}$$

Moreover, the temperature in the plate is bounded, i.e., $|u(x, y)| \leq M$, where $M \in \mathbb{R}$.

- (a) Find $u(x, y)$, that is, the dependence of temperature on coordinates.
- (b) What is the temperature at the point $(x, y) = (\ln 2, \pi/2)$ inside the plate?

Hints for Problems 1 to 3

You can use these formulas without deriving them:

Inverse Laplace transforms:

$$\begin{aligned} \mathcal{L}^{-1} \left[\frac{1}{s} e^{-a\sqrt{s}} \right] &= \operatorname{erfc} \left(\frac{a}{2\sqrt{t}} \right), \\ \mathcal{L}^{-1} \left[e^{-a\sqrt{s}} \right] &= \frac{a}{2\sqrt{\pi t^3}} e^{-a^2/(4t)}. \end{aligned}$$

General solutions of homogeneous ODEs ($k \in \mathbb{R}$; $n \in \mathbb{N}$; a and b are arbitrary constants):

$$\frac{d}{dx} y(x) + k x^n y(x) = 0 \quad \text{has a general solution} \quad y(x) = a e^{-kx^{n+1}/(n+1)},$$

$$\frac{d^2}{dx^2} y(x) + k^2 y(x) = 0 \quad \text{has a general solution} \quad y(x) = a \cos(kx) + b \sin(kx),$$

$$\frac{d^2}{dx^2} y(x) - k^2 y(x) = 0 \quad \text{has a general solution} \quad y(x) = a e^{kx} + b e^{-kx}.$$

Particular solutions of inhomogeneous ODEs ($k, A, B, C \in \mathbb{R}$; a and b are suitable constants):

$$\frac{d^2}{dx^2} y(x) \pm k^2 y(x) = A \cos(Cx) + B \sin(Cx) \quad \text{has a particular solution} \quad y(x) = a \cos(Cx) + b \sin(Cx),$$

$$\frac{d^2}{dx^2} y(x) \pm k^2 y(x) = A e^{Cx} \quad \text{has a particular solution} \quad y(x) = a e^{Cx}.$$