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Quantum Chemistry 

 

Corrections 7B 
 

 
1.  Suppose one were to use a trial function of the form 

 

    
2

1 2( ) r rr c e c e      

 

 to carry out a variational calculation for the ground state of the hydrogen atom.  Can you guess without 

doing any calculations what c1, c2, , and Emin will come out to be?  

 

 

On sait de par le cours que la solution exacte de l’état fondamental de l’atome d’hydrogène est : 
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La solution exacte du problème fait partie de la famille des fonctions d’essai :
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1 2
r rc e c e     . 

On obtiendra donc par la méthode variationnelle les valeurs des coefficients suivantes: 
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De plus, l’énergie calculée minE  sera égale à l’énergie exacte 
4

1 2 2
08

e
E

h




  . 

 

2. Solve the problem given in exercise 3 using the variational principle using the trial functions given below, 

with c1 and c2 as variables: 
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b.    1 2
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( ) sin sinx c x c x
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c.  Compare and discuss the results of these calculations and those done using perturbation theory. 
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a. et c. L’hamiltonien de notre système (particule dans une boite de potentiel hauteur infini avec une marche) est 

le suivant : 
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Dans le principe variationnel, vous cherchez à approcher la valeur « vrai » de l’énergie d’un système, en utilisant 

une fonction d’onde test. L’énergie test sera toujours supérieure à l’énergie « vrai », mais sera d’autant plus proche 

de l’énergie « vrai » que la forme de votre fonction d’onde test est proche de la fonction d’onde « vrai » qui décrit 

le système étudié. Pour approchez l’énergie « vrai » du système, vous construisez une fonction d’onde test 

intuitivement, en effectuant une combinaison linéaire de plusieurs fonctions d’ondes simples. Vous donnez à 

chacune de ces fonctions simples un poids différent, que vous ne connaissez pas pour le moment et qui sont donc 

des variables que l’on note c1…cn. En faisant varier le poids respectif des fonctions d’ondes simples de votre 

fonction test vous approcherez alors la valeur « vrai » de l’énergie du système, d’autant plus que votre combinaison 

linéaire de fonction d’onde simple ressemblera à la fonction d’onde « vrai » qui décrit le système. 

La première fonction test est :  
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Le principe variationnel nous dit que E>E1 où  
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ce qui revient à calculer des intégrales du types:  
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et 

 1
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On arrive finalement au résultat suivant: 
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Pour optimiser la fonction test on fait varier les poids c1 et c2 afin d’obtenir un minimum pour E, c'est-à-dire :  
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En appliquant (2) sur (1) on obtient : 
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soit en réarrangeant: 
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En appliquant (3) sur (1) on obtient : 
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soit en réarrangeant: 
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Le système des deux équations (4) et (5) peut être résolu en utilisant le déterminant séculaire: 
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ce qui revient à résoudre une équation du 2nd ordre en E , nous donnant deux racines, les estimations avec la 

méthode variationnelle  de l’énergie du niveau fondamental E
 >E1 et du premier niveau excité E

 >E2 de la 

particule dans la boite avec une marche: 
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Comparons ce résultat obtenu par la méthode variationnelle avec la fonction test a. avec le résultat que nous aurions 

obtenu avec la théorie de la perturbation au 1er ordre. Dans l’exercice 3 on avait calculé le terme perturbatif de 1er 

ordre, l’énergie du système dans son niveau fondamental était donc : 
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La méthode variationnelle donnera une meilleure estimation de l’énergie du niveau fondamental que la théorie de 

la perturbation au 1er ordre si : (1)
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c'est-à-dire quand 
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Soit  
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ce qui est vrai pour tout b>0 c'est-à-dire pour toute les hauteurs de marche dans le puits de potentiel. 

Avec la fonction test 
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,  

 

on aura toujours une meilleure estimation de l’énergie du niveau fondamentale de la particule dans une boite 

contenant une marche avec la méthode variationnelle qu’avec la théorie de la perturbation au premier ordre. 

 

b. et c. on  essaye à présent la fonction test 
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avec le principe variationnel  
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ce qui nous donne  
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On optimise la fonction test en faisant varier les poids c1 et c2 afin d’obtenir un minimum pour E, c'est-à-dire :  
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En appliquant (2) sur (1) on obtient:  
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En appliquant (3) sur (1) on obtient: 
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ce qui nous donne directement les estimations des énergies du niveau fondamental et du premier niveau excité : 
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En calculant, 

 

   1 (1)
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on voit bien que la méthode variationnelle avec la fonction test  
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ne nous donne pas une meilleure estimation de l’énergie du niveau fondamental que si on avait utilisé la théorie 

de la perturbation au premier ordre. 

 

Pour une bonne estimation de l’énergie avec le principe variationnel il est donc très important de choisir une 

fonction d’essai qui soit intuitivement proche de la fonction d’onde réelle. 

 

Si on trace l’allure générale de la densité de probabilité de la seconde fonction test (en mettant un poids équivalent 

sur c1 et c2) on a : 
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Alors que la première fonction test donnerait : 

 

 
 

 

 

 

La première fonction test possède une caractéristique que ne possède pas la deuxième fonction test, une densité de 

probabilité asymétrique sur les plateaux et plus faible aux alentours de la discontinuité de la marche. Si on veut 

construire une nouvelle fonction test encore meilleure, il faudra que cette nouvelle fonction présente ces 

caractéristiques. 
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