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Quantum Chemistry 

 

Corrections 2C 
 

 
1.  The Schrödinger equation for a particle of mass m constrained to move on a circle of radius a is 
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 This problem is sometimes called the particle-on-a-ring and represents the rotation of a linear molecule in 

a plane. 

 

 Find the solutions to this equation (that is, find the eigenfunctions and eigenvalues), including the 

normalization constant for the wave function. 

 

 Hint: Use the fact that the wave function must be continuous to determine the appropriate boundary 

conditions needed to solve the problem. 

 

 

The Schrödinger equation:  
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The characteristic polynomial of this differential is:  
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Therefore, the general solution is:  
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The condition of the wavefunction being continuous implies that the wavefunction must have the same value in θ 

and θ + 2π: 
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We then use the following notation in the general solution, 
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And also remembering that ( 2 ) 2in in i ne e e     : 
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This relationship must be true for all values of  . For example: 
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There are two possibilities that could arise from the values above: 

 

i) Let  1 2 0 0c c      , the wavefunction is zero and so, this is not valid. 

 

ii) Let 2 2 1 cos( 2 ) sin( 2 ) cos( 2 ) sin( 2 ) ssi sin( 2 ) 0 / cos( 2 ) 1in ine e n i n n i n n n                

 
n must be an integer (0, ±1, ±2, …) and 
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which are the eigenvalues of the Hamiltonian. 

  

Again, we see that the quantisation of energy occurs when we apply the boundary conditions. 

  

 

 

Now normalise the wavefunctions to find the values of 1c  and 2c . 
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2i ne   is a sum of sinusoidal periodic functions 
n


; therefore, its integral from 0 to 2π is zero. : 
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 Note that both ine   and ine   are two eigenfunctions with the same value : they are said to be ‘degenerate’. 

 

 Any linear combination : 

 

   
2 2

1 2

n nIE IE
i i

n c e c e
 

 


     ,  

 

or 
2 2

1 2

1

2
c c


   (normalisation),  

 

is an eigenfunction of the Hamiltonian with an eigenvalue of : 
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For this reason, any linear combination of wavefunctions can be chosen as the basic solution. For example, if

2 0c  : 
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2.  Recall the particle on a ring problem from above.  The angular momentum operator for a particle on a ring 

is 
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a.  Assume that the system is in an eigenfunction corresponding to 3n  .  What is the angular momentum of 

the particle with this wave function? 
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b. The problem of the particle-on-a-ring is different from the particle-in-a-box in that the quantum numbers n 

can take on both positive and negative values.  Physically, how would you interpret the difference between a 

particle on a ring described by wavefunctions with 3n     and 3n   ? 

 

 

The positive and negative values of n correspond to the opposite directions of the angular 

momentum 

. From the classical point of view, this represents opposite directions of the 

particle on the ring. 

 

 

 

 

 

 

3.   Consider the situation in which a particle on a ring can be described by the wave function 
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 where the nE  are the energies of the stationary states for a particle on a ring. 

  

a.   Is the probability of finding the particle at a particular angle  independent of time if the state is described 

by the wave function ( , )t given above?   

 

No, the probability of finding the particle at a certain angle is dependent on the time because it is not an 

eigenfunction of the Hamiltonian, it is a linear combination of the eigenfunctions of Hamiltonian having different 

eigenvalues (E3 and E6). Therefore, the terms depending on time will not end while calculating    , ,t t   . 

 

 

b.  If you were to measure the energy of a particle in this state ( , )t , what value or range of values could you 

obtain?  If your answer includes a range of values, what is the probability for obtaining each value in that 

range? 
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The possible values for the energy measurements are 3E  et 6E  (postulate 3) with a probability of 

2

3 1

3 3

 
 

 
  

for 3E , and with a probability of 

2

3 2
2

3 3

 
  
 

 for 6E . 

 

 

c.   Calculate E , the expectation value of the energy that you would obtain if you were to make repeated 

measurements on a number of identical systems.  (Hint: You can do this without explicitly evaluating any 

integrals) 

 

According to the probabilities determined in question b), we can calculate the average value of energy, or we 
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d.   Let's say you make a measurement of the energy and get 
29

2I


(call this measurement  #1).  You then make a 

subsequent measurement (#2) of the energy of the same system you measured the first time.  What value or 

range of values could you obtain in measurement #2? 

 

We can only obtain the same value 
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 in the measurement #2, since the system is in  3 ,t  after 

measurement #1 (postulate 6). 

 

e.   Would your answer to part c) be any different if in between your two measurements of the energy (#1 and 

#2) you measured the particle's angular momentum?  Why or why not?  What possible values could you get 

for the angular momentum?  Recall that the angular momentum operator for the particle on a ring is 
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Since L̂  and Ĥ  commute, the relative precision that can be obtained in the measurements is not limited. 

The eigenfunction of Ĥ and is also an eigenfunction of L̂ .  Therefore, a measurement of the angular 

momentum between measurements #1 and #2 will give the value 3 3  . Since the angular momentum 

measurement will not change the wavefunction, the #2 measurement of the energy will give the same result as in 

the question (d). 

 

 

f.   Let's say that after making a measurement of the energy and getting 
29

2I


 you measure the angular position 

and get 0  for a result.  If your then remeasure the position 10 seconds later, will you get the same result?  

Why or why not? 
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No, because after measuring the angular position the wavefunction becomes an eigenfunction of the angular 

position operator. This function is a linear combination of the Hamiltonian wavefunctions hence, does not 

correspond to a stationary state. The probability distribution    , ,t t    will evolve with time and a new 

measurement of the angular position will not necessarily provide the same value.. 

 

 

g.   After making these two measurements of the position (as stated in 3f.), you then measure the energy.  What 

value or range of values could you get? 

 

We can obtain any value (we cannot predict which) corresponding to the eigenfunctions  ,n t  contained in 

the system’s function    , ,n n
n

t c t    . The probability of each of these values will be 
2

nc . 

 

4.   Evaluate the commutator ˆ ˆA, B 
   where Â  and B̂  are given below. 
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b. 
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5.  Answer the following questions TRUE or FALSE and briefly describe the reasoning behind your answer.  Be 

sure to read each question carefully. 

 

a.   The wave function for a quantum mechanical system must be an eigenfunction of the Hamiltonian operator. 

 

FALSE. The wavefunction can be any function provided that it is continuous, finite and normalised, and that its 

derivation in relation to the position is also continuous. (postulate 1) 

 

b. Every physical observable in classical mechanics can be represented by a Hermitian operator in quantum 

mechanics. 

 

TRUE (postulate 2). 

 

c. If the wave function for a system is not an eigenfunction of the operator Â , then a measurement of the 

observable corresponding to Â  might give a value that is not one of the eigenvalues of Â . 

 

FALSE. It will definitely give an eigenvalue of the operator Â . We just do not know which one (postulate 3). 

However, if the wavefunction is not an eigenfunction of Â , it will not be known with certainty what the eigenvalue 

will be measured. For repeated identical measurements, a distribution of values will be obtained.  
 

d.   The wave function for a quantum mechanical system is always equal to a function of time multiplied by a 

function of the coordinates. 

 

FALSE. But if this is the case and the Hamiltonian does not depend on time, then the probability distribution does  

not change over time and the spatial part of the wavefunction satisfies the time-independent Schrödinger equation  
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(postulate 5). Such wavefunctions are called the ‘eigenstates’ or ‘stationary states’. 

 

e.   After making a measurement of the observable corresponding to Â  and getting the result na , the wave 

function becomes one of the eigenfunctions of Â , but you cannot be certain which one. 

 

FALSE. We will know exactly which wavefunction it will be : it is the eigenfunction   ,n t r  corresponding to 

the eigenvalue na  measured (postulate 6). (We will see later that this is not necessarily the case when the 

eigenfunctions of Â are degenerate). 

 

f.   One can sometimes measure two physical observables with infinite relative precision. 

 

TRUE. This is the case if the operators can commute (eg. For total energy and angular momentum : ˆ ˆ, 0H L    ). 

 

 


