
Quantum Chemistry 

 

                                                Corrections 2B 

 

 
1. One can use numerical matrix based methods to solve the Schrodinger equation. The accuracy 

of this method depends on the number discretization steps used.  
 
a. Using the Matlab code provided, investigate how the accuracy of the numerical solutions of the 

energy for the particle-in-a-box problem depend on the number of discretization steps, N. In the 
calculations use: 

 
 Mass of the particle: m=me (mass of an electron) 
 Size of the box:    a=1.0 Å 
 Minimum x value for discretization:  xmin=-0.5 Å 
 Maximum x value for discretization:  xmax=1.5 Å 
 Value of the potential: V0=1 1012 eV (representing infinity) 
 
 Plot the time it takes to perform the calculations and the relative deviation from the exact results 

for the energy levels n=1,2 and 5 for the values of 
N=20,21,50,51,100,101,102,200,201,500,501,1000,1001, 2000,2001, 5000 and 5001 (depending 
on your computer you can try even larger values) 

 
 Discuss the results, paying special attention to the differences between similar values of N.  

 

 
You can use the functions tic and toc to measure calculation time. Put tic when you want to start 
counting, toc when you want to stop. These functions are already included in the script. 
 
Next, we only want values for n=1,2,5. Hence, we change the n in the for loop to n=[1 2 5] 
 
%------------ WRITE RESULTS TO SCREEN -------------------------------
------ 
disp('Quantum State       Eigenvalue              Exact Energy            
Energy difference       Rel. energy difference  '); 
  
for n = [1 2 5] 
    fprintf('    %0.0f   \t     ',n);                           % 
Quantum state 
    fprintf('   %#5.8f \t     ',Eval(n,n));                     % 
Calculated eigenvalue 
    fprintf('   %#5.8f \t     ',E(n));                          % 
Exact eigenvale 
    fprintf('   %#5.8f \t     ',Eval(n,n)-E(n));                % 
Calculate absolute deviation from exact result 
    fprintf('   %#5.8f \t  \n',(Eval(n,n)-E(n))/E(n));          % 
Calculate relative deviation from exact result  
end 
 
Next, we perform the calculation for different N which we can change in line 25.  
 
%------------ SET PARAMETERS FOR CALCULATIONS -----------------------
------ 
N=501;                                      % Number of data points. 
NOTE: number of intervals equals N-1 



xmin=-0.5;                                  % Minumum x value for the 
calculation 
xmax=+1.5;                                  % Maximum x value for the 
calculation 
m=me;                                       % mass for calculation 
a=1.0;                                      % size of box (in 
Angstroms) 
V0=1.0*10^12;                               % potential outside box 
(in eV), V0=10^12 for infinite 
 
We can then read out the results, which for N=2001 should give you: 
Quantum State       Eigenvalue              Exact Energy            Energy difference       Rel. energy difference   
    1             37.60298441           37.60301591           ‐0.00003150          ‐0.00000084     
    2             150.41156650           150.41206363           ‐0.00049713          ‐0.00000331     
    5             940.05605398           940.07539768           ‐0.01934369          ‐0.0000205   
 
And an elapsed time (which depends on your computer) in my case of 0.115077 seconds. Note that 
the elapsed time increases overall with N. 
 
 
 
Things you should notice:  
The immediate observation you can make, is that for higher n the error in Energy increases. 
 
As one would expect, for larger N, the calculation becomes more precise. That is, the Energy 
Difference and Rel. Energy get smaller. Here the results for n=20 
 
Quantum State       Eigenvalue              Exact Energy            Energy difference       Rel. energy difference   
    1             27.85675192           37.60301591           ‐9.74626399          ‐0.25918836     
    2             109.17021919           150.41206363           ‐41.2418444         ‐0.27419240     
    5             589.83158881           940.07539768           ‐350.2438088       ‐0.37256991     
 
If you run N=2000, you can notice a much larger error than for N=2001 which is of numerical origin. 
 
Quantum State       Eigenvalue              Exact Energy            Energy difference       Rel. energy difference   
    1             37.49037265           37.60301591           ‐0.11264326          ‐0.00299559     
    2             149.96112133           150.41206363           ‐0.45094230          ‐0.00299805     
    5             937.24085259           940.07539768           ‐2.83454509          ‐0.00301523   
 

 
 

1. Consider a square well potential of the form: 
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 The potential above is a good approximation for the potential of an electron solvated in liquid 

helium. In this case one finds that the electron is bound to the liquid by 0 1.1V  eV and resides 

in a cavity void of helium with  a=34 Å. This is also known as an electron bubble. 

 

a. Separate the problem into 3 regions and write down the Hamiltonian for each of these using 

classical observables. 

 
 

 

Following classical mechanics, we know that the Hamiltonian can be written as: 

𝐻஼௅஺ௌௌ ൌ 𝐸௄ூே ൅ 𝐸௉ை் 

 

𝐻஼௅஺ௌௌ ൌ
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2𝑚
൅ 𝑉ሺ𝑥ሻ 

 

And so, by looking at the three different regions that this problem presents, 
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b. Write down the Hamiltonian operator for each of these regions. 

 By replacing the classical observables by their respective operators of quantum mechanics, 

𝑝̂ ൌ െ𝑖ℏ
𝑑
𝑑𝑥

 

 we obtain: 

𝐻෡ொ௎஺ே் ൌ
െℏଶ

2𝑚
𝜕መଶ

𝜕𝑥ଶ
൅ 𝑉෠ሺ𝑥, 𝑡ሻ 

 

 And since we know the value of the potential for the three different regions,  
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c. Find the general solutions (eigenfunctions) to the Schrödinger equations for each region 

The general Schödinger equation is 

𝐻෡𝜓 ൌ 𝐸𝜓 

ቈ
െℏଶ

2𝑚
𝜕መଶ

𝜕𝑥ଶ
൅ 𝑉ሺ𝑥, 𝑡ሻ቉  𝜓ሺ𝑥, 𝑡ሻ ൌ 𝐸𝜓ሺ𝑥, 𝑡ሻ 

       And since our potential is time independent, 

ℏଶ

2𝑚
𝜕መଶ

𝜕𝑥ଶ
𝜓ሺ𝑥ሻ ൅ ሺ𝐸 െ 𝑉ሺ𝑥ሻሻ 𝜓ሺ𝑥ሻ ൌ 0 

That we should apply to each of the three regions in order to get the general solutions. However, 

as we can already guess, the solutions would depend on the sign of the term ሺ𝐸 െ 𝑉ሺ𝑥ሻሻ, having 

this two different cases: 

 
If 𝑬 ൐ 𝑽𝟎 , we are in the case of unbound states, where the eigenvalues of the energy are a 

continumm (no discrete-no quantum). In this case, the wave function would be oscillatory, having 



a higher frequency when it traves between (0,a) since its energy would be purely kinetic. However, 

in this exercise we are interested on the bound states (𝑬 ൏ 𝑽𝟎), when the electron is confined inside 

the well/cavity. In this case, in region 1 & 3, total energy of the particle is lower than the energy “it 

should have” (classically) to be able to stay in those regions. Therefore, classically, the probability 

of finding the particle in this region would be zero. However, following quantum mechanical 

calculations we will find a non-zero probability. The solution for the different regions is: 

 

𝑅𝐸𝐺𝐼𝑂𝑁 1. 

ቈ
െℏଶ

2𝑚
𝜕መଶ

𝜕𝑥ଶ
൅ 𝑉଴቉  𝜓ଵሺ𝑥ሻ ൌ 𝐸𝜓ଵሺ𝑥ሻ 

 

ℏଶ

2𝑚
𝜕መଶ

𝜕𝑥ଶ
𝜓ଵሺ𝑥ሻ ൅ ሺ𝐸 െ 𝑉଴ሻ𝜓ଵሺ𝑥ሻ ൌ 0 

ሺ𝐸 െ 𝑉଴ሻ ൏ 0 

𝛼ଶ ൌ
2𝑚
ℏଶ

ሺ𝑉଴ െ 𝐸ሻ ൐ 0  

𝜕ଶ𝜓ଵ
𝜕𝑥ଶ

െ 𝛼ଶ𝜓ଵ ൌ 0 

 

𝜓ଵሺ𝑥ሻ ൌ 𝐴 𝑒ఈ௫ ൅ 𝐴ᇱ 𝑒ିఈ௫ 

 

𝑅𝐸𝐺𝐼𝑂𝑁 2. 

ℏଶ

2𝑚
𝜕መଶ

𝜕𝑥ଶ
𝜓ଶሺ𝑥ሻ ൅ 𝐸𝜓ଶሺ𝑥ሻ ൌ 0 

𝐸 ൐ 0 

𝛽ଶ ൌ
2𝑚
ℏଶ

𝐸 ൐ 0  

𝜕ଶ𝜓ଶ
𝜕𝑥ଶ

൅ 𝛽ଶ𝜓ଶ ൌ 0 

𝜓ଶሺ𝑥ሻ ൌ 𝐷 𝑒௜ఉ௫ ൅ 𝐷ᇱ 𝑒ି௜ఉ௫ 

𝑜𝑟 

𝜓ଶሺ𝑥ሻ ൌ 𝐵 𝑠𝑖𝑛ሺ𝛽𝑥ሻ ൅ 𝐵ᇱ cos ሺ𝛽𝑥ሻ 
𝑤𝑖𝑡ℎ 𝐵 ൌ 𝑖ሺ𝐷 െ 𝐷ᇱሻ    𝑎𝑛𝑑 𝐵ᇱ ൌ ሺ𝐷 ൅ 𝐷ᇱሻ    (Using Euler’s formula) 

 
𝑅𝐸𝐺𝐼𝑂𝑁 3. 

Following the same procedure as in region 1, 

𝜓ଷሺ𝑥ሻ ൌ 𝐶 𝑒ఈ௫ ൅ 𝐶ᇱ 𝑒ିఈ௫ 

And so, we obtain:  

 

ቐ
𝑅𝐸𝐺𝐼𝑂𝑁 1.                        𝜓ଵሺ𝑥ሻ ൌ 𝐴 𝑒ఈ௫ ൅ 𝐴ᇱ 𝑒ఈ௫                        
𝑅𝐸𝐺𝐼𝑂𝑁 2.                        𝜓ଶሺ𝑥ሻ ൌ 𝐵 𝑠𝑖𝑛ሺ𝛽𝑥ሻ ൅ 𝐵ᇱcos ሺ𝛽𝑥ሻ    
𝑅𝐸𝐺𝐼𝑂𝑁 3.                        𝜓ଷሺ𝑥ሻ ൌ 𝐶 𝑒ఈ௫ ൅ 𝐶ᇱ 𝑒ିఈ௫                      

 

 
But, by looking at the solution of 𝜓ଵሺ𝑥ሻ and 𝜓ଷሺ𝑥ሻ we can see that both eigenfunctions diverge 

when 𝑥 → െ∞ and 𝑥 → ൅∞, and since the square of the wave function is proportional to the 

probability of finding the particle at any point, this result means that the it is more likely to find 

the particle at infinity. Therefore, this result makes no sense in this problem because we are 



trying to find wave functions for particles that stay in (or close to) the well. This restriction 

implies that: 

    𝜓ଵሺ𝑥ሻ ൌ 𝐴 𝑒ఈ௫            𝐴ᇱ ൌ 0 

𝜓ଷሺ𝑥ሻ ൌ 𝐶′ 𝑒ିఈ௫       𝐶 ൌ 0 

 
so the eigenfunctions are: 

 

ቐ
𝑅𝐸𝐺𝐼𝑂𝑁 1.                        𝜓ଵሺ𝑥ሻ ൌ 𝐴 𝑒ఈ௫                                         
𝑅𝐸𝐺𝐼𝑂𝑁 2.                        𝜓ଶሺ𝑥ሻ ൌ 𝐵 𝑠𝑖𝑛ሺ𝛽𝑥ሻ ൅ 𝐵ᇱcos ሺ𝛽𝑥ሻ    
𝑅𝐸𝐺𝐼𝑂𝑁 3.                        𝜓ଷሺ𝑥ሻ ൌ 𝐶ᇱ 𝑒ିఈ௫                                    

 

 

 

 

d. Draw the eigenfunctions for each region. 

With the information that we can take from the general solutions of the eigenfuncions in the 

three different regions, we can sketch the following (i.e. increasing exponential in region 1, an 

oscillatory function in region 2 and a decreasing exponential in region 3).  

Moreover, from theory we know that the first state of a quantum system does not have any node 

(point of the space in which the probability of finding the particle is zero), so we can already 

guess that the first eigenfunction will be a cosine wave.  

 

 
  

e. Write down the boundary conditions for this problem. 

Both the wavefunction and the first derivative need to be continuous everywhere, and so, we 

pay special attention at the boundaries, with in our case are x=0 and x=a; 

𝜓ଵሺ0ሻ ൌ 𝜓ଶሺ0ሻ        &        𝜓ଵ
ᇱሺ0ሻ ൌ 𝜓ଶ

ᇱሺ0ሻ                 

𝜓ଶሺ𝑎ሻ ൌ 𝜓ଷሺ𝑎ሻ        &        𝜓ଶ
ᇱሺ𝑎ሻ ൌ 𝜓ଷ

ᇱሺ𝑎ሻ                 
 

+ the ones we found before: 

𝐴ᇱ ൌ 0 

𝐶 ൌ 0 

 

f. Discuss now this problem and its solutions relate to the particle-in-a-box problem having 

infinite potential outside the box. 

Let’s compare the infinite with the finite well potential.  



 
In the first case, as you have seen in class, the particle is confined into the well. It is impossible 
for the particle (electron) to escape, since the energy necessary to go out of the box is infinite.  
However, in the second case the well is not infinitely deep, and this fact changes the result quite 
a lot.  
 
Let’s start thinking in terms of classical physics and let’s imagine that the electron has, for 
example, half of necessary energy to jump out of the well. In this case, the solutions (from 
classical physics) would be the same as the ones for the infinite well: if the electron is moving, 
it will arrive to the barrier, it would bounce on the wall and it would go back (following the 
same path it was doing before reach the wall). It does not matter the amount of energy that the 
electron has if it is lower than the barrier: from classical mechanics, it cannot jump.  
 
But, let’s look at this problem for the quantic point of view keeping in mind the 
corpuscular/wave duality. And again, let’s imagine that the electron has half of the energy to 
jump out of the well. From the corpuscular nature, when the electron arrives to the barrier, it 
will bounce; but from the wave nature, the result is different. If the wave does not have enough 
energy to penetrate into the “forbidden region”, it will reflect, but part of the wave will be able 
to penetrate slightly into the region of higher energy. In order to understand this effect 
physically, we can assume that the “forbidden” region is formed by an absorbent material. If 
the potential well is infinite, this material would have an infinite absorbance coefficient and 
therefore, before the wave can travel any distance through this material, it gets completely 
absorbed.  However, if the potential well is finite, a new “magnitude” appears: the energy 
difference between the well and the electron’s one. If this difference is large, the wave is 
absorbed by the material quickly (similar to the infinite case), although not infinitively quickly. 
It is something similar to what the Coyote and the Road Runner do when they walk through the 
vacuum before fall into the precipice.  
If, however, this energy difference is small, the intensity of the wave would decrease slowly, 
travelling more through the “absorbent medium”. 
 

 
 

The mathematical result fits well with this explanation: out of the well, we obtain a wave 
whose amplitude decreases exponentially with distance. If the “energy difference” is large, the 
decrease in the exponential is abrupt (it almost does not feel that it has entered into the 
barrier), and if it is small, the amplitude decreases slowly.  
 
But then, if there is a non-zero probability of finding the wave outside the well, THERE IS A 
NON-ZERO PROBABILITY of finding the ELECTRON OUTSIDE THE WELL, something 
that it cannot be imagined following Newton mechanics, being this THE MAIN 
DIFFERENCE BETWEEN THE FINITE AND INFINITE POTENTIAL WELL.   
 
 
 



 
 

g. Now, without solving the resulting coupled equations, draw the eigenfunctions for the 3 

lowest energy levels. 

 

 
 

 

h. Use Matlab to solve the Schrodinger equation numerically and determine the energy levels 

of butadiene assuming an ionization energy of 12 eV. Calculate the corresponding transition 

wavelength and wavenumber and compare the results to those found for a box with infinite 

walls.  

 

2h) We just change the barrier height to 12 eV. 
 
%------------ SET PARAMETERS FOR CALCULATIONS -----------------------
------ 
N=501;                                      % Number of data points. 
NOTE: number of intervals equals N-1 
xmin=-0.5;                                  % Minumum x value for the 
calculation 
xmax=+6.28;                                  % Maximum x value for 
the calculation 
m=me;                                       % mass for calculation 
a=5.78;                                      % size of box (in 
Angstroms) 
V0=12;                                      % potential outside box 
(in eV), V0=10^12 for infinite 
 
 
Remember to change the size of the box to the length of the butadiene molecule (5.78 Angstrom) as 
well as x max. 
 
 
Quantum State       Eigenvalue              Exact Energy            Energy difference       Rel. energy difference   
    1             0.86322231                     1.12555573          ‐0.26233342            ‐0.23307013      
    2             3.44862257                      4.50222290          ‐1.05360033            ‐0.23401781      
    3             7.74349593                    10.13000153          ‐2.38650560            ‐0.23558788      
    4             13.72706598           18.00889161         ‐4.28182563    ‐0.23776175      
    5             21.37136400           28.13889314         ‐6.76752914     ‐0.24050445     
     
 
 



Find  the  energy  difference  between  two  quantum  levels  and  then  use  the  following  equations  to 
calculate the transition wavelength and wavenumber: 
 

  
 
respectively. 
 
The conclusion that you can draw is that the finite well has lower energy levels than the infinite well. 
This  is because  the wavefunction  in  the  finite potential well  extends  into  the  classically  forbidden 
region, so the corresponding wavelengths are longer than those in the infinite well, resulting in lower 
energies. 
 
 
 
Finite well: 
 
 
 

 
 
 
    

   



i. OPTIONAL: Solve the problem mathematically.  

 

 

In order to have a symmetric potential for reflections as x → -x, we redefine the well and we move it to 

be symmetric with respect to 0, 

 

൜
𝑉ሺ𝑥ሻ ൌ 0            𝑓𝑜𝑟 െ 𝑎 ൑ 𝑥 ൑ 𝑎               
𝑉ሺ𝑥ሻ ൌ 𝑉଴          𝑓𝑜𝑟 𝑥 ൏ െ𝑎  𝑎𝑛𝑑  𝑥 ൐ 𝑎  

 

 

so now the potential looks like: 

 
 

We will discuss now each region: 

Region 1: outside the box 

 

𝑉ሺ𝑥ሻ ൌ 𝑉଴    &     0 ൏ 𝐸 ൏ 𝑉଴ 
 

The Schrödinger equation for this region is: 
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so in order to find the general solutions for this equation we define: 
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Which simplifies the Schrödinger equation as: 
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that has as solutions: 

 
xx eBeBx   ')( 111  

 



 

Region 3: outside the box 

 

𝑉ሺ𝑥ሻ ൌ 𝑉଴    &     0 ൏ 𝐸 ൏ 𝑉଴ 
 

Which as the same solutions as Region I:   

 
xx eBeBx   ')( 333  

 
Region 2: inside the box 

 

𝑉ሺ𝑥ሻ ൌ 0    &     0 ൏ 𝐸 ൏ 𝑉଴ 
 

The Schrödinger equation for this region is: 
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So we can define the quantity: 
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and find the solutions for the Schrödinger equation (as done for the particle in the infinite potential energy 

barrier): 
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That has as solutions, 
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Now, in order to solve the problem, we have to discuss the boundary conditions for the problem: 

 

As it has been discussed in the section c, the eigenfunctions cannot diverge, and therefore: 
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xeBx   ')( 33          B3 = 0 

And we also should apply the requirement that the eigenfunction and its first derivative need to be 

continuous anywhere. So applying it to the boundaries:  
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 Let’s start solving 𝑨: 
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 Now, by multiplying the first equation for ik, 
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 And summing and subtracting both we get: 
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 So solving for A2 and A2’: 
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 Let’s now solve 𝑩: 
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 As we did above, we multiply the first equation for ik and sum and subtract the two of them and   

then we write A2 and A2’ in function of B3’: 
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At this point we can equal the solutions for A2 and A2’ found in 𝑨 with the ones found in 𝑩: 
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For both equations, we can write the ratio B3’/B1 in function of k and  : 
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so then: 
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In which   and k depend on the energy, 

 
In order to solve (*) we have to do its square root, so then we have to solve: 
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 Let’s start solving (1) multiplying for ik , 
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It is easier to solve this equation if we think in terms of complex numbers: 
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By analogy we can write: 
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That for the properties of tg and cotg can be rewritten as: 
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In order to solve this equation we can use the following property of cotg: 
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We have simplified the equation that now depends on the square root of the E. So now, the 
system that we need to solve is: 
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We can solve it graphically: the solutions (proportional to the energy of the system) will be 

the intersection points between the curve )sin(ka  and the line 
0k

k
 in the regions where
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 Let’s now solve (2) multiplying for )( ik following the same method we used above: 
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  this time we will use the following property of the tangent : 
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Which we can again solve graphically: the solutions (proportional to the energy of the system) 

will be the intersection points between the curve )cos(ka and the line 
0k

k
 in the regions 

where 0)( katg . 

 
 



 
 
And, in order to combine both solutions, we can substitute the following expressions: 
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into the equations: 
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In order to find the coefficients. 
 

 Let’s start from plugging the equation (2) in the expression for A2 of system 𝑨: 
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Similarly, by plugging the equation (2) in the expression for A2’ of system 𝑨, we can find 
that: 
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So then the wavefunctions look like: 
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Being these functions EVEN functions )()( xx   . 

 
 

 However, if now we plug the equation (1) in the expression for A2 and A2’ of system 𝑩 and 
we would find that: 
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And in this case, the wavefunctions look like: 
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And these functions are ODD functions )()( xx   . 

 
 
Finally, if we couple the solutions that we found above, we have a sequence of odd and even energy 
levels: 

 
P1 even (cos) → E1 

I1 odd    (sin) → E2 

P2 even (cos) → E3 

I2 odd    (sin) → E4 

P3 even (cos) → E5 

 


